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Abstract

We study two criterions of cyclicity for divisor class groups of
function fields, the first one involves Artin L-functions and the second
one involves ”affine” class groups. We show that, in general, these
two criterions are not linked.

Let P be a prime of F [T] of degree d and let Kp be the Pth cyclotomic
function field. In this paper we study the relation between the p-part of
CI°(Kp) and the zeta function of Kp, where p is the characteristic of F,.

Let x be an even character of the Galois group of Kp/F,(T), x # 1.
Let g(X,X) be the "congruent to one modulo p” part of the L-function of
Kp/F,(T) associated to the character Y. We have two criterions of cyclicity
([2], chapter 8): if degxg(X,x) < 1 then CI°(Kp),(x) is a cyclic Zy[uga_]-
module, and if Cl1(Ok,),(x) = {0} then CI°(Kp),(x) is a cyclic Z,[pga_,]-
module. David Goss has obtained that if C1(Ok,),(x) is trivial then g(X,X)
is of degree at most one ([2], Theorem 8.21.2). Unfortunately, there is a gap
in the proof of this result. In fact, we show that in general Cl(Og,),(x) =
{0} does not imply degyg(X,%X) < 1 (Proposition 3.4). We also prove that
if ¢ is a ¢g-magic number and if wp is the Teichmiiller character at P, then
g(X,w%) has simple roots when i =0 (mod ¢ — 1) (Proposition 5.1).

Note that Goss conjectures that if 7 is a g-magic number then degyg(X,wh) <

1. This problem is still open and can be viewed as an analogue of Vandiver’s
Conjecture for function fields (see section 5).

1



The author thanks David Goss (the proof of Lemma 4.1 was communi-
cated to the author by David Goss) and Philippe Satgé for several fruitfull
discussions.

1 Notations

Let I, be a finite field having g elements, ¢ = p® where p is the character-
istic of IF,,. Let T be an indeterminate over F, and set A = F [T], k = F,(T).
We denote the set of monic elements of A by AT. A prime of A is a monic
irreducible polynomial in A. We fix k an algebraic closure of k. We denote
the unique place of k£ which is a pole of T" by oo.

Let L/k be a finite geometric extension of k, L C k. We set:
- Oy, : the integral closure of A in L,
- O3 : the group of units of Oy,
- Seo(L) : the set of places of L above oo,
- CI°(L) : the group of divisors of degree zero of L modulo the group of
principal divisors,
- Cl(Oy) : the ideal class group of Oy,
- R(L) : the groupe of divisors of degree zero with supports in S, (L) modulo
the group of principal divisors with supports in S (L).

If d is the greatest common divisor of the degrees of the elements in
S (L), we have the following exact sequence:

0 — R(L) — CI(L) — CI(O}) — % 0.

Let P be a prime of A of degree d. We denote the Pth cyclotomic function
field by Kp (see [2], chapter 7, and [4]). Recall that Kp/k is the maximal
abelian extension of k contained in k such that:

- Kp/k is unramified outside of P, oo,

- Kp/k is tamely ramified at P, oo,

- for every place v of Kp above oo, the completion of Kp at v is equal to
By (1) (7 VT

We recall that Gal(Kp/k) ~ (A/PA)*, and that the decomposition group
of oo in Kp/k is equal to its inertia group and is isomorphic to ;.
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Let E//F, be a global function field and let F'/E be a finite geometric
abelian extension. Set G = Gal(F/E) and G = Hom(G, C*).
Let x € G, x # 1, we set:

LX) = J[ (—xwxd)™,

vplaceof E

Where y(v) = 0 if v is ramified in FXoX /E and if v is unramified in
FRe) /By (v) = x((v, F¥X /E)), where (., FXX) /E) is the global reci-
procity map. If y = 1, we set L(X,x) = Lg(X) where Lg(X) is the
numerator of the zeta function of E.

