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Abstract: Interatomic and intermolecular forces have been extensively studied,
for their ability to understand the processes at the interface between solids
and aqueous solutions. In particular, atomic force microscopy (AFM) generates
tridimensional images and force profiles at nanometric scale, whatever the nature
of the samples (biological, organic, mineral). An AFM microscope affords the
measurement of interatomic forces exerting between a probe associated to a
cantilever and a chemical sample. A force spectrum f(z) shows the evolution of
these forces as a function of the distance z between the probe and the sample.
This is a pointwise analysis of the sample, obtained by measuring the cantilever
deflection with respect to the probe-sample distance. A reproduction of this
pointwise analysis, in conjunction with the scan of the sample surface yields a
force-volume image f(x, y, z). This image is composed of the collection of force
spectra f(z) on a grid (x, y) representing the sample surface. Today, the analysis
and interpretation of a force-volume image remains mainly descriptive. In this
paper, we introduce a signal processing formulation, which aims at a precise
and automatic characterization of each pixel (xi, yi) of the sample surface. These
problems include the decomposition of a force spectrum into elementary patterns,
and the factorization of a force-volume image. We discuss the ability of standard
signal processing methods to solve these problems, and we illustrate the discussion
by means of experimental data.

Keywords: Nanotechnology, atomic force microscopy (AFM), force-volume
imaging, tridimensional signals, convolutive mixture of signals, optimization of
multidimensional criteria.
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1. INTRODUCTION

Interatomic and intermolecular forces have been
extensively studied, for their ability to under-
stand the processes at the interface between
solids and aqueous solutions. During the last
decades, the development of near field micro-
scopies has afforded to determine in situ local
physico-chemical properties (electric, magnetic,
vibration, forces) (Wiesendanger, 1994). In partic-
ular, atomic force microscopy (AFM) is capable to
generate force profiles at nanometric scale, what-
ever the nature of the samples (biological, organic,
mineral), and tridimensional (3D) images, called
force-volume images.

Atomic force microscopy was invented in 1986
(Binnig, 1986) and the first prototype was ex-
hibited a few months later (Binnig et al., 1986).
This discovery has motivated a great number
of developments, at experimental and theoreti-
cal levels (Giessibl, 2003). Simultaneously, force
spectroscopy appeared, with the ability to record
force-volume images (Sokolov et al., 1999; Heinz
and Hoh, 1999; Butt et al., 2005).

An AFM microscope is based on the measurement
of interatomic forces exerting between a probe
associated to a cantilever and a sample. A force
spectrum f(z) shows the evolution of these forces
as a function of the distance z between the probe
and the sample, as recorded from the piezo dis-
placement. This is a pointwise analysis of the
sample, obtained by measuring the cantilever de-
flection with respect to (w.r.t.) the probe-sample
distance. A reproduction of this pointwise anal-
ysis, in conjunction with the scan of the sam-
ple surface yields a force-volume image f(x, y, z).
This image is composed of the collection of force
spectra f(z) on a grid (x, y) which represents the
sample surface.

Today, the analysis and interpretation of a force-
volume image remains mainly descriptive; to our
knowledge, there is no signal processing method
dedicated to force-volume imaging. Such tools
would consist in:

(1) the 3D reconstruction of maps representing
the topology of nano-objects, or the physico-
chemical properties. The topologic recon-
struction is a difficult problem which has not
received, to our sense, a satisfactory solution.
Its resolution will lead to major advances in
the interpretation and exploitation of data
generated by other techniques of near field
microscopy (namely, optical techniques).

(2) the research of elementary physico-chemical
components inside a force-volume image.
When the sample to be analyzed is a mixture
of heterogeneous components, the problem is
to determine their number, to identify them,

and to estimate their relative distribution in
the mixture by source separation techniques.
The development of multilinear factorization
methods offers new perspectives, since they
aim at decomposing multidimensional im-
ages by means of lower dimension descrip-
tors (Harshman et al., 2003). We can expect
to retrieve elementary force interactions from
force-volume images, and to provide their
spatial distribution and their evolution as a
function of physico-chemical conditions such
as pH or ionic strength.

