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Abstract

We study the effect of electromagnetic radiation on the condensate of a Bose gas. In

an earlier paper we considered the problem for two simple models showing the cooper-

ative effect between Bose-Einstein condensation and superradiance. In this paper we

formalise the model suggested by Ketterle et al in which the Bose condensate parti-

cles have a two level structure. We present a soluble microscopic Dicke type model

describing a thermodynamically stable system. We find the equilibrium states of the

system and compute the thermodynamic functions giving explicit formulæ expressing

the cooperative effect between Bose-Einstein condensation and superradiance.
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1 Introduction

The present paper is motivated by the recent experiments exhibiting a special coherent in-
teraction between matter and light, which has been nicknamed “four-wave mixing” [1]. In
these experiments boson atoms with an internal structure, condensed in a trap, are irradi-
ated with light produced by an external laser beam. The structure of the atoms is usually
represented by considering them as having two levels [2, 3]. A system of two level-atoms
interacting with light is very reminiscent of the Dicke model [4]. Moreover an important
feature of this model, namely superradiance has been observed in these experiments, where
it is found that there is an enhancement of both Bose-Einstein Condensation (BEC) and
light radiation (superradiance) due to the interaction.

Recently various models [1] - [3] for this BEC-superradiance coupling were constructed and
discussed in order to describe both equilibrium and non-equilibrium superradiance by con-
densed atoms. It is interesting to note that as early as 1978 Girardeau [5] had already
anticipated this phenomenon in the context of superfluid helium and had discussed the pos-
sible impact of the equilibrium superradiance on the thermodynamic properties of the latter.
In our recent letter [6] we have considered two simple systems by which we modelled the
coherent behaviour of the BEC atoms irradiated by a laser beam, showing rigorously that a
weakened form of the “four-wave mixing” interaction enhances the superradiance and BEC
as proposed by Ketterle et al [1] - [3].

The aim of the present paper is to consider a model which takes explicitly into account the
internal structure of the boson atoms. In fact we assume that our bosons have an internal
two-level structure of the type described by SU(2)-spin symmetry. Therefore the one-particle
wave functions are of the form ψ⊗s where ψ ∈ L2(Rν) describing the spacial localization and
s ∈ C2 describing the internal (spin) state. Only the condensate particles, i.e., the particles
in the ground state are supposed to interact with the external field, and therefore only the
ground state boson particles are given a different ground state energy parameterized by a
separation level parameter ε. If ε is put equal to zero, it is as if we have just two different
types of boson particles. The interaction turns out to be a second quantized version of the
well known Dicke maser model. In our model we suppose that the recoil of the particles
is negligible. The model is in fact a realization of the physical mechanism explained in [2].
For our model we study the equilibrium states in the infinite volume limit (thermodynamic
limit) and compute the corresponding thermodynamic functions. We examine the presence of
cooperation between the BEC condensate and superradiance as a function of the separation
level parameter ε. The existence of this phenomenon confirms the results obtained in [6] for
a simpler model. It can be seen explicitly from the expressions for the occupation densities
for the bosons and photons. Our results predict that with conventional BEC one obtains the
same phenomenon of BEC-superradiance cooperation as is observed for trap experiments.

We note that experimentally one can observe the photon recoil effect which, on light atoms,
can be non-negligible [1]. However in the present paper we consider the case when the photon
momentum is very small so that the recoil effect can still be neglected. In a later publication
we shall study another model in which the influence of recoil is included.
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2 The model and its equilibrium states

We consider a system of two types of bosons of mass m enclosed in a cubic box Λ in ν
dimensions (Λ ⊂ Rν) with volume V, centered at the origin.