Therefore, if Lr(X) is the numerator of the zeta function of F, we get:

Lp(X) = HL(KX)-

Let A be a finite abelian group and let M be a A-module. Let ¢ be a
prime number such that | A [0 (mod ¢). We fix an embedding of Q in

Q. Let W = Ze[paf). For x € A, we set:
1
e = —— 3 x()5 e WA,
‘ A ‘ dEA

and:
Mg(X) = €X<M ®Z W)

Thus, we have:

M @, W =P Mi(x).

xeA

2 Cyclotomic Function Fields and Artin-Schreier
Extensions

Let Q be a prime of A of degree n, write Q(T) = T" + oT™ ! + -+ -,
a € F,. Weset: i(Q) = Trg, /v, (). Let a € A, a # 0, we set:

i(a)=" )  woa)i(Q) €T,

Q@ primeof A
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where v is the normalized ()-adic valuation on k.

Let 0 € k such that 62 — 6 = T. Set A = F,[0], k = F,(d) and G =
Gal(k/k). Note that k/k is unramified outside co and totally ramified at co.
Let oo be the unique place of k above oc.

Lemma 2.1 Let (., k/k) be the usual Artin symbol. Fora € A\ {0} :

(a,k/k)(60) = 0 — i(a).

Proof By the classical properties of the Artin symbol, it is enough to prove
the Lemma when « is a prime of A. Thus, let P be a prime of A of degree
d. We have: B
(P, k/k)(#) =67 (mod P).

But, for n > 0, we have:

" =04+ T +TP 4T
Therefore:

09 =0 — i(P) (mod P).

The Lemma follows. <>

Lemma 2.2 Let P be a prime ofA of degree d such that i(P) # 0. Then

P is a prime ofA of degree pd. Let Kp be the Pth cyclotomic function field
for the ring A, then Kp C Kp.

Proof We have —T = —6?(1 — 6'~?). Note that:

107 € (Ry((5))

Therefore:

ﬁGF(( (V=)

Thus:

- kKp / k is unramified outside P, 30,

- kKp/k is tamely ramified at P, 33,

- for every place w of kK p above 50 00, the completion of kK p at w is contained

in Fy((5))(*"'V=0).



The Lemma follows by class field theory. <

Let P be a prime of A, degP(T) = d and i(P) # 0. Let L = kKp C Kp.
Let A = Gal(Kp/k) ~ Gal(L/k). We have an isomorphism compatible to

class field theory: A — Gal(L/E), X+H— X = Xo0 Ni i We fix (, € Q a
primitive pth root of unity.

Lemma 2.3 _
(1) Let x € A, x # 1. Let L(X,X) be the Artin L-function relative to L/k
and to the character . We have:

LX, %) = [ ] (X, 6x),

e

where L(X, ¢x) is the Artin L-function relative to L/k and the character
PX-

(2) Let y € A, x # 1, x even (i.e. x(F;) = {1}). Then:
(X, X)
(X, x)

Proof Te assertion (1) is a consequence of the usual properties of Artin
L-functions. Now, let ¢ € G, ¢ # 1. Since ¢y is ramified at oo, we get:

LX, o)=Y (> dla)x(@)Xx™

n>0 a€A*, deg(a)=n

h

= (1= X7 L(X )P (mod (1 —G,)).

h

Thus:

LX, o)=Y (> x(@)X" (mod (1-¢)).

n>0 a€A*, deg(a)=n
But, since y is even, we have x(oc0) = 1. Therefore:
L(X, ¢x) = (1 = X)L(X,x) (mod (1 —¢p)).

The Lemma follows. <> R
let i € F, and let 0; € G such that 0;(f) = 6 —i. Let ¢ € G given by
Y(o:) = ¢



Lemma 2.4 Let x € 3, X even and non-trivial.

(1) Let ¢ € G, ¢ # 1. Let o € Gal(Q((,)/Q) such that ¢ = ¢°. Then:

L(X, ¢x) = L(X,¥x)°.