In the following section, we will describe the ac-
quisition of spectroscopic data using the AFM
instrument. We will emphasize the physical in-
teractions occurring between the probe and the
sample during a force profile acquisition, and give
parametric models (Heinz and Hoh, 1999). In Sec-
tions 3, 4 and 5, we will introduce the analysis of
force spectra and force-volume images in terms of
signal processing problems, e.g., the decomposi-
tion of a signal into elementary patterns and the
factorization of a multidimensional image. We will
illustrate these problems with a set of real data,
corresponding to mineral colloidal particles whose
chemical surface properties are heterogeneous and
far to be understood.

2. AFM MICROSCOPY

The operating modes of an AFM microscope are
based on the detection of interatomic forces (cap-
illary, electrostatic, Van der Waals, friction) ex-
erting between a cantilever-mounted probe and
a sample surface. We generally distinguish two
modes of data acquisition.

2.1 Contact and intermittent imaging modes

The probe performs the scanning of the whole
sample surface, hence providing two-dimensional
data. Two distinct modes are available:

• the contact (or static) mode. The probe and
the sample remain in close contact during
the raster scan. The contact mode directly
provides the topology;

• the non contact mode. Typically, a variation
of the interaction forces induces a variation
of the resonant frequency of the cantilever,
leading to a reduction of the oscillation am-
plitude. A closed-loop control system main-
tains the oscillation amplitude, as the feed-
back control signal is used to move the probe
up and down, and keeps constant the force
acting on the oscillation of the cantilever.
Therefore, this mode yields isoforce images.
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Fig. 1. Force spectroscopy. (a) At a pointwise location (xi, yi), the force measurements are collected
while the probe approaches, and then retracts from the sample. (b) For convenience, we pre-process
the data by reversing the orientation of the z axis, and we set z = 0 for the highest probe position.

Fig. 2. General shape of a force spectrum. Approach (solid line) and retraction (dashed line) curves at
a pointwise location (xi, yi). Adapted from (Gaboriaud and Dufrêne, 2007).

2.2 Force spectroscopy

Contrarily to the previous acquisition mode, force
spectroscopy is a pointwise analysis of the sample,
obtained by measuring the cantilever deflection as
a function of the distance z between the probe and
the sample surface (see figure 1). A force spectrum
f(z) shows the evolution of this force as a function
of z at a specific location on the sample.

The general shape of a force spectrum is shown
on figure 2. The force intensity is computed from
relative measurements of the cantilever deflection,
as a function of the relative motion of the probe
z − z0, where distance z0 stands for the reference
probe position, whose location is the most distant
to the sample. A force profile is composed of two
curves, corresponding to the approach and the

retraction of the probe (in solid and dashed lines,
respectively). In the following, we will describe the
specific regions of interest on these curves.

2.2.1. Approach curve

• Region A: no interaction occurs when the
cantilever is far from the sample. This region
allows us to define the null value of the forces.
Indeed, let us recall that the experimental
force spectra are measured in a relative fash-
ion, in terms of both probe motion and force
values;

• Region B: surface forces (electrostatic, Van
der Waals). These interactions are either
negative (attraction between the probe and
the surface), or positive (repulsion). Here, the
probe is not in contact with the sample;
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Fig. 3. Application of the force-volume mode to a nanometric goethite particle (α-FeOOH) lain on
a glass strip, in interaction with an AFM probe covered with an aluminum oxide of positive
charge (pH = 4, NaNO3 = 1 mM). (a) Recording of two force spectra, in the interior (repulsive
interactions) and exterior (attractive interactions) of the goethite particle surface. (b) AFM image
measured in the contact mode, in liquid environment.

