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Abstract

This paper is devoted to the study of speci�c statistical methods for extremal
events in the markovian setup, based on the regenerative method and the Nummelin
technique. Exploiting ideas developed in Rootzén (1988), the principle underlying our
methodology consists of �rst generating a random number l of approximate pseudo-
renewal times τ1, τ2, . . . , τl for a sample path X1, . . . , Xn drawn from a Harris
chain X with state space E, from the parameters of a minorization condition ful�lled
by its transition kernel, and then computing submaxima over the approximate cycles

thus obtained: max1+τ1≤i≤τ2
f(Xi), . . . , max1+τl−1≤i≤τl

f(Xi) for any measurable
function f : E→ R. Estimators of tail features of the sample maximummax1≤i≤n f(Xi)
are then constructed by applying standard statistical methods, tailored for the i.i.d.
setting, to the submaxima as if they were independent and identically distributed.
In particular, the asymptotic properties of extensions of popular inference procedures
based on the conditional maximum likelihood theory, such as Hill's method for the
index of regular variation, are thoroughly investigated. Using the same approach, we
also consider the problem of estimating the extremal index of the sequence {f(Xn)}n∈N
under suitable assumptions. Eventually, practical issues related to the application of
the methodology we propose are discussed and preliminary simulation results are
displayed.
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1 Introduction

In [10, 11], a statistical methodology based on approximating the pseudo-regeneration prop-
erties of general Harris Markov chains has been introduced for tackling various estimation
problems in the markovian setup: mean and variance estimation, con�dence intervals,
U-statistics, bootstrap and robust functional estimation. It has been proved to lead to
asymptotically valid inference procedures with both theoretical and practical advantages
over so called blocking-techniques for data exhibiting this speci�c pattern of dependence.
The purpose of this paper is to further develop this approach, in order to propose novel
inference methods for estimating some speci�c features related to the extremal behavior
of certain functionals of Markov chains.

Motivated by various applications including statistical analysis of �nancial or insurance
data, and queuing or inventory models in operations research, the challenging problem of
extending estimation methods for extremal events elaborated for the i.i.d. setup to weakly
dependent data has indeed received increasing attention in the statistical literature over
the past several years, see [35, 36, 37, 52, 57] for instance. As shown by numerous former
studies, generalization is not straightforward in many cases and dependency cannot be
ignored. Most methods for statistical analysis of extremal events in such a dependent
setting rely on blocking-techniques, which consist roughly of dividing an observed data
series into (non overlapping) blocks of �xed length and then examining how extreme values
occur over these data segments, in order to capture the dependency structure and determine
its role in the extremal behavior. Indeed, whereas extreme values naturally occur in an
isolated fashion in the i.i.d. setup, they generally tend to come in small clusters for weakly
dependent sequences. The notion of extremal index accounts for this phenomenon, and
the reader can refer to [42] for an account of extreme value theory for stochastic processes.

Given the ubiquity of the Markov assumption in time-series modeling and applied
probability models, here we propose an alternative to those statistical methods, speci�-
cally tailored for the markovian framework. To be precise, this paper looks at statistical
inference for extremal events from the renewal theory angle. As �rst observed in [56],
see also [2, 3, 31, 32], certain extremal behavior features of Harris Markov chains may be
also expressed in terms of regeneration cycles, namely data segments between consecutive
regeneration times τ1, τ2, . . ., i.e. random times at which the chain forgets its past.
Working on this approach, the methodology proposed in this paper consists of splitting up
the observed sample path into regeneration data blocks, or into data blocks drawn from a
distribution approximating the regeneration cycle's distribution in the general case when
regeneration times cannot be observed. It then analyzes the sequence of maxima over the
resulting data segments, as if they were i.i.d., via standard statistical methods. In order to
illustrate the advantages of this technique, we concentrate on several important inference
problems. We focus on estimating the sample maximum's tail directly, the extremal index

and the regular variation index, by means of the (pseudo-) regenerative method and the
rigorous formulation of asymptotic results for these problems. Owing to space limitations,
other possible estimation problems are not discussed here. Some simulation studies are

2

ha
l-0

01
65

65
2,

 v
er

si
on

 2
 - 

12
 J

un
 2

00
8



furthermore presented, with the aim of investigating the performance of the techniques
introduced in the present paper from an empirical viewpoint and comparing them in this
respect to other methods, standing as natural candidates in the markovian context.

The rest of the paper is structured as follows. In section 2, notations are �rst set
out and basics about the regenerative properties of Markov chains or of suitable theo-
retical extensions of the latter are brie�y recalled, together with the plug-in technique,
�rst introduced in [10], aimed at generating approximate regeneration times for general
Harris chains τ̂1, τ̂2, . . .. As a preamble, section 3 highlights the connection between the
(pseudo-) regenerative properties of a Harris chain X = (Xn)n∈N and the extremal behavior
of sequences of type f(X) = {f(Xn)}n∈N, which constitute the main principle underlying the
estimation methods considered in this paper. Preliminary statistical results are also stated.
In section 4, as a �rst attempt, the regeneration-based approach is applied to the problem
of directly estimating the tail of max1≤i≤n f(Xi). Next, an estimation of the extremal index
of the sequence f(X) is tackled. It also shows how, by simply considering the submaxima
max1+τ1≤i≤τ2 f(Xi), . . ., or approximations of the latter max1+τ̂1≤i≤τ̂2 f(Xi), . . ., one may
extend straightforwardly statistical methods for extremal events proved consistent in the
i.i.d. setup (under "maximum domain of attraction" assumptions) to markovian data, tak-
ing the popular Hill's procedure as an illustrative example in the Fréchet case. Consequent
empirical results are displayed, together with a short discussion of practical issues related
to the implementation of the pseudo-regeneration based approach. Section 6 yields the
technical proofs.

2 On the (pseudo-) regenerative approach for markovian data

Here and throughout X = (Xn)n∈N denotes a ψ-irreducible time-homogeneous Markov
chain, valued in a countably generated measurable space (E, E) with transition probability
Π(x, dy) and initial distribution ν (refer to [54] for basic concepts of the Markov chain
theory). In what follows, Pν (respectively, Px for x in E) denotes the probability measure
on the underlying space such that X0 ∼ ν (resp., conditioned upon X0 = x), Eν[.] the
Pν-expectation (resp. Ex[.] the Px (.)-expectation) and I{A} the indicator function of any
event A. We also use the notations: ∀(a, b)2, a ∨ b = min(a, b) and a ∧ b = max(a, b).
We assume furthermore that X is positive recurrent and denote by µ its unique invariant
probability distribution.

2.1 Markov chains with regeneration times

A Markov chain X is said to beregenerative when it possesses an accessible atom, i.e.
a measurable set A such that ψ(A) > 0 and Π(x, .) = Π(y, .) for all x, y in A. De-
note then by τA = τA(1) = inf {n ≥ 1, Xn ∈ A} the hitting time on A, by τA(j) =

inf {n > τA(j− 1), Xn ∈ A} for j ≥ 2 the successive return times to A and by EA[.] the
expectation conditioned on X0 ∈ A. When the chain is Harris recurrent, the probability of
returning in�nitely often to atom A is equal to one, whatever the starting state. It follows
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from the strong Markov property that, for any initial distribution ν, the sample paths of
the chain may be divided into i.i.d. blocks of random length corresponding to consecutive
visits to A, generally termed regeneration cycles:

B1 = (XτA(1)+1, ..., XτA(2)), ..., Bj = (XτA(j)+1, ..., XτA(j+1)), ...

taking their values in the torus T = ∪∞
n=1E

n. The renewal sequence {τA(j)}j≥1 de�nes
successive times at which the chain forgets its past, called regeneration times. We point
out that the class of atomic Markov chains contains not only chains with a countable state
space (for the latter, any recurrent state is an accessible atom), but also many speci�c
Markov models arising from the �eld of operational research. Refer to [4] for regenerative
models involved in queuing theory, see also �5.1 below. When an accessible atom exists,
the stochastic stability properties of the chain reduce to properties concerning the speed of
return time to the atom only. In this framework, one may show for instance that the chain
X is positive recurrent if and only if EA[τA] <∞, see Theorem 10.2.2 in [47]. The unique
invariant probability distribution µ is then the Pitman's occupation measure given by

µ(B) =
1

EA[τA]
EA[

τA∑
i=1

I{Xi ∈ B}], for all B ∈ E . (1)

For atomic chains, limit theorems can be derived from the application of the corre-
sponding results to the i.i.d. blocks (Bn)n≥1, see [59] and the references therein. One
may refer for example to [47] for the LLN, CLT, LIL, [15] for the Berry-Esseen theorem,
[44], and [45, 46, 10] for other re�nements of the CLT. The same technique can also be
applied to establish moment and probability inequalities, which are not asymptotic results,
see [19, 12]. As mentioned above, these results are established from moment assumptions
related to the distribution of the Bn's such as the ones stated below.

Moment assumptions. Let A be an accessible atom and κ ≥ 1. Consider the following
assumptions. Notice that they are independent from the atomA chosen, see �1.1 in Chapter
14 of [47] for instance.