As usual let Λ∗ = {2πk/V 1/ν |k ∈ Zν} be the dual space of Λ used to formulate the model
with periodic boundary conditions. For k ∈ Λ∗, σ = ±, a∗k,σ and ak,σ are the usual boson
creation and annihilation operators of the two types of bosons satisfying the commutation
relations:

[ak,σ, a
∗
k′,σ′] = δk,k′δσ,σ′ . (2.1)

The kinetic energy of the system is given by

TΛ =
∑

σ=±

∑

k∈Λ∗, k 6=0

ǫ(k)a∗k,σak,σ + ε(a∗0,+a0,+ − a∗0,−a0,−) , (2.2)

where ε ≥ 0 and ǫ(k) = ‖k‖2/2m. Note that the two k = 0 mode bosons (the ground state for
non-interacting bosons) have a supplementary internal energy, a spin-state energy, making
the internal structure of the bosons explicit. On the other hand the excited bosons k 6= 0
are not distinguished by their internal energy, but it is straightforward to make them also
distinguished. The reader will able to see that that our arguments cover also the situation,
when the single particle boson spectrum is presented by two branches: ǫσ(k) := ǫ(k) + σ ε
for two internal states os bosons.

We represent the external one mode laser field by a single mode boson field with creation
and annihilation operators b, b∗ satisfying [b, b∗] = 1. As we indicated in the introduction
here we consider the case, when the photon momentum is very small so that the recoil effect
is negligible. In this approximation we can take k = 0 and then

b =
1√
V

∫

Λ

dx b(x) , (2.3)

where b(x), x ∈ Rν stands for the local (annihilation) photon field. As suggested in the
introduction we define our model Hamiltonian as

HΛ = TΛ + UΛ (2.4)

where

UΛ =
g

2
√
V

(a∗0+a0−b+ a0+a
∗
0−b

∗) + Ω b∗b+
λ

2V
N2

Λ (2.5)

and
NΛ =

∑

k∈Λ∗

Nk , Nk = (Nk,+ +Nk,−) , Nk,σ = a∗k,σak,σ

are respectively total boson number operator, the k-boson number operator and the boson
number operator for momentum k and type σ.

Furthermore Ω > 0 is the laser frequency and g is the coupling constant of the interaction
between the bosons and the external field. Note that without loss of generality we can
take g to be positive as we can always incorporate the argument of g into b by a gauge
transformation.



A Dicke Type Model for Equilibrium BEC Superradiance 3

Notice in (2.5) the presence of the mean-field repulsive particle interaction with a positive
coupling constant λ > 0. This term is essential in order to obtain a model describing a
thermodynamically stable system, i.e. ensuring the right thermodynamic behaviour. Indeed
one can check by considering the interaction UΛ in (2.5), that

UΛ = Ω (b∗ +
g

2Ω
√
V
a0+a

∗
0−)(b+

g

2Ω
√
V
a∗0+a0−) − g2

4ΩV
N0−(N0+ + 1) +

λ

2V
N2

Λ

≥ λ

2V
N2

Λ − g2

4ΩV
N0−(N0+ + 1). (2.6)

On the basis of the trivial inequality 4ab ≤ (a + b)2, the lower bound of (2.6) is bounded
from below, if λ > g2/8Ω, that is if the stabilizing repulsive interaction coupling constant λ
is large with respect to the coupling constant g or if the laser frequency Ω is large enough.
Therefore we assume that λ > g2/8Ω is satisfied for the model (2.4). The reader will see all
along in the explicit analysis of the model below, the importance of this stabilizing condition.
We note that, so far, neither the coherent recoil model, nor the “four-wave mixing” model
nor Girardeau’s model are thermodynamically stable, although Girardeau in [5] has stressed
the importance of this stabilization. The models in [6] are stable because of the linearity of
the interaction.

In the present paper we study the equilibrium states of the model (2.4) in the grand-canonical
ensemble and therefore we shall work with the Hamiltonian

HΛ(µ) = HΛ − µNΛ (2.7)

where µ is the chemical potential. Specifically our objective is to identify the infinite volume
equilibrium states corresponding to the Hamiltonian (2.7) for a system of three different
types of bosons. One way of achieving this goal is through the basic variational principle of
statistical mechanics. Before starting to do this we prefer to reformulate the model with the
purpose of showing that our model (2.4) is nothing but a second quantized bosonic form of
the Dicke model and hence it realizes the ideas proposed in [2] and [3].

We have a system of atoms with internal states σ = ±. Dicke regarded the two-level atom
as a spin-1/2 system. This is what we shall also do and therefore we start from a two-
dimensional representation of the Pauli matrices generating the Lie algebra of SU(2), given
by

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σ3 =

(
1 0
0 −1

)
(2.8)

and the basis vectors {e+ = (1, 0), e− = (0, 1)} of C2 diagonalizing σ3.