• The contact between the probe and the sam-
ple is reached at the border between regions
B and C;

• Region C describes the mechanical interac-
tions of the cantilever and/or the sample.
For a non deformable sample, this behavior
is mainly due to the linear deformation of
the cantilever. For a deformable sample, com-
pression and/or indentation processes lead to
linear or non linear behaviors.

2.2.2. Retraction curve

• Region D. During the retraction, the occur-
rence of an hysteresis between the approach
and retraction curves is due to the viscoelas-
tic properties of the sample. For non de-
formable surfaces, this hysteresis is equal to
zero;

• Region E. Important adhesion forces may
be embedded in the retraction curves, de-
pending on the surface of contact, the con-
tact duration, and mainly on the surface en-
ergy between the sample and the probe. For
micro-organisms, this region is composed of
numerous discontinuities.

2.3 Force-volume imaging

By reproducing the preceding pointwise analysis
and by scanning the sample surface, we obtain
a force-volume image f(x, y, z) 1 . This image is

1 The signals and images measured in AFM microscopy

are discrete, but we will rather, for simplicity reasons, use

formed of the collection of force spectra f(z) on
a grid (x, y) representing the sample surface (see
figure 4 (a)).

The visualization of such 3D image is not obvi-
ous. A basic process considers each force spec-
trum separately, and then estimates the contact
point between the probe and the sample. These
estimations provide a 2D (incomplete) topologic
reconstruction of the sample.

We now illustrate those notions, with a set of real
data obtained in aqueous solutions using an MFP-
3D instrument (Asylum Research, Santa Barbara,
USA).

2.4 Experimental data

Figure 3 (a) displays the force spectra measured
for a nanometric goethite particle (α-FeOOH)
immobilized on a glass slide (Gaboriaud and
Ehrhardt, 2003). The exhibited force profiles cor-
respond to two pointwise locations on the sample
surface. The first location belongs to the surface
of the goethite particle while the second one is
on the glass slide (see figure 3 (b)). Clearly, the
topology is different in these two points, as the
”contact points” between the probe and the sam-
ple (regions B-C of the spectra) are not reached for
the same values of z. Moreover, the surface forces
are alternatively repulsive and attractive for these
two spectra.

continuous notations for x, y, z, except when the discrete

formalization will be necessary.
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Fig. 4. Force-volume imaging. (a) Recording of a force-volume image on a grid (x, y) representing
the sample surface. (b) Imaging of a nano-particle of goethite. The displayed image is a
2D reconstruction representing the probe-sample contact for each point of the surface. This
reconstruction is performed given a force-volume image recorded on a grid of 10× 10 pixels.

The force-volume image data, which were mea-
sured during the AFM experiment, correspond to
the scan of a surface

{
(x, y) ⊂

[
Xmin, Xmax

]
×[

Ymin, Ymax

]}
of size 1 µm2. The sample surface

was discretized into 100 = 10 × 10 square pixels
(xi, yi), giving rise to the measurement of 100
force spectra f(xi, yi, z). The 2D topologic re-
construction performed on this set of data, by
analysis of the z displacement corresponding to
the contact point, is displayed on figure 4 (b).

The data acquisition procedure has several speci-
ficities, which imply a data pre-processing step,
for visualization and description purposes:

• the size of the force spectra depends on
the local topology; a ”deep” pixel (xi, yi)
yields a large probe motion, and thus a large
number of data values; in average, the 1D
force spectra are composed of 2000 values;

• the force spectra are not uniformly sampled
with respect to z, because of the numerical
errors of the control of the probe motion
during the approach and retraction phases;

• the recording of z values and force values are
done in a relative fashion. Therefore, a pre-
processing consists of searching for the zero
value of each force spectrum, and reversing
the orientation of the z values; see figure 1.