H(κ) : EA[τκA] <∞,
H(ν, κ) : Eν[τκA] <∞.

Observe that, in the positive recurrent case, these assumptions are not independent when
ν = µ: from basic renewal theory, one has Pµ(τA = k) = (EA[τA])−1PA(τA ≥ k) for all
k ≥ 1. Hence, conditions H(µ, κ) and H(κ+ 1) are equivalent.

2.2 Regenerative extensions of general Harris chains.

We now recall the splitting technique introduced in [48] for extending the probabilistic
structure of the chain with the aim to construct an arti�cial regeneration set in the general
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Harris case. It relies crucially on the notion of small set.

Minorization condition. Recall that a set S ∈ E is said to be small for X if there exist
m ∈ N∗, δ > 0 and a probability measure Φ supported by S such that, for all x ∈ S, B ∈ E ,

Πm(x, B) ≥ δΦ(B), (2)

denoting by Πm the m-th iterate of the transition kernel Π. In the sequel, (2) is referred to
as the minorization condition M(m,S, δ,Φ). Recall that accessible small sets always exist
for ψ-irreducible chains: any set B ∈ E such that ψ(B) > 0 contains such a set (cf [38]).

The Nummelin technique. We now explain how to construct the atomic chain onto
which the initial chain X is embedded. Suppose that X satis�es M = M(m,S, δ, Γ)

for S ∈ E such that ψ(S) > 0. Rather than replacing the initial chain X by the chain
{(Xnm, ..., Xn(m+1)−1)}n∈N, we suppose m = 1. The sample space is expanded so as to
de�ne a sequence (Yn)n∈N of independent Bernoulli r.v.'s with parameter δ by de�ning the
joint distribution Pν,M whose construction relies on the following randomization of the
transition probability Π each time the chain hits S. Note that it occurs with probability
one since the chain is Harris recurrent and ψ(S) > 0. If Xn ∈ S, and

� if Yn = 1 (occurs with probability δ ∈ ]0, 1[), then Xn+1 ∼ Φ,

� if Yn = 0, then Xn+1 ∼ (1− δ)−1(Π(Xn, .) − δΦ(.)).

Set Berδ(β) = δβ+ (1− δ)(1−β) for β ∈ {0, 1}. We have thus constructed the split chain
{(Xn, Yn)}n∈N, valued in E× {0, 1} with transition kernel ΠM de�ned by

� for any x /∈ S, B ∈ E , β and β′ in {0, 1} ,

ΠM
(
(x, β) , B×

{
β′
})

= Π (x, B)× Berδ(β
′),

� for any x ∈ S, B ∈ E , β′ in {0, 1},{
ΠM ((x, 1) , B× {β′}) = Φ(B)× Berδ(β

′),
ΠM ((x, 0) , B× {β′}) = (1− δ)−1(Π (x, B) − δΦ(B))× Berδ(β

′).

The key point of the construction relies on the fact that AS = S × {1} is an atom for the
bivariate Markov chain (X, Y), which inherits all its communication and stochastic stability
properties from X. In particular, when any assumption �H among the following is satis�ed
by X for a certain accessible small set S, it also holds for any other accessible small set and
the analogue assumption H in the atomic case is then automatically ful�lled by the split
chain (X, Y), refer to Chapter 14 in [47].
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Moment assumptions. Let κ ≥ 1. Consider the assumptions stated below.

�H(κ) : supx∈S Ex[τκS] <∞,
�H(ν, κ) : Eν[τκS] <∞.

Plug-in approximation of the Nummelin extension. Here we assume further that
the conditional distributions {Π(x, dy)}x∈E and the initial distribution ν are dominated by
a σ-�nite measure λ of reference, so that ν(dy) = f(y)λ(dy) and Π(x, dy) = π(x, y)λ(dy)

for all x ∈ E. For simplicity, we suppose that conditionM is ful�lled with m = 1. Hence,
Φ is absolutely continuous with respect to λ too, and, setting Φ(dy) = φ(y).λ(dy),

∀x ∈ S, π(x, y) ≥ δφ(y), λ(dy)-almost surely . (3)

If we were able to generate binary random variables Y1, ..., Yn, so that ((X1, Y1), ..., (Xn, Yn))

be a realization of the split chain described above, then we could divide the sample path
X(n) = (X1, ..., Xn) into regeneration blocks. Therefore, knowledge of π over S2 is required
to draw Y1, ..., Yn this way. The distribution L(n)(π, S, δ, φ, x(n+1)) of Y(n) = (Y1, ..., Yn)

conditioned on X(n+1) = (x1, ..., xn+1) is the tensor product of Bernoulli distributions given
by: ∀β(n) = (β1, ..., βn) ∈ {0, 1}n , ∀x(n+1) = (x1, ..., xn+1) ∈ En+1,

Pν(Y(n) = β(n) | X(n+1) = x(n+1)) =

n∏
i=1

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1)

with for 1 ≤ i ≤ n: if xi /∈ S,

Pν(Yi = βi | Xi = xi, Xi+1 = xi+1) = Berδ (βi) ,

and if xi ∈ S,{
Pν(Yi = 1 | Xi = xi, Xi+1 = xi+1) = δφ(xi+1)/π(xi, xi+1),

Pν(Yi = 0 | Xi = xi, Xi+1 = xi+1) = 1− δφ(xi+1)/π(xi, xi+1).
(4)

In short, given the sample path X(n+1), the Yi's are Bernoulli r.v.'s with parameter δ,
unless X has hit the small set S at time i: in this case Yi is drawn from the Bernoulli
distribution with parameter δφ(Xi+1)/π(Xi, Xi+1). Our proposition for constructing data
blocks relies on approximating this construction by computing �rst an estimate π̂n(x, y)

of the transition density π(x, y) from data X1, ..., Xn+1, and then drawing a random vector
(Ŷ1, ..., Ŷn) from the distribution L(n)(π̂n, S, δ, φ, X

(n+1)), obtained by simply plugging π̂n
into (4), assuming that the estimate π̂n(x, y) is picked so that π̂n(x, y) ≥ δφ(y), λ(dy)

a.s., and π̂n(Xi, Xi+1) > 0, 1 ≤ i ≤ n.

From a practical viewpoint, it su�ces to draw the Ŷi's only at times i when the chain
hits the small set S, Ŷi indicating whether the trajectory should be divided at time point
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i or not. This way, setting l̂n =
∑
1≤k≤n I{(Xk, Ŷk) ∈ S × {1}} one gets a sequence of

approximate renewal times,

τ̂AS(j+ 1) = inf{n ≥ 1+ τ̂AS(j)/ (Xn, Ŷn) ∈ S× {1}}, for 1 ≤ j ≤ l̂n − 1, (5)

with τ̂AS(0) = 0 by convention and forms the approximate regeneration blocks B̂1, ..., B̂l̂n−1
.

The question of accuracy of this approximation has been tackled in [11] using a coupling
approach. Precisely, the authors established a sharp bound for the deviation between the
distribution of ((Xi, Yi))1≤i≤n and that of ((Xi, Ŷi))1≤i≤n in Mallows distance, see Theorem
4.1 therein. This essentially depends on the rate of the mean squared error (MSE)

Rn(π̂n, π) = E[( sup
(x,y)∈S2

|π̂n(x, y) − π(x, y)|)2], (6)

with the sup norm over S× S as a loss function, under the following conditions:

A1. the parameters S and φ in (3) are chosen so that infx∈Sφ(x) > 0,

A2. sup(x,y)∈S2 π(x, y) <∞ and Pν-almost surely supn∈N sup(x,y)∈S2 π̂n(x, y) <∞.

Before showing how the renewal properties of (the Nummelin extension of) Harris
Markov chains may be practically exploited for statistical analysis of extremal events, a
few remarks are in order.

Remark 1 (On estimating the transition density π(x, y) over S×S) Within the
time-series asymptotic framework, the problem of estimating the transition density of a
Harris recurrent Markov chain has received much attention in the statistical literature and
estimation rates for the di�erent estimators proposed have been established under suitable
ergodicity conditions (including the null recurrent case, see [39]) and various smoothness
assumptions on the marginal densities

∫
z∈E µ(dz)π(z, x) and

∫
z∈E µ(dz)π(z, x) ·π(x, y), see

[14, 23, 6, 18]. For instance, under standard H�older constraints of order s, the typical rate
for the MSE (6) is of order n−s/(s+1).

Remark 2 (Data-driven choice of theM-parameters) We point out that, so far,
knowledge of the parameters (S, δ, φ) of condition (3) is required for constructing the
pseudo-cycles. However, in Section 5 of [9] an entirely data-driven method for picking those
tuning parameters has been proposed, which aims at solving a trade-o� for maximizing
(an approximation of) the expected number of pseudo-cycles generated. The principle
underlying this selection procedure is brie�y recalled in � 5.2, where it is applied to some
simulation datasets.