The one-particle space of bosons is H = L2(Rν) ⊗ C2. Let f ⊗ s be an element of H, then
a∗(f ⊗ s) is the creation operator of a boson particle with state vector f ⊗ s. In particular
one can make the following identifications.

a∗k,± = a∗(fk ⊗ e±) (2.9)

where for k ∈ Λ∗, fk is the plane wave function

fk(x) =
1√
V
eik·x, x ∈ R

ν . (2.10)
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In particular we have
a∗0,± = a∗(f0 ⊗ e±). (2.11)

For any φ ∈ H, the creation and annihilation operators a∗(φ) and a(φ) are linearly defined
on arbitrary n-particle subspaces of Fock space F(H):

a∗(φ)sym(φ1 ⊗ φ2 ⊗ . . .⊗ φn) = (n + 1)
1

2 sym(φ⊗ φ1 ⊗ . . .⊗ φn) (2.12)

and

a(φ)sym(φ1 ⊗ φ2 ⊗ . . .⊗ φn) = n− 1

2

n∑

r=1

〈φ, φr〉H sym(φ1 ⊗ . . .⊗ φ̂r ⊗ . . .⊗ φn), (2.13)

where sym denotes symmetrization, 〈·, ·〉H is the scalar product in H, and φ̂r means that φr

is omitted.

Applying these definitions for a#
0,± on the n-particle k = 0 mode states and using the identity

σ+s = 〈e−, s〉C2 e+ we obtain

a∗0+a0− sym((f0 ⊗ s1) ⊗ (f0 ⊗ s2) ⊗ . . .⊗ (f0 ⊗ sn))

=
n∑

r=1

σ+
r sym((f0 ⊗ s1) ⊗ (f0 ⊗ s2) ⊗ . . .⊗ (f0 ⊗ sn)) (2.14)

where

σ+
r (f0⊗s1)⊗(f0⊗s2)⊗. . .⊗(f0⊗sn) = (f0⊗s1)⊗(f0⊗s2)⊗. . .⊗(f0⊗σ+sr)⊗. . .⊗(f0⊗sn).

(2.15)
The k = 0 mode kinetic energy term can be treated similarly. Hence, on the n-particle k = 0
mode states the sum of the k = 0 kinetic-energy term (2.2) and the interaction term with
the laser field (2.5) takes the form

ε
n∑

i=1

σ3
i +

g

2
√
V

n∑

i=1

(σ+
i b+ σ−

i b
∗) (2.16)

which coincides with the Dicke maser model. This proves that the model (2.4) (or (2.7))
realizes the suggestions of [3], namely that it is nothing but a second quantized bosonized
form of the Dicke maser model.

So far we have discussed the structure of our model. The rest of the section is devoted to
the technical preparation of the basic variational principle of statistical mechanics applied
to our model (2.7).

The variational principle states that if S is the set of the extremal translation invariant
states and f is the free energy density defined on S by

f(ω) = lim
V →∞

ω(HΛ(µ)/V ) − (1/β)S(ω) (2.17)

where S(ω) is the entropy density of the state ω, then a state ωβ ∈ S satisfying

f(ωβ) = inf
ω∈S

f(ω) (2.18)
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is an equilibrium state of (2.7) at inverse temperature β.

The Hamiltonian (2.7) is not quadratic in the creation and annihilation operators, and
therefore cannot be diagonalised by a standard symplectic or Bogoliubov transformation
and thus, on this basis, one is tempted to conclude at first sight that the model is not
soluble. However on closer inspection we find that we can write (2.5) in the form

UΛ

V
=

g

2

{(
a∗0+√
V

)(
a0−√
V

)(
b√
V

)
+

(
a0+√
V

)(
a∗0−√
V

)(
b∗√
V

)}

+Ω

(
b∗√
V

)(
b√
V

)
+
λ

2

(
NΛ

V

)2

, (2.19)

so that all the terms are space averages. We have

a0±√
V

=
1

V

∫

Λ

dx a±(x),
a∗0±√
V

=
1

V

∫

Λ

dx a∗±(x) and
NΛ

V
=
∑

σ=±

1

V

∫

Λ

dx a∗σ(x) a(x)σ. (2.20)

and by virtue of (2.3), b∗/
√
V and b/

√
V are clearly also space averages. Without going into

all the mathematical details, the reason why space averages are such a simplifying feature is
that they tend weakly to a multiples of the identity operator [7]. For example if ω is a space
homogeneous extremal (mixing) state then for all local observables, A and B one has

lim
V →∞

ω

(
A

1

V

∫

Λ

dx a∗(x) a(x)B

)
= ω (AB) lim

V →∞
ω

(
1

V

∫

Λ

dx a∗σ(x) aσ(x)