Furthermore degxL(X, ¢x) = d.
(2) We have:

Ly )= Y ila)x(@)(G—1) (mod (1-¢)%).
a€A™T deg(a)<d

Proof Let Q(x) be the abelian extension of QQ obtained by adjoining to Q
the values of x. Let Z[x] be the ring of integers of Q(x). Note that p is
unramified in Q(y) and:

Gal(Q(x)(6)/Q(x)) =~ Gal(Q(¢)/Q)-
Since L(X, ¢x) is a polynomial in Z[x][(,][X], we have:

L(X, ¢x) = L(X,¥x)”.

Since y and Y are non-trivial even characters, we have:
degxL(X,X) = pd — 2,
and:
degxL(X,x) =d —2.
Therefore degxL(X, ¢x) = d.

Now, we have:

d

LX) =Y >, G@x(a)x™

n=0 a€A* deg(a)=n
But recall that:
G =1+i(a)(¢—1) (mod (1-¢)%).
Thus, since x is even and non-trivial, we get:

d

L(X,ox) = LX) (1=X)HG-DOQ (Y ila)x(@)X")  (mod (1-G,)%).

n=1 acA+ deg(a)=n

The Lemma follows. <>
We are now ready to prove the main result of this section:
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Proposition 2.5 Let y € A, x # 1, x even. Let W = Zplprgi—1). We have:

U0, 5 o
0,00 =1 aem%(am (a)%(2) =0 (mod p).

Proof Fix 7 a generator of G ~ Gal(L/Kp). Let ¢ € O;. Since L/Kp
is totally ramified at any prime above oo, there exists ¢ € F, such that
7(e) = Ce. But 7°(¢) = (Pe = . Since we are in characteristic p, we deduce
that € € O%,. Therefore:

Longy (

01, = Ok,
Let I be an ideal of Ok, such that IO, = aOy, for some a € Op. Then,

there exists ¢ € OF such that 7(a) = ea. Since O} = O}, and since T is of
order p, we deduce that a@ € Of,. This implies that:

CZ(OKP) — Cl(OL)
One can also show that:
CI°(Kp) — CI°(L).

Set AT = £ Let Z be the augmentation ideal of F,[A*]. One sees that we
have the following isomorphism of A-modules:

R(L)
—— Ry L, ~T.
R(Kp) Kz D
This implie that we have the following exact sequence of W-modules:
W C(L)p(X) ClOr)p(X)

— —
pW CI(Kp)p(x)  ClOkp)p(x)
Now, by the results of Goss and Sinnott ([3]):

Longy CI°(L),(X) = Vp(L(]'?;)))

0— — 0.

and
Longy, CI’(Kp)p (x) = vp(L(1,X))-
Thus by Lemma 2.3:

Long (GGt o) = (b = Dey(L(1 ) - 1

It remains to apply Lemma 2.4. <



3 Derivatives of L-functions

Let P be a prime of A of degree d. We fix an embedding of Q in @,. Set
A = Gal(Kp/k) anf W = Z,[p,a_1]). We fix an isomorphism ®p : A/PA —
W/pW. Then ®p induces an isomorphism:

wp: A — prga_y C W

The morphism wp is called "the” Teichmiiller character at P. Note that A
is a cyclic group and wp is a generator of this group.
Let © € N, set:

- 5(0) = 17 )

-B(i) =Y penratifi>1,0#0 (modgq—1),

- B(i) = =Y 4ear deg(a)alif i > 1,i=0 (mod g — 1).

One can prove that for all i € N, (i) € A. We also see that:
VieN,0<i<q?—2 ®p(8(i) = L(1,wh) (mod p).

Therefore, if 1 < i < ¢¢ — 2, by the results of Goss and Sinnott ([3]), we
have:
Longy Cl’(Kp)p(wp') > 1< B(1) =0  (mod P).