3 Preliminary results

Here we begin by brie�y recalling the connection between the (pseudo-) regeneration prop-
erties of a Harris chain X and the extremal behavior of sequences of type f(X) = {f(Xn)}n∈N,
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�rstly pointed out in the seminal contribution of [56], see also [3] and [32]. The case of
sequences of type {F(Xn, . . . , Xn−k)}n≥k may be investigated in a similar manner. We also
gather preliminary remarks, in order to give an insight into the principle underlying the
statistical methods studied later on.

Cycle submaxima. We �rst consider the case when X possesses a known accessible atom
A. For j ≥ 1, we de�ne the submaximum over the j-th cycle of the sample path:

ζj(f) = max
1+τA(j)≤i≤τA(j+1)

f(Xi). (7)

By virtue of the strong Markov property, the ζj(f)'s are i.i.d. random variables with
common df Gf(x) = PA(max1≤i≤τA f(Xi) ≤ x). The following result established in [56]
shows that the limiting distribution of the sample maximum of X is entirely determined
by the tail behavior of the df Gf and relies on the crucial observation that the maximum
value Mn(f) = max1≤i≤n f(Xi) taken by the sequence f(X) over a trajectory of length n,
may be naturally expressed in terms of submaxima over regeneration cycles as follows

Mn(f) = max{ζ0(f), max
1≤j≤ln−1

ζj(f), ζ
(n)
ln

(f)}, (8)

where ln =
∑n
i=1 I{Xi ∈ A} denotes the number of visits of X to the regeneration set A until

time n, ζ0(f) = max1≤i≤τA f(Xi) and ζ
(n)
ln

(f) = max1+τA(ln)≤i≤n f(Xi) denote the maxima
over the nonregenerative data blocks, and with the usual convention that maximum over
an empty set equals to −∞.

We stress that the number ln of cycle submaxima over a trajectory of �nite length n is
random, and that the cycle submaxima are generally not independent similar to the blocks
of which lengths sum up to n.

Proposition 1 (Rootzén, 1988) Let α = EA[τA] be the mean return time to the atom A.

Under the assumption that the �rst (nonregenerative) block does not a�ect the extremal

behavior, that is to say that

Pν(ζ0(f) > max
1≤k≤l

ζk(f))→ 0 as l→∞, (9)

we then have

sup
x∈R

|Pν(Mn(f) ≤ x) −Gf(x)
n/α|→ 0 as n→∞. (10)

Remark 3 We point out that, under the further assumption that conditions A1 and A2
are ful�lled by the chain X, it has been proved in [31] that the rate at which convergence
(10) takes place is actually of order O(n−1/2log3/2(n)) as n→∞.

As shown by the result stated above, as soon as condition (9) is ful�lled, the asymptotic
behavior of the sample maximum is entirely determined by the tail properties of the df
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Gf(dx). In particular, the limiting distribution ofMn(f) for a suitable normalization is the
extreme dfHξ(dx) of shape parameter ξ ∈ R (withHξ(x) = exp(−(1+ξx)−1/ξ)I{1+ξx > 0}
when ξ 6= 0 andH0(x) = exp(− exp(−x))) if and only ifGf belongs to the maximum domain
of attraction sayMDA(Hξ) of the latter df (refer to [51] for basics in extreme value theory).
Thus, when Gf ∈MDA(Hξ), there are sequences of normalizing constants an and bn such
that Gf(anx + bn)n → Hξ(x) as n → ∞, we then have Pν(Mn(f) ≤ a′nx + b ′n) → Hξ(x)

as n→∞, with a′n = abn/αc and b
′
n = bbn/αc.

Estimation of the cycle submaximum cdf. In the atomic case, the cdf Gf of the cycle
submaxima, ζj(f) with j ≥ 1 , may be naturally estimated by computing its empirical
counterpart from the observation of a random number ln−1 of regenerative cycles, namely

Gf,n(x) =
1

ln − 1

ln−1∑
j=1

I{ζj(f) ≤ x}, (11)

with Gf,n ≡ 0 by convention when ln ≤ 1. Since, by Harris recurrence, ln ∼ n/α Pν-almost
surely as n→∞, it immediately follows from Glivenko-Cantelli's theorem that

sup
x∈R

|Gf,n(x) −Gf(x)|→ 0, Pν-almost surely. (12)

Furthermore, by the law of iterated logarithm (LIL), we also have supx∈R |Gf,n(x)−Gf(x)| =

OPν(
√
log log(n)/n).

As previously noticed, cycles submaxima of the split chain are generally not observable
in the general Harris case. However, regeneration-based statistical procedures may be
directly extended by considering the submaxima over the approximate regeneration cycles

ζ̂j(f) = max
1+τ̂AS (j)≤i≤τ̂AS (j+1)

f(Xi), (13)

for i = 1, . . . , l̂n − 1, and computing the empirical counterpart as if they were the 'true'
cycle submaxima

Ĝf,n(x) =
1

l̂n − 1

l̂n−1∑
j=1

I{ζ̂j(f) ≤ x}, (14)

with, by convention, Ĝf,n ≡ 0 if l̂n ≤ 1. As shown by the next theorem, using the
approximate cycle submaxima instead of the true ones in the average (11) does not a�ect
the convergence, provided that π̂n(x, y) is consistent in the MSE sense over S2. Following
in the footsteps of [9], the proof essentially relies on a coupling argument. Technical details
are postponed to �6.1.

Theorem 2 Let f : (E, E) → R be a measurable function. Suppose that conditions (3),

A1 and A2 are ful�lled by the chain X. Assume further that Rn(π̂n, π)→ 0 as n→∞.

9

ha
l-0

01
65

65
2,

 v
er

si
on

 2
 - 

12
 J

un
 2

00
8



Then, Ĝf,n(x) is a consistent estimator of Gf(x) = PAS(max1≤i≤τAS f(Xi) ≤ x), uniformly

over R: as n→∞,

sup
x∈R

|Ĝf,n(x) −Gf(x)| = OPν(Rn(π̂n, π)1/2 ∨
√
log log(n)/n). (15)

As shown by Eq. (15) in the above theorem, the loss resulting from the approximation
step vanishes as the MSE rate gets closer to the parametric rate.

4 Regeneration-based statistical methods for extremal events

As argued in Proposition 2, the underlying renewal structure of the Harris chain X plays
a key role in the analysis of the extremal behavior of the sequence f(X) = {f(Xn)}n∈N.
The leitmotiv of the present paper is to show that, in the regenerative setup, consistent
statistical procedures for extremal events may be derived from the application of standard
inference methods introduced in the i.i.d. setting to the cycles submaxima observed over
a �nite trajectory on the one hand, and on the other hand that, when regeneration cycles
cannot be determined by simple examination of the data, i.e. in the general Harris case, the
latter can be extended straightforwardly by replacing the unknown theoretical submaxima
by their approximate versions. We point out that the estimation principle exposed in this
paper is by no means restricted to the sole markovian setup, but indeed applies to any
possibly continuous-time process for which a regenerative extension can be constructed and
simulated from available data, see Chapter 10 in [60]. Throughout this section, f denotes
a �xed real-valued measurable function de�ned on the state space E. In order to lighten
notation, we omit to index by the subscript f the distributions we consider.

4.1 Tail estimation based on (approximate) submaxima

In the case when assumption (9) holds, one may derive straightforwardly from (10) esti-
mates of H(n)(x) = Pν(Mn(f) ≤ x) as n → ∞ based on the observation of (a random
number of) submaxima ζj(f) over a sample path of length N, as proposed in [27, 62]:

HN, l(x) = (GN(x))l, (16)

with l ≥ 1. The next limit result establishes the asymptotic validity of estimator (16)
for adequate choices of N and l, extending this way Proposition 3.6 of [27], of which
the restrictive asymptotic framework stipulates the observation of a deterministic number
of regeneration cycles. Furthermore, it also shows that, under certain conditions, the
procedure remains consistent, even if computations are carried out from the approximate
regeneration data blocks and one considers estimates of the form ĤN, l(x) = (ĜN(x))l.

Proposition 3 Suppose that assumption (9) holds. Let (un)n∈N be a deterministic se-

quence of real numbers such that n(1−G(un))/α→ η <∞ as n→∞. Then, we have

H(n)(un)→ exp(−η) as n→∞. (17)
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(i) In the regenerative setup, suppose furthermore that H(ν, 1) is ful�lled. Let N = N(n)

and l = l(n) be picked such that n = o(
√
N(n)/ log logN(n)) and l(n) ∼ ln as

n→∞. Then,

HN(n), l(n)(un)/H(n)(un)→ 1 in Pν- probability, as n→∞. (18)

(ii) In the general Harris recurrent framework, suppose that A1, A2 and �H(ν, 1) hold

and RN(π̂N, π) = O(N−1+ε) as N → ∞ for some ε ∈]0, 1[. If (N(n), l(n)) is

chosen so that, as n→∞, l(n) ∼ l̂n and n = o(N(n)(1−ε)/2) , then

ĤN(n), l(n)(un)/H(n)(un)→ 1 in Pν- probability, as n→∞. (19)

Remark 4 (On estimating the sequence of "high threshold levels" (un)n∈N)
Of course, the sequence (un)n∈N of thresholds such that

n(1−G(un))/α→ η <∞, as n→∞, (20)

must be estimated in practice. Indeed, the random levels may be picked, empirically from
a sample path of length N(n), as follows: un = G−1

N(n)(1 − η/l(n)) in the regenerative

setting and un = Ĝ−1
N(n)(1− η/l̂(n)) in the general case. Then, one may easily derive from

the argument in �6.2 that, under the assumptions of the �rst part (respectively, of the
second part) of Proposition 3, HN(n), l(n)(un) (respectively, ĤN(n), l(n)(un)) still converges
to exp(−η) as n→∞.