3. SIGNAL PROCESSING ISSUES

3.1 Visualization and extraction of information
from AFM data

In Sections 4 and 5, we will introduce some signal
processing issues, related to the handling of AFM
data. Our goal is to develop automatic methods

to characterize the sample surface given a force-
volume image, as precisely as possible:

(1) firstly, extract partial information from this
data volume, such as the sample topology;

(2) secondly, search for the elementary interac-
tion forces in the data, in cases where the
sample is a mixture of heterogeneous chemi-
cal components. The separation of these ele-
mentary components from the mixture (and
the determination of their number), their
identification, and the estimation of their rel-
ative weights in the mixture will be done by
source separation techniques.

3.2 Assumptions and prerequisites

For convenience and clarity reasons, we will:

• reverse the orientation of the z axis, so that
the low values of z (i.e., large probe-sample
distance) appear on the left of the z-axis,
and conversely, large values of z (e.g., contact
between the probe and the sample) appear
on the right of the spectrum (see figure 5).
In particular, the zero value of z corresponds
to the highest position of the probe, referred
to as z0 on figure 1 (a);

• only consider the approach curves in the case
of the data displayed on figure 3. Straightfor-
wardly, the mathematical formulations which
will be presented shall be extended to the
case of retraction curves.

In the following, we present two strategies to
handle AFM data. The first works on 1D spectra
independently (that is, f(xi, yi, z) for fixed values
of xi and yi), the second is a joint processing of
all spectra f(x, y, z).
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Fig. 5. Three experimental force spectra (approach curve only) after the pre-processing step. (a) The
solid and dashdot curves correspond to repulsive and attractive interactions, respectively. The dashed
curve characterizes an heterogeneous interaction; this spectrum is composed of both repulsion and
adhesion patterns. (b) Zoom in of (a).

Component 1

Comp. 3

Component 2

Component 2

Comp. 3

Component 1

(a) Image grid (b) An heterogeneous pixel of grid (a)

Fig. 6. Discretization of the sample surface (x, y) into a set of square pixels. A pixel is referred to as
homogeneous when its surface is composed of only one elementary component (e.g., only component
k = 1 occurs for the background pixels). (b) An heterogeneous pixel (xi, yi) is composed of
a mixture of elementary components (here, components k = 1, 2 and 3). The goal of the force
spectrum analysis is to retrieve the weight of the elementary components into each pixel (xi, yi).

4. ANALYSIS OF ONE SPECTRUM

This analysis aims at retrieving the regions A-E
described above, from a given spectrum f(z) (or
regions A-C when processing an approach spec-
trum only). The precise estimation of characteris-
tic parameters, such as the contact point (between
regions B and C) describing the sample topology,
or the location of discontinuities in the retraction
curve, are crucial information for physicists.

In order to retrieve such patterns, it is essential to
account for the physical models which describe the
probe-sample interaction, in the approach (van
der Waals, electrostatic, elastic forces) and re-

traction (adhesion and capillary forces, chemical
bonding) phases. For each interaction, one can
exhibit parametric models (Heinz and Hoh, 1999),
which will be referred to as parametric patterns.
We now distinguish homogeneous and heteroge-
neous interactions, depending whether the sample
is a mixture of several elementary components or
not at location (x, y) (see figures 5 and 6).

4.1 Homogeneous component

Let us consider a homogeneous component fk (k-
th component). One can express the interaction
force by means of a parametric function.

For the data illustrated on figure 3, we distinguish
two main components corresponding to:
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Fig. 7. Repulsion (a) and adhesion (b) models for force spectra. The sets of parameters of both force
spectra are θ1 = {a1, a2, τ, z1} and θ2 = {a1, z2, z3, a3}, respectively.

(1) the nano-object (k = 1);
(2) the background (k = 2), i.e., the glass slide

on which the nano-object lies.

4.1.1. Repulsive interaction. The so-called in-
teraction corresponds to the case of non de-
formable minerals (nano-objects), whose polariza-
tion are identical to that of the probe. The force
spectrum is piecewise modeled by:

f1(z, θ1) =

{
a2τ exp

[
(z − z1)/τ

]
if z 6 z1,

a2τ + a1(z − z1) if z > z1

(1)
(see figure 7 (a)). The exponential and affine
functions correspond to regions A & B and region
C, respectively. Their first order derivatives at
z=z1 are equal to a2 and a1. The set of parameters
is defined by θ1 = {a1, a2, τ, z1}, where:

• z1 is the z-value of the contact between the
probe and the sample;

• τ is the shape coefficient of the exponential
curve;

• a1 is the slope of the affine function;
• a2 is the left derivative of f1 at z = z1.