The numbers (i) are called the Bernoulli-Goss polynomials.
Recall that we have a surjective morphism of A-modules:

W[A+] — R(Kp) ®Z I/V,

where AT = A/F;. Thus for x € A, X even, R(Kp),y(x) is a cyclic W-
module. But, for such a character, we have the exact sequence of W-
modules:

0 — R(Kp)y(x) — CI(Kp)y(x) — Cl(Ok,)p(x) — 0.

This implies that, if C1(Ok,),(x) = {0}, CI°(Kp),(x) is a cyclic W-module.
David Goss has shown ([2], Corollary 8.16.2) that for y is even, x # 1,
if L'(1,X) #0 (mod p) (here L'(1,) is the derivative of L(X,X) taken at
X =1), then CI°(Kp),(x) is a cyclic W-module.
Therefore a natural question arise. Let y € 3, X # 1, x even. Assume
that L(1,%X) =0 (mod p). Do we have:

Cl(Ok;)p(x) ={0} = L'(1,X) #0  (mod p)?
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Our aim in this section is to show that in general the answer is no.

Let d be an integer, d > 1. For i € {1,---,¢% — 2}, we set:
Wd.iy= Y i(a)d"
a€AT, deg(a)<d

Lemma 3.1 Let 7 € Gal(F(T)/F (TP — T)) such that 7(T) =T + 1. Let
i€{l,---,¢®=2},i=0 (mod q—1). Recall that ¢ = p*. We have:

T(y(d, 1)) = ~(d, i) + s5(i).

Proof Let Q be a prime of A of degree n. Write Q = T" + oT™ ! 4 - -,
where o € F. Then 7(Q) =T" + (a+n)T™ ' + - -+ . Therefore i(7(Q)) =
i(Q) + sdeg(Q). This implies that:

Va € A\ {0}, i(7(a)) = i(a) + sdeg(a).

Now: '

T(y(d,i) = > ila)r(a).

a€A*, deg(a)<d
Therefore:
T((d, D)= Y (i(r(a) - sdeg(a))T(a)"
a€At, deg(a)<d
Thus:
T(y(d )= Y ilr(@)r(a) —s Y deg(r(a))(a)"

a€AT, deg(a)<d a€AT, deg(a)<d
Observe that 7, 1+ qeg(a)<d i(7(a))7(a)’ = v(d, i) and — D ac A+ deg(a)<d deg(7(a))r(a)! =
p). &

Proposition 3.2 Let P be a prime of A of degree d such that i(P) # 0. Set
Q(T) = P(T?=T). Then Q is a prime of A of degree pd. Let i be an integer
such that 1 <i < ¢®—2,i=0 (modq— 1) and Cl(Ok,),(wp") = {0}.
Then:

Longy Cl(Okg )Jp(wg ™ @) > 1 & 4(d,i) =0 (mod P).



Proof We have:

Cp(y(di))= Y ila)wpla) (mod p).

a€AT, deg(a)<d

It remains to apply Proposition 2.5.

Lemma 3.3 Assume p # 2. Let d > 1 be an integer. There exists a prime
P in A, deg(P) = d, such that i(P(T))i(P(T + 1)) # 0.

Proof Let @ be a prime of A of degree d such that i(Q)) # 0. Such a
prime exists by the normal basis Theorem. Fix IF_q an algebraix closure
of F,. We assume that i(Q(T + 1)) = 0. Write Q = T? + o791 4 - -+ |
Then Trg, /x, () = —sd. Therefore sd # 0 (mod p).Let 6 € F, such that
Q(0) = 0. We observe that:

VC c Fp, T’T’]qu/]pp<c9> = —CSd

Since p > 3, we can find ( € F; such that —(sd # —sd. Set P(T) =
Irr(¢H,Fy; T). Then P is a prime of degree d such that i(P)i(7(P)) # 0. &

Proposition 3.4 Assume that p # 2 and s Z 0 (mod p). Let d be an
integer, d > 2, and let P be a prime of degree d such that i(P(T))i(P(T +
1)) # 0. Set Q( )= P(T? —T). Then:

- L(1,wg —(g—1)(q"~ 1)/(qd—1)) =0 (mod p)

. L/(l’wc—g(q—l)(qu—l)/(q —1)) =0 (mod p),

- Cl(Oy)plwg "™V =Dy — (o).