This result indicates that, in the most favorable case, observation of a trajectory of length
N(n), with n2 = o(N(n)/ log logN(n)) as n→∞, is required for estimating consistently
the extremal behavior of f(X) over a trajectory of length n in this general setting. As
shown below, it is nevertheless possible to estimate tail features of the sample maximum
Mn(f) from the observation of a sample path of length n only, when assuming some speci�c
type of behavior for the latter, namely under a maximum domain of attraction hypothesis.
As a matter of fact, if one assumes that G ∈ MDA(Hξ) for some ξ ∈ R, of which sign is
a priori known, one may implement classical inference procedures (refer to � 6.4 in [24]
for instance) from the observed submaxima ζ1(f), . . . , ζln−1(f) for estimating the shape
parameter ξ of the extremal distribution, as well as the norming constants an and bn.We
illustrate this point in the Fréchet case, i.e. when ξ > 0, through the example of the Hill's
inference method in � 4.3.

4.2 The extremal index

When the regenerative chain X is positive recurrent, with limiting probability distribution
µ given by (1), there always exists some index θ = θ(f), namely the extremal index of the
sequence {f(Xn)}n∈N (see [49, 42] for instance), such that

Pµ(Mn(f) ≤ un) ∼
n→∞ F(un)nθ, (21)
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for any sequence un = un(η) such that (20) holds, denoting by F(x) = α−1EA[
∑τA
i=1 I{f(Xi) ≤

x}] the cdf of f(X1) in steady-state, i.e. under Pµ. Indeed, any positive recurrent Markov
chain is strongly mixing, see Theorem A in [7] for instance. Hence, it a fortiori ful�lls Lead-
better's mixing condition D(un), which guarantees the existence of the extremal index, see
[41]. In this case, as remarked in [56], we deduce from Proposition 1 and (21) that

θ = lim
n→∞ log(PA(max1≤i≤τA f(Xi) ≤ un)/α

log(EA[
∑τA
i=1 I{f(Xi) ≤ un}]/α)

(22)

= lim
n→∞ PA(max1≤i≤τA f(Xi) > un)

EA[
∑τA
i=1 I{f(Xi) > un}]

, (23)

provided that θ > 0, which we assume from now on. In this respect, we mention that it
has been established in [55] that the extremal index of a Markov chain cannot be zero,
as soon as the chain is geometrically ergodic and ful�lls an additional technical condition,
see Theorem 4.1 therein. Hence, the probability of exceeding a su�ciently high threshold
within a regenerative cycle is proportional to the mean time spent above the latter between
consecutive regeneration times, with the index θ as proportionality constant. Notice that,
in the i.i.d. setup, by taking the whole state space as an atom (A = X , so that τA ≡ 1),
one immediately rediscovers that θ = 1. Then, Proposition 1 combined with (21) also
entails that for all ξ in R,

G ∈MDA(Hξ) ⇔ F ∈MDA(Hξ). (24)

The "blocks method" with (pseudo-) regeneration blocks. For regenerative chains,
we may propose a natural estimate of the extremal index θ based on Eq. (23) from the
observation of a trajectory of length n,

θn(u) =

∑ln−1
j=1 I{ζj(f) > u}∑n
i=1 I{f(Xi) > u}

, (25)

with the convention that θn(u) = 0 ifMn(f) < u and taking Fn(x) = n−1
∑
1≤i≤n I{f(Xi) ≤

x} as a natural empirical estimate of its (strong) limit F(x). For general Harris chains, one
naturally considers the counterpart computed from the approximate regeneration blocks

θ̂n(u) =

∑l̂n−1
j=1 I{ζ̂j(f) > u}∑n
i=1 I{f(Xi) > u}

, (26)

with θ̂n(u) = 1 by convention when Mn(f) < u. Beyond the consistency property of
the estimators thus produced, stated in the next result, this method has an important
advantage that makes it attractive from a practical perspective: blocks are here entirely
determined by the data (up to the approximation step, see �5.2.1), in contrast to standard
blocking-techniques of which performance crucially depends on the deterministic length
arbitrarily chosen at hand for the blocks and is very sensitive to changes in block lengths.
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Proposition 4 Suppose that θ > 0. Let (rn)n∈N increase to in�nity in a way that rn =

o(
√
n/ log logn) as n → ∞. Consider (vn)n∈N such that rn(1 − Gf(vn))/α → η < ∞ as

n→∞.

(i) In the regenerative case, suppose that H(ν, 1) and H(2) are ful�lled. Then,

θn(vn)→ θ Pν-almost surely, as n→∞. (27)

(ii) In the general case, assume that �H(ν, 1) and �H(4) are satis�ed. Then,

θ̂n(vn)→ θ in Pν-probability, as n→∞. (28)

Remark 5 We point out that, in practice, the levels vn are generally picked as a function
of the data. In this respect, it may be easily seen that results stated in Proposition 4
remain valid if these thresholds are chosen in a similar manner as in Remark 4, taking vn
equal to G−1

n (1 − η/rn) or Ĝ−1
n (1 − η/rn). Beyond the appealing practical advantage of

the "regeneration blocks method" previously mentioned, it is worth noticing that, to our
knowledge, (27) is the sole strong consistency result related to the statistical estimation of
the extremal index available in the literature until now.

Remark 6 (The extremal index θ seen as a limiting conditional probability)
Exploiting the regeneration properties of the sequence f(X), it has also been showed in [56]
that

θ = lim
n→∞ PA( max

2≤i≤τA
f(Xi) ≤ un | f(X1) > un). (29)

for any sequence un such that (20) holds. Based on Eq. (29), it is natural to propose

θ ′n(u) =

∑ln−1
j=1 I{f(X1+τA(j)) > u, max2+τA(j)≤i≤τA(j+1) f(Xi) ≤ u}∑ln−1

j=1 I{f(X1+τA(j)) > u}
, (30)

as an estimate of θ, for a properly chosen level u > 0. This may be seen as a "regenerative
version" of the so-called runs estimator, see [37], in the sense that it measures the clustering
tendency of high threshold exceedances within regeneration cycles only. Naturally, in the
general Harris setting, one considers the estimate obtained by replacing the renewal times
by their approximate versions in (30). Except for slight modi�cations, the same argument
as the one to which Proposition 4's proof appeals could be used for investigating asymptotic
properties of these estimators. Owing to space limitations, this question will be handled
in a forthcoming paper.

4.3 The regeneration-based Hill estimator

The crucial equivalence (24) holds in particular in the Fréchet case, i.e. for ξ > 0. Recall
that the assumption that a df F belongs toMDA(Hξ) then classically amounts to supposing
it satis�es the tail regularity condition

1− F(x) = L(x)x−a, (31)
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where a = ξ−1 and L is a slowly varying function, i.e. a function L such that L(tx)/L(x)→
1 as x→∞ for any t > 0, cf Theorem 8.13.2 in [13]. Since the seminal contribution of [33],
numerous papers have been devoted to the development and study of statistical methods
in the i.i.d. setting for estimating the tail index a > 0 of a regularly varying df. Various
inference methods, mainly based on an increasing sequence of upper order statistics, have
been proposed for dealing with this estimation problem, among which the popular Hill

estimator, relying on a conditional maximum likelihood approach. Precisely, based on
i.i.d. observations Z1, ...., Zn drawn from F, the Hill estimator is given by

HZk,n =

(
k−1

k∑
i=1

log
Z(i)

Z(k+1)

)−1

, (32)

with 1 ≤ k < n, and where Z(i) denotes the i-th largest order statistic of the sample

Z(n) = (Z1, ..., Zn). In [22], strong consistency of this estimator has been established when
k = kn →∞ at a suitable rate, namely for kn = o(n) and log logn = o(kn) as n→∞, as
well as asymptotic normality, see [29, 20]: under further conditions on F and kn related to
the slowly varying function L,

√
kn(HZkn,n − a)⇒ N (0, a2).