4.1.2. Adhesive interaction. The adhesion model
is dedicated to non deformable materials, like the
the glass slide corresponding to the background of
figure 3 (a). As in the previous paragraph, we can
express the force spectrum by use of a parametric
model, which is here piecewise affine.

f2(z, θ2) =





0 if z 6 z2,

a3 (z − z2)/(z3 − z2) if z2 < z < z3,

a3 + a1(z − z3) if z > z3

(2)
(see figure 7 (b)). The three affine functions corre-
spond to regions A, B and C, respectively. The set
of parameters is defined by θ2 = {a1, z2, z3, a3},
where:

• z2 refers to the transition between the regions
A and B;

• z3 is the z-value of the contact between the
probe and the sample;

• a3 is the force value f(z3);
• a1 is the slope of the third affine function.

Remark. For both models (1) and (2), a1 repre-
sents the slope of the last linear region. This pa-
rameter is an intrinsic characteristic of the AFM
microscope.

4.2 Heterogeneous interaction

For an heterogeneous interaction, we express the
force spectrum as the superposition of homoge-
neous component spectra. A visual inspection of
the experimental spectra (see figure 5) leads to
the following model:

f(z, θ) = f1(z, θ1) + f2(z, θ2), (3)

where θ = {θ1, θ2} is the set of parameters
of the heterogeneous spectrum, that is θ =
{z1, z2, z3, τ, a1, a2, a3}. Note that the intrinsic pa-
rameter a1 occurs in both f1 and f2, hence its
value shall be set to half of the value of a1 in (1)
and (2).

Remark. An homogeneous component can be
seen as a particular case of (3), where z3 = z1,
and either a3 or τ is equal to 0.

• When τ = 0, we can continuously extend
definition (1) by setting

f1(z, θ1) =

{
0 if z 6 z1,

a1(z − z1) if z > z1.
(4)

This spectrum is characteristic of the non-
existing component (k = 1). The spectrum
f2(z, θ2) corresponding to the existing com-
ponent has the shape of figure 7 (b).

• When a3 = 0, the homogeneous material
is described by f1. Equation (4) holds for
f2(z, θ2), where z1 is now replaced by z3.
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In conclusion, the force spectrum of an homoge-
neous component can always be expressed as the
sum of (4) and either (2) or (1), with z3 = z1.

In cases where the sample is heterogeneous,
the estimation of the spectrum parameters θ =
{θ1, θ2} affords:

• the weight of both materials (k = 1 and
k = 2) inside the current pixel (x, y), by
means of |a3| and a2τ ;

• the average topology of both materials inside
the current pixel (z1 and z3).

4.3 Least squares approximation of the parametric
model

We estimate the set of parameters θ given the
experimental data {(zj, fj), j = 1, . . . , J} by us-
ing the least squares method. The estimated pa-
rameter value is defined as the minimizer of the
following cost function:

C(θ) =

J∑

j=1

(fj − f(zj, θ))2, (5)

where function f(z, θ) is defined by (3), and J
stands for the number of experimental data. More
specifically, (5) can be replaced by:

Ck(θk) =
J∑

j=1

(fj − fk(zj , θk))2, (6)

when we know that the sample is locally homoge-
neous, and we have identified the corresponding
model (k = 1 or 2).

The minimization of C is carried out under the
following constraints:






a1 > 0,
τ > 0,
a3 6 0,
z2 < z3,
z3 6 z1,

(7)

which account for the physical laws describing
the probe-sample interaction. In particular, the
last constraint states that the glass slide is always
”deeper” than the sample which lies above it.