Proof Set R = P(T'+ 1) and Z = R(T? — T'). We observe that we have an
isomorphism:

Cl(OKQ) (w Q(q 1)(gP4-1)/(q%—1) ) ~ Cl<OKZ)p(wg(qfl)(q”dfl)/(qdfl)).
Not also that (¢ — 1) = 1. Thus:
Cl(Oxp)p(wp ™) = Cl(Ok, )pl(wi"™V) = {0}.

We have:

L<1’wé(qfl)(qufl)/(qd*1)> = L(1, w*(q 1)(qP4— 1)/(qd*1)) 0 (mod p).
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And, by Lemma 2.3, since p > 3:

L’(l,wé(q_l)(qu_l)/(qd_l)) — L/(Lw;(q—l)(q"d—l)/(qd—l)) =0 (mod p).

Suppose that we have Cl(OKQ)p(wé(qfl)(qufl)/(qdfl)) # {0}. Then by Proposition3.2:
v(d,g—1)=0 (mod P),

and also:

v(d,q—1)=0 (mod R).

Thus:
7(v(d,g—1)) =0 (mod 7(P)).

Now, by Lemma 3.1, and the fact that 7(P) = R, we get:
d,g—1)+358(¢—1) =0 (mod R).

Therefore we get s =0 (mod p) which is a contradiction. The Proposition
follows. <

4 Cyclicity of Class Groups and L-Functions

Let E/F, be a global function field and let F'/E be a finite geometric
abelian extension. Set A = Gal(F/E). Let ¢ be a prime number. Let’s recall
some well-known facts about L-functions.

Set T, = Hom(Qy/Zy, J) where J is the inductive limit of the C1%(F . F'),
n > 1. We fix an embedding of Q in Q,. Let v be the Frobenius of F,. Then
~v and A act on Tj.

If ¢ # p, we have (see [6],chapter 15):

Det(l — ’)/X ‘Te) = LF(X),

where Lp(X) is the numerator of the zeta function of F.
If ¢ = p, write Lp(X) = [[;(1 — & X) and set L' (X) = I, (a)=o(l —
a;X). Then (see [1] and also [3]):

Det(1 — X |1,) = Lg' (X).
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Now assume that ¢ does not divide the cardinal of A, then the above
results are also valid character by character. More precisely, if ¢ # p, we
have:

Vx € A, Det(1 — X | ) = LX, %)

If £ = p, for x € A, write L(X,x) = [,(1 — ai(x)X) and set L™ (X, x) =
l_va(tm(x):o(1 — a;(x)X). Then:

Vx € A, Det(1 — X |r,) = L™ (X, %).
Now, let y € 3, write:

L(X,x) = [ — as(0)X),

i

and set:
s X = JI a-atx).
ve(a;(x)—1)>0
Set:
9(X) = [T 9(X, ).
xEA
We also set:
Vx € ﬁ, H(X,x)=(1 +X)degxg(X,x)g((1 _i_X)fl’X)’

and:

H(X) =[] #H(X, 0.
xeA
For n > 0, set I}, = F I, and let A, be the (-Sylow subgroup of
CI°(F,). Let Fs = U,>oF, and let A, be the inductive limit of the A,,
n > 0. We set:
Y = HOI’H(Q@/Z@, Aoo)

Set I' = Gal(F/F),then ~ is a topological generator of I' ~ Z,.
Lemma 4.1

(1) For alln > 0, we have an isomorphism of A-modules:

Y

Gy =

12



(2) Assume | A |20 (mod £).Then, ¥x € A, Vn > 0, we have:

Proof We prove assertion (1), and note that (2) is a consequence of (1).
Recall that A is a divisible group (see [6], Proposition 11.16). We start
with the following exact sequence:

0— A, = A — A — 0,

where the middle map is the multiplication by v*"—1. We apply Hom(Q,/Zy, .)
to this sequence, we get:

0—Y —Y — Ext'(Qy/Z, An) — 0.

we also have the following exact sequence:

OHZ@HQZH%—)O.