Now let us de�ne the regeneration-based Hill estimator from the observation of the
ln − 1 submaxima ζ1(f), ..., ζln−1(f), denoting by ζ(j)(f) the j-th largest submaximum,

an, k =

(
k−1

k∑
i=1

log
ζ(i)(f)

ζ(k+1)(f)

)−1

, (33)

with 1 ≤ k ≤ ln − 1 when ln > 1. Given that ln → ∞, Pν- a.s. as n → ∞, asymptotic
results established in the case of i.i.d. observations extend straightforwardly to our setting,
see part (i) of Proposition 5 below. Notice that in the i.i.d. setup, cycles only comprise a
single observation, so that our regeneration-based estimator is exactly a Hill estimator.
In the general Harris case, the same estimator may be considered, except that, of course,
approximate submaxima are used for computation:

ân, k =

(
k−1

k∑
i=1

log
ζ̂(i)(f)

ζ̂(k+1)(f)

)−1

, (34)

with 1 ≤ k ≤ l̂n − 1 when l̂n > 1. As shown by the next result, consistency is not spoiled
by the approximation step, provided that the latter is based on a su�ciently accurate esti-
mator π̂. In order to construct gaussian asymptotic con�dence intervals, we also consider

the estimate â
(N)
n,k , which is still given by Eq. (34) except that the transition estimate used

in the approximation step is based on a trajectory of length N. Notice that ân,k = â
(n)
n,k

with this notation.

In order to formulate the next result, we consider the following hypothesis.
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VM Assumption. (Von Mises condition, [28]) Let ρ ≥ 0. Suppose 	Gf(x) = L(x)x−a,

lim
x→∞

	Gf(tx)/ 	Gf(x) − t−a

b(x)
= t−a

t−ρ − 1

ρ
, t > 0

where b(x) is a measurable function of constant sign, and with, by convention, (t−ρ−1)/ρ =

log t when ρ = 0.

Proposition 5 Suppose that Fµ ∈ MDA(Ha−1) with a > 0. Let {k(n)} be an increasing

sequence of integers such that: k(n) < n, k(n) = o(n) and log logn = o(k(n)) as n→∞.

(i) Then the regeneration-based Hill estimator is strongly consistent

an, k(ln) → a Pν- almost surely, as n→∞. (35)

Under the VM assumption, and the further condition that

lim
n→∞

√
k(n)b(G−1

f (1− k(n)/n)) = 0, (36)

it is also asymptotically normal in the sense that√
k(ln)(an, k(ln) − a)⇒ N (0, a2) under Pν, as n→∞. (37)

(ii) In the general Harris case, if A1 and A2 are furthermore ful�lled, and k = k(n) is

chosen such that Rn(π̂n, π)1/2n logn = o(k(n)), then

ân, k(̂ln) → a in Pν- probability, as n→∞. (38)

(iii) Suppose also that Gf satis�es the VM assumption, and k(n) is chosen accordingly,

as in (i). Under A1 and A2, let (mn)n∈N be a sequence of integers increasing to

in�nity such that mnRn(π̂n, π)1/2/
√
k(mn)→ 0 as n→∞, then√

k(̂lmn)(â
(n)

mn, k(̂lmn )
− a)⇒ N (0, a2) under Pν, as n→∞. (39)

Before investigating the practical performance of the extreme-value regeneration-based
statistics introduced in this paper on several examples, we gather a few remarks.

Remark 7 (Strong consistency of the regeneration-based Hill estimator)
It is noteworthy that the tail index estimator (33) is proved strongly consistent under
mild conditions in the regenerative setting. The alternative method proposed in [52] only
establishes the consistency of the standard Hill estimator, though in a general linear time
series framework.
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Remark 8 (Subsampling) Notice also that condition "Rn(π̂n, π)1/2n logn = o(k(n))"
in (ii) may not hold for certain k(n), in the typical case for instance where the slowly
varying function appearing in the distribution of the submaximum is logarithmic. However,
as shown by the next assertion, it is always possible to surmount this di�culty by taking
a subsampling size mn such that the conditions of (iii) holds, the problem of picking mn
in an optimal fashion in this setup nevertheless remains open.

Remark 9 (On choosing the number k of largest (approximate) submaxima)
Given the observed number l > 2 (ln or l̂n) of (approximate) renewal times within the
available data series, one may pick the parameter k ∈ 1, . . . , l− 1 according to standard
methods in the i.i.d. setup. A standard approach consists of picking up the value of k that
minimizes the estimated MSE

M̂SE(k) = Ĥ2k, n/k+ (Hk, n − Ĥk, n)2,

where Ĥk, n is a bias corrected version of the Hill estimator (32). Jackknife or analytical
methods can be used in this aim, see [8, 26]. In our setting, one may proceed in a similar
fashion, with the sole di�erence that here one works conditionally upon the random number
of observed (approximate) submaxima.

5 Simulation studies

As an illustration, we now apply the inference methods previously described to some sim-
ulated markovian data sets. For comparison purposes from a nonparametric perspective,
i.e. without exploiting the parametric form of the instrumental Markov model, numerical
results obtained by implementing alternative procedures, standing as natural candidates
for computing extreme value statistics in the weakly dependent setting are also displayed.
Precisely, estimators of the extremal index are also computed using the blocks method, the
runs method (see Eq. (1.4) and Eq. (1.7) in [58]) and the approach developed in [25] for the
examples considered below and the standard Hill procedure is implemented for estimating
the tail index, as proposed in [52, 53] for a certain class of autoregressive models.

5.1 Regenerative case - Example

We start o� with analyzing data simulated from a GI/G/1 queuing in absence of prior
knowledge on the underlying model except the regenerative markovian structure. We
focus on the sequence W = (Wn)n≥1 of waiting times.. Classically, one has

Wn+1 = (Wn +Un − ∆Tn+1)+, (40)

where x+ = max(x, 0) denotes the positive part of any x ∈ R and (∆Tn)n≥1 and (Un)n≥1
the sequences of interarrival and service times, assumed i.i.d. and independent from each
other. Suppose furthermore that the mean interarrival time E[∆Tn] = 1/λ and the mean
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service time E[Un] = 1/µ are both �nite and that the load condition "λ/µ < 1" is ful�lled.
The discrete-time process W is then a positive recurrent regenerative Markov chain with
the "empty �le" A = {0} as a Harris recurrent atom, see �14.4.1 in [47].

(a) RB versus blocks estimators (b) RB versus runs estimator (c) RB versus FS intervals esti-
mator

Figure 1: Extremal index estimation for waiting times of the M/M/1 queue with λ =

0.2, µ = 0.8, θ = 0.56 (Regenerative-based estimator (RB), Blocks method, Runs method,
Intervals estimator (FS), n = 10000).

Estimating the extremal index. Explicit computations of the extremal index have been
carried out for various Markov processes, see [61, 42, 50, 56]. In the case where interarrival
and service times are both exponentially distributed,W is classically geometrically ergodic,
so that moment assumptions stipulated in Proposition 4 are ful�lled, refer to �16.1.3 in [47].
Its extremal index is then simply θ = (1− λ/µ)2, see [34]. We simulated 1000 sample paths
of length n = 10000 of such an M/M/1 process, with parameters λ = 0.2, µ = 0.8. We
have compared the RB estimator (25) of the extremal index (RB standing for regeneration-
based) to the estimates obtained with the standard blocks method, the runs method, and
the intervals estimator proposed in [25]. The blocks and runs methodologies, see [58] or
[1], have been implemented using di�erent choices for the deterministic block length r+ 1:
r = 5, 10 and 25, as well as r = bn/lnc, the integer part of the estimated mean length of
the regenerative blocks, see Figure 1(a) and 1(b). The intervals estimator does not require
the choice of any tuning parameter similarly to our RB estimator, see Figure 1(c). All
estimators have been computed for di�erent values of the threshold level u, corresponding
to high percentiles of the simulated data {Wi}1≤i≤n in steady-state, namely from the 90th
to the 99.9th. According to our experience, as illustrated in Figure 1, the RB estimator
seems to be much less sensitive to the choice of the threshold u than its competitors, of
which constructions require in contrast to select the block length except for the intervals

estimator. Choosing r = 10 for the blocks method and r = 5 for the runs method enabled us
to obtain the most accurate results. As illustrated by Figure 2, the RB estimator performs
very well in this example: for any percentile between the 90th and the 99th, its mean
squared error (MSE) is below 3 × 10−3, whereas the blocks, runs, or intervals estimators
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appear as much more unstable, even though, for certain high percentiles, the MSE of the
blocks estimator may be a bit smaller, one still have to determine the block length r in this
case. Here, mean squared errors are computed by averaging over B = 1000 replications of
the process.

Figure 2: Extremal index estimation - MSE as a function of the threshold level u (waiting
times of the M/M/1 queue with λ = 0.2, µ = 0.8, θ = 0.56, Regenerative-based estimator
(RB), Blocks method (r = 10), Runs method (r = 5), Intervals estimator (FS), n = 10000,
M = 1000).