)

= ω (AB)ω (a∗σ(0) aσ(0)) , (2.21)

so that NΛ/V tends weakly to
∑

σ=± ω (a∗(0)σ aσ(0)). Similarly

lim
V →∞

a0±√
V

= ω(a±(0)), and lim
V →∞

b√
V

= ω(b(0)). (2.22)

Thus if ω ∈ S, then the contribution of the term (2.5) to the energy density in (2.17) yields

lim
V →∞

ω(UΛ)

V
=

g

2

{
ω(a∗+(0))ω(a−(0))ω(b(0)) + ω(a+(0))ω(a∗−(0))ω(b∗(0))

}

+Ω |ω(b(0))|2 +
λ

2

(
∑

σ=±

ω (a∗σ(0) aσ(0))

)2

, (2.23)

The result follows readily from (2.21) with A and B a multiple of the identity. We can
therefore conclude that in the study of the equilibrium states of (2.4) or (2.7), we can
limit ourselves to searching for solutions ω which are product states on the tensor product
canonical commutation relations algebra (CCR) of the three different kinds of particles,
namely on

A := A+ ⊗A− ⊗ B, (2.24)

where A± is the C∗ algebra generated by the Weyl operators:

W±(f) := exp

{
i
a∗±(f) + a±(f)√

2

}
,
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for all f ∈ L2(Rν) ∩ L1(Rν), and B by the Weyl operators:

Wb(f) := exp

{
i
b∗(f) + b(f)√

2

}
.

The above discussion makes it clear that we find the equilibrium states of our model amongst
the states which are determined completely by their one-point and two-point functions, that
is, among the set of extremal space invariant quasi-free states [7] on the respective CCR-
algebras. This is a consequence of the fact that if ω ∈ S, the set of states on A, and ω̃ ∈ S
is a quasi-free state with the same one-point and two-point functions as ω, then it follows
by Klein’s inequality [8] that

S(ω̃) ≥ S(ω). (2.25)

Therefore since our energy density involves only the one-point and two-point functions, if
SQF is the set of quasi-free state on A, then

inf
ω∈S

f(ω) ≥ inf
ω∈SQF

f(ω) (2.26)

and consequently
f(ωβ) = inf

ω∈SQF

f(ω). (2.27)

We denote the set of quasi-free states on Aσ by ωσ determined by the constants ασ and the
non-negative operators Aσ on L2(Rν) and satisfying

ωσ(Wσ(f)) = exp

(
i
√

2 Re (ασ〈1, f〉)−
1

4
‖f‖2 − 1

2
〈f, Aσf〉

)
(2.28)

for all f ∈ L2(Rν) ∩ L1(Rν), see [7].

Note that the states ωσ are completely determined by the one-point function

ωσ(aσ(f)) = ᾱσ〈f, 1〉 (2.29)

and the two-point function

ωσ(a∗σ(f)aσ(g)) = 〈g, Aσf〉 + |ασ|2〈1, f〉〈g, 1〉 (2.30)

for all f, g ∈ L2(Rν) ∩ L1(Rν).

On B we consider the extremal invariant state, which is determined by one constant αb, see
[7].

ωb(Wb(f)) = exp

(
i
√

2 Re (αb〈1, f〉)−
1

4
‖f‖2

)
(2.31)

Its one- and two-point functions are

ωb(b(f)) = ᾱb 〈f, 1〉 (2.32)

and
ωb(b

∗(f)b(g)) = |αb|2 〈1, f〉 〈g, 1〉 . (2.33)

Note that this one-mode coherent state depends only on the k = 0 mode. It is possible
also to consider a more general quasi-free states of the form (2.31) to take into account
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other photons modes. However since only the k = 0 mode interacts with the bosons, this is
unnecessary.