14

We apply Hom(., A,) to this last sequence, using the fact that:

Ext'(Qg, A,) = {0},

we get:
Hom(Z;, A,) ~ Ext'(Qq/Z, A).

The Lemma follows. <>

Proposition 4.2

(1) Let A = Z,[[X]] be the Twasawa algebra of T' over Z, where X acts like
v —1. Then Y is a finitely generatyed A-module and a torsion A-module.
The characteristic polynomial of the A-module Y is equal to H(X).

(2) Assume that £ does not divide the cardinal of A. Let A = W[[X]] be the
Twasawa algebra of T' over W = Zy[jua|] where X acts like v — 1. Then, for
X € ﬁ, Y (x) is a finitely generated A-module and a torsion A-module. The
characteristic polynomial of tha A-module Y is equal to H(X,X).
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Proof We prove (1), the proof of (2) is essentially similar. For all n > 0, we
set wy(X) = (1+ X)" — 1. By Lemma 4.1, we have:

Vn >0,

~ A,.
wpY

Therefore Y is a finitely generated A-module and a torsion A-module. Let
r € N such that we have an isomorphism of groups:

Y ~7Z,.
Then, there exists a constant v € Z, such that, for all n sufficiently large:
| Y
wnY

|: ETTH—V

But, for all n > 0, we have:

| A, |= poeLr, (1)

Therefore, there exists a constant v/ € 7Z such that, for all n sufficiently

large:
| A, | Pl

Thus: r = degxH(X). But let V(X) be the characteristic polynomial of
the A-module Y. We know that r = degxV(X), and we also know that
V(X) divides (1 + X)deber L L((1 + X)~1). But V(X) is a distinguished
polynomial, thus V(X)) divides H(X). The Proposition follows.

Proposition 4.3

(1) If Ag is a cyclic Zy-module then g(X) has simple roots.

(2) Assume that | A |# 0 (mod ¢). Let x € A. If Ao(x) is a cyclic W -
module then g(X,X) has simple roots.

Proof We prove (1). By Nakayama’s Lemma, Y is pseudo-isomorphic to
A/H(X)A. But, by a result of Tate ([8]), we know that the action of v on
Y is semi-simple. This implies that H(X) has simple roots.

Let’s give an application of this last Proposition.

Proposition 4.4 We assume that ¢ > 5. Let E/F,(T) be a real quadratic
field, i.e. [E :F (T)] =2 and oo splits completely in E. If Og is a principal
ideal domain then Lp(X) has simple roots.
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Proof Let g be the genus of F and write:

29

Le(X) =](1 — a;X).

i=1

Let K = Q(a, -, agy), then K is a CM-field. Let a € {oy, - - agy}. Then:
(l-—ao)(l—a)>q¢g+1—-2\/q>1.

Therefore:
NK/Q<1 — Oé) > 1.

Thus 1 — « is not a unit of K. Let ooy and ooy be tha places of E above oco.
Then R(F) is a quotient of Z(co; — 00s) and we have an exact sequence:

0— R(E) — CI°(E) — Cl(Og) — 0.

Therefore, if O is a principal ideal domain then CI°(E) is a cyclic group.
It remains to apply Proposition 4.3.

It is conjectured that there exists infinitely many real quadratic function
fields E/F,(T) such that O is a principal ideal domain. In view of this
conjecture, it will be interesting to prove that there exists infinitely many
real quadratic function fields E/F,(T) such that Lg(X) has simple roots.

5 A Conjecture of Goss

Set Dy = 1 and for i > 1, D; = (T9 — T)D?_,. The Carlitz exponential
is defined by: _
X4
Exp(X) =
) -3

i>0 v

€ k[[X]].