The constrained optimization of C is not an easy
task. For instance, let us consider the minimiza-
tion of C2 defined by (6) and (2), correspond-
ing to an homogeneous sample of adhesive type.
Clearly, C2(θ2) is a function of the four parameters
θ2 = {a1, z2, z3, a3}, and the dependence w.r.t. a1

and a3 is quadratic. Consequently, for fixed values
of z2 and z3, we can directly compute the exact
minimizer of C2 w.r.t. a1 and a3:

Ĉ2(z2, z3) = min
a1,a3

C2(a1, z2, z3, a3), (8)

at an inexpensive cost.

An interesting strategy is then to minimize Ĉ2

instead of C2, under the only constraint z2 < z3.
On figure 8, we display an experimental AFM
spectrum {(zj, fj), j = 1, . . . , J} and the related

criterion Ĉ2(z2, z3), computed on a grid (z2, z3)
of R2. Figure 8 shows that there are two local
minimizers, which we denote:

• (zg
2 , zg

3): the local minimizer which is also the

global minimizer of Ĉ2;
• (zl

2, z
l
3): the other local minimizer, giving a

larger value of the cost function.

The multimodality of C2 implies that local descent
algorithms do not necessarily provide (zg

2 , zg
3). Ac-

tually, this solution is very unlikely to be reached
due to the very narrow shape of the basin of
attraction of (zg

2 , zg
3), unless the initial solution

belongs to this basin. Moreover, the basin of at-
traction of (zl

2, z
l
3) is of flat shape, leading to

additional numerical difficulties: local descent al-
gorithms may not even reach (zl

2, z
l
3).

When minimizing criterion C1(θ1) by a similar
approach, we encountered the same difficulties
(multimodality of Ĉ1, flat basins of attraction).
Classical local descent algorithms may fail to
reach the global and the local minimizers of Ĉ1,
and are sensitive to the initial value of the param-
eters. Numerical instabilities are also due to the
exponential function involved in (1); for a fixed
value of z (z < z1), f1(z, θ1) is very sensitive to
variations of τ when τ is larger to some threshold
value, and almost not when τ ≈ 0.

4.4 Topologic reconstruction from a force-volume
image

The full visualization of a force-volume image
f(x, y, z) is not an obvious task. One generally
performs the two following steps:

(1) For each 1D spectrum (location (x, y) is
fixed), estimate the corresponding set of pa-
rameters θ(x, y);

(2) Once the characteristic patterns of each spec-
trum are retrieved, display a few 2D images
representing the sample topology (parame-
ters z1 and/or z3), the energy of adhesion
(i.e., the surface of the region located under
the exponential curve for repulsive interac-
tion), etc.

We refer the reader to figure 4 (b) for a 2D
topologic reconstruction result related to the ex-
perimental data.
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Fig. 8. Least square approximation of the adhesion model f2(z, θ2) to an experimental data spectrum.
(a) The 1D experimental data (zj , fj) are displayed together with the parametric spectrum f2(z, θ2)
giving the lowest least-square error. The two vertical dashed lines refer to the locations (z2, z3) for

which Ĉ2(z2, z3) is minimal. Here, z2 and z3 correspond to two consecutive z-value zj and zj+1,

hence yielding very close vertical lines. (b,c) 2D and 3D representations of criterion Ĉ2(z2, z3), as
defined in (8). The criterion is displayed on the domain

{
min {zj} 6 z2 < z3 6 max {zj}

}
. (d)

One dimensional profile of Ĉ2(z2, z3), obtained for a fixed value of z3 (profile along the vertical line

of figure (b). This profile illustrates the multimodality of Ĉ2.

5. JOINT ANALYSIS OF A SET OF
SPECTRA

The separate analysis of a single force spectrum is
difficult to carry out, as the related optimization
problem, described above, often leads to either lo-
cal minima, either numerical difficulties. Although
the use of global minimization procedures or spe-
cific dynamic programming algorithms can bring
an improvement over local methods, we believe
that the joint analysis of all the 1D spectra, in
other words the force-volume image f(x, y, z), will
afford us to retrieve more details, since a force-
volume image accounts for the spatial structure
of the sample.