Thus the candidates for the equilibrium states are among the set, SP , of products of quasi-
free states, i.e. states of the form

ω = ω+ ⊗ ω− ⊗ ωb. (2.34)

They are completely parameterized by the set of parameters: α±, αb ∈ C and the integral
operators A± on L2(Rν):

(A±f)(x) =

∫

Rν

A±(x− y)f(y)d νy, x ∈ R
ν (2.35)

If Â± is the Fourier transform of A±, then Â±(k) ≥ 0, expressing the positivity of the states
ω±.

The variational principle (2.18) is now reduced to

f(ωβ) = inf
ω∈SP

f(ω). (2.36)

The entropy density for states in SP is explicitly given by, see [9]:

S(ω) = S(ω+) + S(ω−), (2.37)

where S(ωb) = 0 because only one photon mode is taken into account. Here

S(ω±) =

∫

Rν

{(
1 + Â±(k)

)
ln
(
1 + Â±(k)

)
− Â±(k) ln Â±(k)

} d νk

(2π)ν
. (2.38)

A straightforward computation yields:

lim
V →∞

ω(HΛ(µ)/V ) = −(µ− ε)|α+|2 − (µ+ ε)|α−|2

+

∫

Rν

(ǫ(k) − µ)
(
Â+(k) + Â−(k)

) d νk

(2π)ν

+
g

2
(ᾱ+α−ᾱb + α+ᾱ−αb) + Ω |αb|2

+
λ

2

{∫

Rν

(
Â+(k) + Â−(k)

) d νk

(2π)ν
+ |α+|2 + |α−|2

}2

. (2.39)

Note that the pressure P (µ) of the system (2.7), as a function of the chemical potential µ,
is related to the grand-canonical free-energy density by

P (µ) = −f(ωβ) = − inf
S
f(ω). (2.40)

3 Variational Solutions

In this section we give a systematic derivation of the equilibrium states for our model as
well as explicit expression for the corresponding grand-canonical pressure. To this end we
solve the variational principal (2.36), and we start by substituting (2.37)-(2.39) into (2.36) to
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obtain an expression for the functional f(ω) in terms of the variational parameters α±, αb ∈
C and Â±(k):

We find that there are two critical chemical potentials µ
(1)
c (ε) and µ

(2)
c (ε), µ

(1)
c (ε) ≤ µ

(2)
c (ε).

For µ < µ
(1)
c (ε), the two σ = ± Bose gases behave like two mean field Bose gases with no

BEC and they do not interact with the external b-boson laser field, in which there is no
condensation either.

For µ > µ
(2)
c (ε), there is BEC for the two σ = ± Bose gases and for the external boson laser

field (superradiance).

When µ
(1)
c (ε) < µ

(2)
c (ε), for µ

(1)
c (ε) < µ < µ

(2)
c (ε) there is BEC only for the σ = − Bose gas.

First we remark that we can take α±, αb real after a suitable gauge transformation on
the boson creation and annihilation operators a0± and b, see (2.29) and (2.32). Note that
the squares of these parameters are in fact the condensate densities of the corresponding
boson modes. For notational convenience we introduce the particle density for an arbitrary
quasi-free state ω of the form ω+ ⊗ ω− ⊗ ωb,

ρ :=

∫

Rν

(
Â+(k) + Â−(k)

) d νk

(2π)ν
+ |α+|2 + |α−|2 = lim

V →∞

ω (NΛ)

V
, (3.1)

that is, ρ is the density of σ = ± particles, excluding the b-particles. We get the following
Euler-Lagrange equations for the variational principle (2.36):
Take

α+, α−, αb ∈ R. (3.2)

(i) Differentiation of f(ω) with respect to α+ gives:

2 (λρ+ ε− µ)α+ + gα−αb = 0, (3.3)

(ii) differentiation with respect to α−:

2 (λρ− ε− µ)α− + gα+αb = 0, (3.4)

(iii) differentiation with respect to αb,

2Ωαb + gα+α− = 0. (3.5)

(iv) and finally differentiating with respect to Â+ and Â− yields:

Â+(k) = Â−(k) =
1

eβ(ǫ(k)−µ+λρ) − 1
. (3.6)