Estimating the tail index. Consider now an M/G/1 queue with Pareto distributed
service times. In this case, it is well-known that the right tail behavior of the waiting
times in steady-state is governed by that of Un − ∆Tn+1, which is the same as that of
Un, see [3, 5]. Here, the ∆Tn's are exponentially distributed with mean λ−1 = 2 and
P(Un > x) = I{x > 1/

√
2} · x−a with a = 3. For n = 10000, we obtain ln = 2589

regenerative blocks in this simulation. The regeneration-based Hill estimator is plotted
in Figure 5.1 as a function of the number k of submaxima used in the average involved
in (33), together with a bias corrected version similar to the ones proposed in [8, 26] in
the i.i.d. framework. As mentioned in Remark 9, this may serve as a guide for selecting
the number k of extreme submaxima used in the computation of the estimator: through
our simulations, we found considerable empirical evidence that the bias correction step is
of crucial importance when estimating the tail index. However, the gain acquired from
correcting the bias this way has proved much more signi�cant for the regeneration based
estimate than for the standard Hill estimate directly computed from the observed waiting
times, as suggested in [53]: the RB Hill estimate is 0.311 for 1/a = 0.333 while the
standard Hill estimate is 0.252 with respectively kopt = 87 and 276. For comparison
purposes, we computed the MSE by averaging over 1000 replications of the process for
both bias corrected estimators: the bias corrected regeneration-based Hill estimator enjoys
an MSE of 1.13 10−2, while the standard Hill estimator behaves badly, with an MSE of
1.16 10−1. As shown in Table 1, although the RB estimate uses a lot less data (only one
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Table 1: Bias-variance trade-o� in the Hill estimation (RB Hill: Regeneration based Hill
estimator, Standard Hill: Hill estimator suggested in [53], M = 1000)

Squared Bias Variance MSE

RB Hill 0.0028 0.0085 0.0113
Standard Hill 0.0531 0.0625 0.1156

per regeneration cycle), potentially discarding other large observations within the cycle,
the variance of our estimator is a lot smaller than that of the standard Hill estimator using
all the large observations. The usual bias-variance trade-o� appearing in tail estimation is
as follows: when k is large, the variance of the Hill estimator is reduced but some of the
observations used in the computation are not far enough along the tail of the distribution,
which increases the bias. Our methodology yields a reduced variance for small values
of k, and also maintains the bias at a reasonable level although some high observations
are discarded because the selection of the extreme observations follows the dependence
structure of the process.

Figure 3: RB Hill estimate for the waiting times of the M/Pareto/1 model (λ = 0.5, a = 3).

5.2 General Harris case

5.2.1 A data-driven method for splitting up the trajectory into blocks

In the general Harris case, the estimation methods described in Section 4 may be sensitive
to the choice of the minorization condition parameters (S, δ, Φ) used in the approxima-
tion step. We now recall hints for optimally selecting these parameters in a data-driven
fashion, �rst proposed in [10]. In order to get as many blocks as possible and thus com-
pute meaningful statistics, the latter should ideally be picked, so as to maximize the mean
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number of pseudo-regenerative blocks given the observed sample path, namely:

Nn(S) = Eν[
n∑
i=1

I{Xi ∈ S, Yi = 1} |X(n+1)]. (41)

Heuristically, this task involves to �nely adjust the size of the small set. Indeed, (41)
depends on the frequency at which the chain visits S over a �nite length trajectory and
on the accuracy of the lower bound in (3) both at the same time, leading to consider
the following trade-o�: as the size of the small set S increases, the number of points
of the path at which the trajectory may be possibly split naturally increases, but, since
inf(x,y)∈S2 p(x, y) then decreases, the probability of drawing Yi = 1 also decreases, see
Eq. (4). This gives insight into the fact that better numerical results may be expected in
practice when choosing S so as to maximize the expected number of blocks given the data,
namely Nn(S) − 1.

In absence of prior knowledge of the transition structure of the chain, a possible method
for selecting the tuning parameters could be as follows. For simplicity, we suppose here
that X takes on real values. Let S be a collection of compact intervals S and let US(dy) =

φS(y).λ(dy) denote the uniform distribution on S, where φS(y) = I{y ∈ S}/λ(S) and λ
is the Lebesgue measure on R. Clearly, for any S ∈ S, we have p(x, y) ≥ δ(S)φS(y) for
all x, y in S, with δ(S) = λ(S). inf(x,y)∈S2 p(x, y). We point out that other approaches
for practically determining small sets and establishing sharp minorization conditions have
been considered, which do not involve uniform distributions, see [55] for instance. When
δ(S) > 0, the theoretical criterion (41), that we would ideally seek to maximize over S,
may be re-written as follows

Nn(S) = inf
(x,y)∈S2

p(x, y)×
n∑
i=1

I{(Xi, Xi+1) ∈ S2}
p(Xi, Xi+1)

. (42)

An empirical counterpart N̂n(S) of (42) may be computed by simply replacing the
unknown transition density p(x, y) by an estimate pn(x, y) in (42). One is then led to
maximize the practical empirical criterion over S in order to �nd

S∗ = argmax
S∈S

N̂n(S). (43)

As recalled in Remark 1, numerous estimators of the transition density of Harris recur-
rent chains have been proposed and studied in the literature, among which the standard
Nadaraya-Watson estimator

pn(x, y) =

∑n
i=1 K(h−1(x− Xi))K(h−1(y− Xi+1))∑n

i=1 K(h−1(x− Xi))
, (44)

computed from a Parzen-Rosenblatt kernel K(x) and a bandwidth h > 0.
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From a practical perspective, observe that, for most current examples of real-valued
chains, any compact interval Vx0(ε) = [x0 − ε, x0 + ε] may be easily proved as small, for
a properly chosen x0 ∈ R and ε > 0 small enough, with φ as the density φVx0 (ε) of the
uniform distribution on Vx0(ε), see section �5.2.2 below. Considering a pre-selected grid
G = {(x0(k), ε(l)), 1 ≤ k ≤ K, 1 ≤ l ≤ L} such that inf(x,y)∈Vx0 (ε)2 pn(x, y) > 0 for any

(x0, ε) ∈ G, a numerically feasible selection rule could then consist of computing �rst, for
all (x0, ε) ∈ G, the estimated expected number of approximate pseudo-regenerations

N̂n(x0, ε) =
δn(x0, ε)

2ε

n∑
i=1

I{(Xi, Xi+1) ∈ Vx0(ε)2}
pn(Xi, Xi+1)

, (45)

with δn(x0, ε) = 2ε · inf(x,y)∈Vx0 (ε)2 pn(x, y), and then picking (x∗0, ε
∗) so as to maximize

(45) over G. Eventually, one gets the empirical minimizer S∗ = [x∗0 − ε∗, x∗0 + ε∗] and
the corresponding minorization constant δ∗n = δn(x∗0, ε

∗). It then remains to construct the
approximate pseudo-blocks using S∗, δ∗n and pn as described in � 2.2.

5.2.2 Examples - autoregressive models

Given the ubiquity of the markovian assumption in time-series modeling, here we consider
the following (possibly nonlinear) autoregressive model

Xn+1 = m(Xn) + σ(Xn)εn+1, n ∈ N, (46)

where m(.) (respectively, σ(.)) is a continuous mapping from R to R (resp. to R∗+) and
(εn)n∈N is a sequence of continuous i.i.d. r.v.'s with common density h(x). The transition
density with respect to the Lebesgue measure may then be written as

π(x, y) =
1

σ(x)
h

(
y−m(x)

σ(x)

)
. (47)

A linear AR(1) model. We start with a basic linear AR(1) model. In this case, we
naturally have m(x) = ρ · x and σ(x) ≡ σ > 0.
• Cauchy noise. We �rst assume that the εn's are drawn from a standard Cauchy dis-
tribution, with characteristic function E[exp(itε1)] = exp(−(1 − |ρ|)|t|), and we choose
ρ = 0.8 and σ = 1. In this case, the extremal index θ of {Xn}n∈N is known to be 1 − ρ

(since ρ = 0.8 > 0, see section 2 in [17]) and the tail index of the stationary distribution
is classically the same as the one of the residuals, namely 1 for a Cauchy distribution. It
is also easy to see that the chain is geometrically ergodic, by checking a geometric drift
condition of Foster-Lyapounov's type, with V(x) = 1+

√
|x| as test function, for instance,

see �15.2.2 in [47]. Moment assumptions stipulated in Propositions 4 and 5 are thus clearly
satis�ed.

In this �rst non-atomic example, the steps of the pseudo-block construction described
in �5.2.1 are summarized in Figure 4. Figure 4(a) displays a typical sample path of the
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(a) A Cauchy AR(1) sample path (b) Transition density estimate

(c) Small set optimization, εopt = 0.287 (d) A splitting example

Figure 4: Pseudo-block construction in the Cauchy AR(1) model (ρ = 0.8, σ = 1)
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process with length n = 10000 and initial value X0 = 0. Since the Xn's have median
zero, we consider small sets candidates of the form V0(ε) =] − ε,+ε[. In Figure 4(b), a
Nadaraya-Watson estimate (44) πn of π is plotted, from which the approximate expected
number of pseudo-blocks (45) associated to the small set V0(ε) has been computed. The
optimization step, consisting of maximizing the approximate expected number of pseudo-
blocks with respect to ε, is described by Figure 4(c), yielding εopt = 0.287. Then, as
explained in �2.2, each time an observation Xi falls into the optimal small set V0(εopt), a

Bernoulli r.v. with parameter
δn(0,εopt)
2εopt

I{(Xi,Xi+1)∈V0(εopt)2}
pn(Xi,Xi+1)

is drawn in order to determine
whether the path should be split up at time-point i or not. The trajectory is then divided
into l̂n pseudo-blocks, as illustrated by Figure 4(d), that displays the �rst 30 pseudo-
blocks. In the following, when computing the mean squared errors over M replications of
the process, the same values of δn(0, εopt) and εopt are used for all replication to obtain a
reasonable computing time even though, ideally, they should be computed again for each
of them.