5.1 Convolutive mixture model

The force-volume image analysis aims at char-
acterizing each pixel (xi, yi) of the sample sur-
face given the entire 3D data f(x, y, z). Let us
consider an heterogeneous sample, composed of
p elementary homogeneous components (called
sources). We will assume that each data spec-
trum f(xi, yi, z) (i-th pixel) is the result of a
combination of the source spectra, denoted by
f1(z), f2(z), . . . , fp(z). To obtain this description,
we use a model of convolutive mixture of sources,
which accounts for the sample variation of topol-
ogy along x and y:

f(xi, yi, z) =

p∑

k=1

aik fk(z − zik), (9)
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where:

• coefficient aik is the contribution of the k-th
source at the interior of the i-th pixel;

• functions fk are identical to the functions
f1 and f2 defined in the particular case
of repulsive and adhesive interactions with
a non deformable sample. Other types of
interactions may also occur, namely in the
case of deformable nano-objects and in the
retract phase;

• distances zik are homogeneous to probe-
sample distances, and characterize the topol-
ogy of the k-th source at the interior of the
i-th pixel. These parameters are identical to
z1 and z3 in (1) and (2).

Clearly, the occurrence of several sources in the in-
terior of the same pixel indicates that the chemical
sample is locally heterogeneous (aik 6= 0 for the i-
th pixel and for several values of k); see figure 6.

The joint estimation of the sources, their topology
and the mixture coefficients from a force-volume
image f(x, y, z) can be seen as a source separa-
tion problem. It is a classical signal processing
problem, which however, is far to be trivial for
convolutive mixtures.

5.2 Source separation from convolutive mixtures

Equation (9) rereads:

f(xi, yi, z) =

p∑

k=1

aik

(
δzik

∗
z

fk

)
(z), (10)

where δzik
(z) = δ(z − zik) represents the 1D

Dirac distribution. Clearly, (10) reduces to the
classical instantaneous linear model encountered
in source separation, when the parameters zik are
all equal to zero, i.e., when sample topology is
flat. When the topology is not flat, the source
separation problem is specially difficult, since the
sample topology is unknown, as well as the sources
and their respective weights in the mixture. In
a formal viewpoint, model (10) is non linear
w.r.t. parameters zik. However, the 1D Fourier
transform of f(xi, yi, z) w.r.t. z reads:

f̃(xi, yi, νz) =

p∑

k=1

aik exp (−2jπνz zik) f̃k(νz),

(11)
denoting by ” .̃ ” the 1D Fourier transform op-
erator, and by νz the frequencies along z. This
model is now bilinear w.r.t. aik, exp (−2jπνz zik),

and signals f̃k(νz).

5.3 Inversion of the convolutive mixture model

The inversion of the mixture model amounts to
estimating the mixture parameters, i.e., coeffi-

cients aik, zik, and the source signals fk (and their
number p) given the experimental data and model
(10). It is well known that the source separa-
tion problem is an ill-conditioned inverse problem,
which suffers from several indeterminacies. In par-
ticular, we have:

δzik
∗ fk =

(
δzik

∗ δ−z′

k

)
∗

(
δz′

k
∗ fk

)
. (12)

In other words, the sources fk can only be sepa-
rated up to a delay z′k.

As seen in section 4, the physical models de-
scribing the interactions which occur during the
motion of the probe (approach or retraction) are
available. They provide us with parametric models
of the source signals fk, also referred to as decom-
position into elementary patterns:

fk(z) = fk(z, θk), (13)

where the so-called patterns (discontinuity, expo-
nential curve, etc.) embedded into the elementary
spectra are described by the set of parameters θk.