Let n € N, write n = ag+ a1q+- - - +a,q", where aqg,---,a, € {0,---,q—1}.
We set:

r, =[] D
i=0
The ith Bernoulli-Carlitz number, B(i) € k, is defined by:

X Bl
Exp(X)_g—X'

7
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Let P be a prime of A of degree d and let i € {1,---,¢* —2}, i = 0
(mod g — 1). We have the following result ([5]):

Cl(Ok,)p(wh) #{0} = B(i)) =0 (mod P).

We fix an embedding of Q in Q,. Let i € {1,---,¢% — 2}. Write:

L(X,wp) = [ [ = (D) X),

J

and set:

gxwp)= [ (Q-a)X)

vp(aj()—1)>0

Let i € N. We say that i is a ¢-magic number if there exist ¢ € {0,---,qg—
2} and an integer n € N such that i = c¢" + ¢" — 1.

Proposition 5.1 Let P be a prime of A of degree d. Let i be a q-magic
number, 1 < i < q¢*—2,9=0 (modq—1). Then g(X,ws) has simple
T001S.

Proof We have i = ¢" — 1 for some integer n, 1 < n <d — 1. By a result of
Carlitz ([2], Lemma 8.22.4):

(-1

Bl —1—i) =~~~ _
(q ) o

9

where Ly =1 and for j > 1, L; = (T — T)L,_,. Therefore:
Cl(Ok,p)p(w™) = {0}.

It remains to aplly Proposition 4.3. <

In [2], David Goss makes the following conjecture:
let P be a prime of degree d and let i be a g-magic number, 1 < i < ¢¢ — 2.
Then degyg(X,wh) < 1.

It is natural to ask if there exist primes P and ¢g-magic numbers 7, 1 <
i < q%e® — 2, such that degyg(X,wh) > 1. This is the case.
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Proposition 5.2 Let c € {0,---,q—2}. There exist infinitely many primes

P such that:
degP—1

H Blcg" +q¢" —1)=0 (mod P).
n=1

Proof We prove this Proposition for ¢ # 0. The proof for ¢ = 0 is very
similar. If we apply the results in [7], we get:
n+1 _ q

Vi 2 0, degy feq” +a" — 1) =n(c+ )" = T—

Let S be the set of primes P in A such that:

degP—1

] 6(ca" +q"~1)=0 (mod P).

i=1

Let’s assume that S is a finite set. We set:

D = [ degP,

pPeS

and D =1 if S = (). Note that:
VP €S, ¢°=1 (mod ¢*&" —1).
Therefore, since ((c) = 1, we have:
VP e S, Blecg” +¢° —1)=1 (mod P).

But degrB(cq® + P — 1) > 1, thus we can select a prime Q of A such that
Bleqg? + 4¢P —1) =0 (mod Q). Note that Q ¢ S. Set d = degQ. Since d
does note divide D, there exists an integer r, 1 < r < d—1, such that D =r
(mod d). Therefore:

Beq” +q° =1)=B(cq"+ ¢ —1) =0 (mod Q).

But this implies that @) € S, which is a contradiction. <

Let P be a prime of A of degree d. Let J be the jacobian of Kp, i.e. J
is the inductive limit of the C1%(Fyn Kp), n > 1. Set Fpoe = UpsFpon C Fy,
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where F, is the algebraic closure of F, in k. We consider the A = Gal(Kp /k)-

module: _
J [p] Gal(]Fq/]quoo )

CI°(Kp)|p]

As a consequence of the results in section 4, we get:

Ap =

Proposition 5.3 Let W = Z,[p,a_1] and let x € A. We have:
dim w Ap(x) = degxg(X, %) — dim w CI"(Kp)p(x)-

Note that in general, by Proposition 3.4, we do not have Ap = {0}. But
Goss conjecture implies the following:
let P be a prime of A of degree d and let i be a ¢g-magic number, 1 <7 <
q? — 2, then Ap(wp') = {0}.

It would be interesting to prove (or find a counter-example) to this weak
form of Goss conjecture.
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