As in �5.1, the pseudo-regeneration based estimator (RB estimator, for short) of the
extremal index θ is compared to estimators constructed using the blocks method, the
runs method and the intervals estimator of [25] referred to as FS intervals estimator in
the sequel, see the set of Figures 5 for an example (computation on one single chain).
In addition to the practical advantage of the block lengths being entirely determined by
the RB procedure, our estimator bears the comparison with its competitors, and behaves
particularly well for a threshold u greater than the 98th percentile of the X's. This result
is con�rmed by the computation of the MSE over M = 500 replications of the process as
illustrated in Figure 6. For high percentiles, the RB estimator performs better than the FS
intervals estimator and even slightly outperforms the blocks and runs estimators when the
block length r is �xed to values providing the best results on the �rst simulation, namely
r = 50 for the blocks method, and r = 10 for the runs method.

(a) RB versus blocks estimators (b) RB versus runs estimators (c) RB versus FS intervals esti-

mator

Figure 5: Extremal index estimation in the Cauchy AR(1) model with ρ = 0.8, σ = 1,
θ = 0.2 (Regenerative-based estimator (RB), Blocks method (r = 50), Runs method
(r = 10), Intervals estimator (FS), n = 10000).
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Figure 6: Extremal index estimation - MSE as a function of the threshold level u (Cauchy
AR(1) model with ρ = 0.8, σ = 1, θ = 0.2, Regenerative-based estimator (RB), Blocks
method (r = 50), Runs method (r = 10), Intervals estimator (FS), n = 10000, M = 500).

Turning to tail index estimation, the bias corrected version of the RB Hill estimator
is again compared to the standard Hill estimator suggested in [52] (illustration would be
similar to Figure 3 and is omitted here). For example, looking at the chain of Figure 4(a),
the resulting estimate, 0.915, is slightly closer to 1 than the standard Hill estimate based
on the X-values, 0.901, with kopt = 51 for the RB Hill and kopt = 783 for the standard
Hill estimate. Again, we include less observations than we would normally based on the
standard Hill estimate but we still achieve a slightly better MSE due to the important
reduction in the variance of our estimator, see Table 2, �rst two lines.
• Pareto noise. Still considering the problem of estimating the regular variation index,
another example is the Pareto AR(1) model: the εn's are now drawn from a mean centered
Pareto distribution with tail index a = 3. The parameters of the AR(1) model are here
taken as ρ = 0.9 and σ = 2. For instance, on one speci�c chain, the regeneration-based Hill
estimator is 0.321, while the standard Hill estimator takes the value 0.313, with kopt = 32

for the RB Hill estimate and 276 for the standard Hill estimate. Here, the study of the
MSE over M = 500 replications of the process shows similar variance but a greater bias
for our estimator.

An ARCH(1) model. We now turn to a nonlinear time-series model, namely an
ARCH(1) model and thus take m(x) ≡ 0, σ2(x) = β0 + β1 · x2 as well as standard-
ized and normally distributed residuals. In our simulation, we chose β0 = 1 and β1 = 0.9,
the extremal index of such process was approximated in [21], see Table 3.2 therein, and
is θ ≈ 0.612, see also [40]. Notice that the corresponding chain X is geometrically er-
godic, see Theorem 1 in [16], and consequently ful�lls the moment assumptions required
in Propositions 4 and 5. The pseudo regenerative blocks are constructed using exactly
the same procedure as for the AR(1) model. The estimation of the extremal index again
gives satisfactory results, as illustrated in Figures 7(a)-7(c) on one chain. Note that in this
example the mean length of the pseudo blocks is between 3 and 4, which corresponds to
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Table 2: Tail index estimation - Comparison of the Mean Squared Errors (M = 500 for
n = 10000, M = 100 for n = 30000)

Noise Estimator Squared Bias Variance MSE

Cauchy AR(1) RB Hill 0.00519 0.0422 0.0474
n = 10000 Standard Hill 0.00303 0.0466 0.0496
Pareto AR(1) RB Hill 0.00252 0.0106 0.0131
n = 10000 Standard Hill 0.00026 0.0101 0.0104
ARCH(1) RB Hill 0.00066 0.0035 0.0042
n = 10000 Standard Hill 0.00013 0.0035 0.0036
ARCH(1) RB Hill 0.00029 0.0020 0.0023
n = 30000 Standard Hill 0.00002 0.0018 0.0019

the length at which the runs estimator performs best. Figure 8 illustrates the performance
of our estimator for M = 500 replications of the process. We observe again that the RB
estimator performs better than the FS intervals estimator for large (greater the 97th) per-
centiles of the X's and that it also bears the comparison with the blocks and runs method
with respective �xed length of r = 10 and r = 5.
For the tail index estimation, various simulations were conducted and tend to show that
the data size should be increased to obtain satisfactory results. In this ARCH(1) model,
the tail index is a = 2κ, with κ being the solution of κβκ1 = 1 if residuals are standardized
and normally distributed, that is κ = 1.152 when β1 = 0.9, see [21]. The MSE of the RB
Hill estimator is comparable to that of the standard Hill estimator suggested in [52], see
the bottom of Table 2. The di�erence however slightly favors the standard Hill estimator
in terms of bias but this is reduced with increased path length n.
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(a) RB versus blocks estimators (b) RB versus runs estimators (c) RB versus FS intervals esti-
mator

Figure 7: Estimation of the extremal index in the ARCH(1) model with β0 = 1, β1 = 0.9,
θ ≈ 0.612 (Regenerative-based estimator (RB), Blocks method, Runs method, Intervals
estimator (FS), n = 10000).

Figure 8: MSE for Extremal index estimation as a function of the threshold level u
(ARCH(1) model with β0 = 1, β1 = 0.9, θ ≈ 0.612, Regenerative-based estimator (RB),
Blocks method (r = 25), Runs method (r = 5), Intervals estimator (FS), n = 10000,
M = 500).
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6 Technical proofs

6.1 Proof of Theorem 2

The proof relies on a coupling argument, similar to the one used for proving Theorem 3.1 in
[9]. Denote by τS = τS(1) = inf {n ≥ 1, Xn ∈ S} and τS(j) = inf {n > τS(j− 1), Xn ∈ S},
j ≥ 2, the (random) times of the successive visits to S and by Ln =

∑n
i=1 I{Xi ∈ S}

the number of visits of X to S between times 1 and n. Following in the footsteps of
[9], consider the joint distribution such that, conditioned upon the sample path X(n+1) =

(X1, ..., XτS(1), ..., XτS(Ln), ..., Xn+1), the (Yi, Ŷi) 's are drawn independently for 1 ≤ i ≤ n
so that {

YτS(k) ∼ Ber
(
δφ
(
XτS(k)+1

)
/π(XτS(k), XτS(k)+1)

)
ŶτS(k) ∼ Ber

(
δφ
(
XτS(k)+1

)
/π̂n(XτS(k), XτS(k)+1)

) ,
and if π(XτS(k), XτS(k)+1) ≤ π̂n(XτS(k), XτS(k)+1),

P(ŶτS(k) = 1, YτS(k) = 0 | X(n+1)) = π̂n(XτS(k), XτS(k)+1) − π(XτS(k), XτS(k)+1),

P(ŶτS(k) = 0, YτS(k) = 1 | X(n+1)) = 0,

and if π(XτS(k), XτS(k)+1) ≥ π̂n(XτS(k), XτS(k)+1),

P(ŶτS(k) = 0, YτS(k) = 1 | X(n+1)) = π(XτS(k), XτS(k)+1) − π̂n(XτS(k), XτS(k)+1),

P(ŶτS(k) = 1, YτS(k) = 0 | X(n+1)) = 0,

for k ∈ {1, ..., Ln} , and that for all i ∈ {1, ..., n} \ {τS(k), 1 ≤ k ≤ Ln} , Yi = Ŷi ∼ Ber (δ).
As a preliminary, notice �rst that we thus have

P(ŶτS(k) 6= YτS(k) | X(n+1)) =

∣∣∣∣∣ δφ
(
XτS(k)+1

)
π(XτS(k), XτS(k)+1)

−
δφ
(
XτS(k)+1

)
π̂n(XτS(k), XτS(k)+1)

∣∣∣∣∣ Pν a.s.,

for 1 ≤ k ≤ Ln. Therefore, using the fact that π(x, y) ∧ π̂n(x, y) ≥ δφ(y) ≥ δ infz∈Sφ(z)

for all (x, y) ∈ S2, we deduce that Pν-almost surely,

P(ŶτS(k) 6= YτS(k) | X(n+1)) ≤ (δ inf
z∈S
φ(z))−1 sup

(x,y)∈S2
|π̂n(x, y) − π(x, y)|. (48)