We expect that the use of multilinear tensor
factorization algorithms (Harshman et al., 2003),
coupled with this parametric decomposition of
sources, will afford us to solve the problem of
source separation from convolutive mixtures.

5.4 Accounting for the probe geometry

The model (10) describing the probe-sample force
interactions is often unrealistic, since it does not
account for the probe geometry. The latter model
is only valid when the width of the probe is neg-
ligible w.r.t. the size of the square pixels (xi, yi)
discretizing the sample surface.

When this condition is not satisfied, one needs
a more realistic model, which also involves a
convolution in the (x, y) domain (Udpa et al.,
2006). Let us assume that the probe is of non
deformable parallelepipedic shape (see figure 9).
This assumption amounts to considering that a
pixel (xi, yi) of the sample surface is submitted to
a force distribution related to the probe geometry.

For an homogeneous sample (component k only),
(10) rereads:

f(x, y, z) = fk(z − zxyk), (14)

where xi, yi, and the topologic parameters zik are
replaced by continuous notations, and the weight
factor axyk is omitted. The extension of (14) to
the case of a finite width probe reads:

f(x, y, z) = h(x, y) ∗
(x,y)

fk(z − zxyk), (15)

where the point spread function h is defined by:

h(x, y) =

{
1 if (x, y) ∈ [xmin, xmax] × [ymin, ymax],

0 otherwise,

(16)
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probe
z

y

x surface of the sample

Fig. 9. Accounting for the probe geometry. Here,
the shape of the probe is modeled as a non
deformable parallelepipedic material.

and
[
xmin, xmax

]
×

[
ymin, ymax

]
stands for the

horizontal cross-section of the probe.

For an heterogeneous sample, we generalize the
above model as follows:

f(x, y, z) = h(x, y) ∗
(x,y)

p∑

k=1

[
axyk fk(z − zxyk)

]
.

(17)

When the force-volume image data are finely reso-
luted along the (x, y) dimension, we can expect to
reconstruct p fine resoluted images representing
the sample topology zxyk (k = 1, . . . , p) and p
maps representing the weights axyk of the ele-
mentary components (k = 1, . . . , p). The joint
estimation of h and of the mixture parameters
can then be expressed as a deconvolution prob-
lem, coupled with a source separation problem. A
natural strategy to cope with it is to process the
following three steps:

(1) identify the point spread function h(x, y).
This step can be done by means of a learning
sequence, corresponding to a mineral flat
nano-object lying on a glass slide;

(2) solve the deconvolution problem, and thus
remove the effect of h(x, y);

(3) finally, solve the source separation problem
(10), in which the probe is of negligible
width.

Note that models (15) and (17) may be gener-
alized when the probe extremity is not of flat
shape. The point spread function h would not only
depend on (x, y), but also on z to account for the
relative depth of the probe extremity.

6. CONCLUSIONS

In this paper, we have briefly introduced the AFM
modalities, and the physical processes which are
related to the record of force spectra and force-
volume images. Firstly, we have exhibited some
parametric models describing an homogeneous

component alone by a collection of shape factors
(discontinuities of the spectrum, spatial topology
of the component). Secondly, we have introduced
a convolutive mixture model describing heteroge-
neous interactions, where the mixture model refers
to the homogeneous components embedded in a
given pixel, and the convolution operator accounts
for the topology of the elementary components in-
side a pixel, and for the probe geometry. We have
illustrated these models with a set of experimental
data obtained in aqueous solutions using an MFP-
3D instrument.

From a signal processing standpoint, future works
will aim at developing advanced methods ded-
icated to force-volume images, namely the de-
composition of a 1D spectrum into elementary
patterns, the factorization and the deconvolution
of a force-volume image. We believe that the
simultaneous process of all 1D spectra, i.e., of
a force-volume image, will bring more accurate
results than the separate analysis of each 1D force
spectrum. We expect that the use of multilinear
tensor factorization algorithms, coupled with the
parametric description of elementary spectra, will
afford us to solve the problem of source separation
from convolutive mixtures.
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