By triangular inequality, we also have for all x ∈ R,

|Ĝf,n(x) −Gf(x)| ≤ |Ĝf,n(x) −Gf,n(x)| + |Gf,n(x) −Gf(x)|. (49)

As previously noticed, the term on the left hand-side of (49) tends to zero Pν-almost surely
as n → ∞. Therefore, provided that both ln and l̂n are larger than 2 (which happens
with probability 1 − O(n−1) under the moment conditions stipulated), the deviation in
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the Kolmogorov-Smirnov's sense between the empirical cdf estimate computed from the
approximate regeneration cycles and the one computed from the 'true' regeneration cycles
may be bounded as follows. We have

|Ĝf,n(x) −Gf,n(x)| ≤ 1

ln − 1

∣∣∣∣∣∣
ln−1∑
i=1

I{ζj(f) ≤ x} −

l̂n−1∑
i=1

I{ζ̂j(f) ≤ x}

∣∣∣∣∣∣+ |̂ln − ln|

l̂n − 1
. (50)

From Lemma 6.3 in [9] combined with the fact that, by virtue of the SLLN,

ln/n→ EAS [τAS ]
−1, Pν − a.s. as n→∞, (51)

it follows that the second term on the left hand-side of (49) is OPν(Rn(π̂n, π)1/2) as n
tends to in�nity. Furthermore, turning to the �rst term, we have the bound∣∣∣∣∣∣

ln−1∑
i=1

I{ζj(f) ≤ x} −

l̂n−1∑
i=1

I{ζ̂j(f) ≤ x}

∣∣∣∣∣∣ ≤
Ln∑
j=1

I{ŶτS(k) 6= YτS(k)}.

From the bound (48), we deduce that its conditional expectation given X(n+1) is thus less
than n sup(x,y)∈S2 |π̂n(x, y) − π(x, y)| and, consequently, its Pν-expectation is bounded by

nRn(π̂n, π)1/2. Clearly, the �rst term on the left hand-side of (49) is eventually also of
order OPν(Rn(π̂n, π)1/2) and thus

sup
x∈R

|Ĝf,n(x) −Gf,n(x)| = OPν(Rn(π̂n, π)1/2), as n→∞. (52)

This establishes (15).

6.2 Proof of Proposition 3

First, the convergence (17) follows straightforwardly from Proposition 1. Next, we show
that l(n)(1−GN(n)(un))→ η in Pν- pr. as n→∞. As l(n)/n→ α−1 Pν- a.s. as n→∞
by the SLLN, it thus su�ces to prove that

n(G(un) −GN(n)(un))→ 0 in Pν − pr . as n→∞. (53)

Therefore, using the standard LIL in the i.i.d. setup, we immediately get:

sup
x∈R

|G(x) −GN(n)(x)| = OPν(
√
log logN(n)/N(n)) as N(n)→∞. (54)

Since n2 = o(N(n)/ log logN(n)) as n → ∞, this immediately yields (53) and, conse-
quently, (18).

Now, in the general Harris recurrent setup, using the coupling introduced in �6.1 again,
combined with (52), we conclude that n(ĜN(n)(un)−GN(n)(un)) = oPν(1) as n→∞ since,

by assumption, nRN(n)(π̂N(n), π)1/2 = o(1). Convergence (19) is thus established.
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6.3 Proof of Proposition 4

By assumption, we have rn(1 − G(vn))/α → η as n → ∞ so that (21) implies that
rn(1 − F(vn)) → η/θ. Now, as (53) holds under our assumptions, it is su�cient to show
that rn(Fn(vn)−F(vn)) also tends to zero as n→∞ for proving assertion (i). This follows
from the fact that we have supposed rn = o(

√
n/ log logn) combined with the LIL for

positive recurrent chains stated in the next lemma.

Lemma 6 (LIL for functionals of positive chains) Let X be a positive recurrent

Markov chain with state space (E, E) and (unique) invariant probability distribution µ,

satisfying assumptions H(ν, 1) and H(2). Let f : E → R be a measurable function. We

have

lim sup
n→∞

supu∈R |Fn(u) − F(u)|√
(2σ2f log logn)/n

= +1 Pν-almost surely, (55)

with σ2f = supu∈R σ
2
f(u) and denoting by σ2f(u), for all u ∈ R, the limiting variance of√

n(Fn(u) − F(u)) as n→∞.

proof. The proof requires a re�nement of the argument of Theorem 17.5.3 in [47], which
establishes a (scalar version of the) LIL for the sequence (I{f(Xn ≤ u})n∈N with �xed u ∈ R.
In order to prove an extension of the latter result to a Banach space valued sequence, we
classically use the regenerative method. We place ourselves in the regenerative framework,
where X possesses an accessible atom A. Recall that in such an atomic case, we classically
have σ2f(u) = α−1EA[(

∑τA
i=1 I{f(Xi ≤ u} − αF(u))2] (see Eq. (17.13) in [47] for instance)

and consider the "block sums"

Sj(u) =

τA(j+1)∑
i=1+τA(j)

{I{f(Xi ≤ u} − F(u)} for j ≥ 1.

Notice that, for all u ∈ R, the Sj(u)'s are i.i.d. random variables with mean zero and
variance ασ2f(u) by virtue of the strong Markov property. We decompose the deviation
Fn(u) − F(u) as follows:

Fn(u) − F(u) =
1

n

τA∑
i=1

{I{f(Xi ≤ u} − F(u)} +
1

n

ln−1∑
j=1

Sj(u) +
1

n

n∑
i=1+τA(ln)

{I{f(Xi ≤ u} − F(u)}

(56)
The �rst and last terms in (56) are clearly of order OPν(n

−1), under the assumed moment
conditions, while the extended version of Kolmogorov's LIL stated in Theorem 8.2 of [43]
yields

lim sup
l→∞

supu∈R |
∑l
j=1 Sj(u)|√

lασ2f log log l
= +1 almost surely. (57)
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Given that α(ln− 1) ∼ n/α, and thus log(log(ln− 1)) ∼ log(logn), as n→∞, (55) follows
straightforwardly from (57).

Turning now to the general Harris case, it is su�cient to observe that, under the
assumptions of assertion (ii), (52) holds and n(F̂N(n)(u) − FN(n)(u)) = oPν(1). Indeed,
the latter identity immediately follows from Lemma 6.2 in [10], which establishes more
generally that

N(n)× sup
u∈R

|F̂N(n)(u) − FN(n)(u)| = OPν(RN(n)(π̂N(n), π)1/2) as N→∞. (58)

6.4 Proof of Proposition 5

Part (i) follows straightforwardly from the classical results available in the i.i.d. setting
(see [22] and Corollary 4 in [30]). Details are omitted and we directly turn to the second
part of the result. Again, we use the coupling de�ned in �6.1. In the same fashion as the
Hill estimator may be expressed as an L-statistic (see [30] for instance), we write:

an, k =
n

k

∫∞
y=ζ(k)(f)

1−Gf,n(y)

y
dy. (59)

Similarly, we have for the approximate version

ân, k =
n

k

∫∞
y=ζ̂(k)(f)

1− Ĝf,n(y)

y
dy. (60)

Now let 1 ≤ k ≤ l̂n ∧ ln − 1, combining (59) and (60), one immediately gets that

|an, k − ân, k| ≤
n

k

∫ζ(1)(f)∨ζ̂(1)(f)

ζ(k)(f)∧ζ̂(k)(f)

|Ĝf,n(y) −Gf,n(y)|

y
dy

≤ n

k
sup
y∈R

|Ĝf,n(y) −Gf,n(y)|× log(Mn(f)). (61)

Under our assumptions, recall that supy∈R |Ĝf,n(y) − Gf,n(y)| = OPν(Rn(π̂n, π)1/2) as
n→∞ (see Eq. (52)). Therefore, given the equivalence (24) and the tail assumption (31),
we have 1−Gf(x) ∼ x−a, as x→∞. From (9), we deduce that, as n→∞, log(Mn(f)) goes
to in�nity at the same rate as max1≤i≤bn/αc ηi, where (ηn)n∈N is a sequence of exponential

i.i.d. r.v.'s with common mean a−1. Since max1≤i≤bn/αc ηi is almost surely equivalent

to a−1 logn as n → ∞ (see Eq. (3.71) in [24] for instance), and given the choice made
for k = k(n), the term on the right hand side of (61) converges to zero in Pν-probability.
Combined with (i), this eventually establishes (38).

Now, for proving (39), it su�ces to observe that, for 1 ≤ m ≤ n and 1 ≤ k < l̂m,
√
k(â

(n)
k,m − a) =

√
k(â

(n)
k,m − a

(n)
k,m) +

√
k(a

(n)
k,m − a). (62)
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And choosing m = mn and k = k(̂lmn) such that mnRn(π̂n, π)1/2/
√
k(mn)→ 0 as n→∞, the argument above obviously shows that the approximation term in (62) degenerates.

Now, it su�ces to notice that part (i) applies to the term on the right hand side of (62),
establishing (39).
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