Note that the last equation implies that λρ−µ ≥ 0, since the Â±(k) are positive. Moreover,
the correlation inequality (see e.g. [10])

ω ([A∗, [HΛ(µ), A]]) ≥ 0 (3.7)

for all observables A, applied here with A = a∗0−, implies that λρ− µ ≥ ε ≥ 0. Substituting
(3.6) into (3.1) we get

ρ = |α+|2 + |α−|2 + 2ρ0(µ− λρ) (3.8)
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where

ρ0(µ) :=

∫

Rν

1

eβ(ǫ(k)−µ) − 1

d νk

(2π)ν
(3.9)

is the density of the free Bose gas at chemical potential µ. Recall that ρ0(µ < 0) < ∞ and
that ρ0(µ = 0) <∞ for ν > 2.

Solving (3.3), (3.4) and (3.5) we have to distinguish three cases:

Case 1: α+ = α− = αb = 0.
Substituting zero for α+ and α− into (3.8) we get the standard equation for density of the
mean-field interacting bosons

ρ = 2ρ0(µ− λρ), (3.10)

see e.g. [11]. By virtue of the stability condition λρ − µ ≥ ε ≥ 0 we see that this equation
has no solution for µ > µ1(ε) := 2λρ0(−ε) − ε, while if µ ≤ µ1(ε) it has a unique solution
ρ = ρ1(µ). (See Figure 1, where x = λρ − µ so that x ≥ ε and (3.10) becomes µ =
2λρ0(−x) − x). Putting this value of ρ into (3.6), we determine Â±. Substituting these and
α+ = α− = αb = 0 in the expressions (2.31), (2.33) and (2.33), for ω± and ωb respectively,

we find a solution, ω
(1)
β,µ, of the Euler-Lagrange equations for the variational principle (2.36)

for µ ≤ µ1(ε). From (3.8) we are able to compute the free energy density for the state ω
(1)
β, µ:

f(ω
(1)
β, µ) = −2p0(µ− λρ1(µ)) − 1

2
λρ2

1(µ) (3.11)

where p0(µ) is the pressure of the free Bose gas:

p0(µ) := − 1

β

∫

Rν

ln
(
1 − e−β(ǫ(k)−µ)

) d νk

(2π)ν
. (3.12)

Case 2: α+, α− and αb are non-zero.
We obtain from (3.3), (3.4) and (3.5) that

α+ =
2
√

Ω (λρ− ε− µ)

g
, α− =

2
√

Ω (λρ+ ε− µ)

g
, αb = −

2
√

(λρ− µ)2 − ε2

g
. (3.13)

From these we see that in this case BEC is indeed present. Again substituting these values
for α+, α− into (3.8) we get

ρ =
8Ω

g2
(λρ− µ) + 2ρ0(µ− λρ). (3.14)

Note that the first term corresponds to the condensate density. Let η := (8Ωλ/g2 − 1). From
the thermodynamic stability condition for (Section 2) we know that η > 0. Then equation
(3.14) has a unique solution ρ = ρ2(µ) for µ > µ2(ε) := 2λρ0(−ε) + ηε. Substituting
this value of ρ into (3.13) and (3.6) we obtain all the parameters α+, α−, αb and Â± and

consequently we get another solution, ω
(2)
β, µ, of the Euler-Lagrange equations.

The free energy density for the state ω
(2)
β, µ can again be computed:

f(ω
(2)
β, µ) = −2p0(µ− λρ2(µ)) − 1

2
λρ2

2(µ) +
4Ω

g2
(λρ2(µ) − µ)2 − 4Ωε2

g2
. (3.15)
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Denote by x0 the unique solution of equation 2λρ′0(−x) = η corresponding to the minimum of
the function 2λρ0(−x)+ηx, and let µ0 = 2λρ0(−x0)+ηx0. For µ0 < µ ≤ µ2(ε) the equation
(3.14) has two solutions ρ = ρ2(µ) and ρ = ρ̃2(µ), ρ2(µ) > ρ̃2(µ). The corresponding states

ω
(2)
β, µ and ω̃

(2)
β, µ can be found as above. The free energy density for the state ω

(2)
β, µ is as in

(3.15) and for ω̃
(2)
β, µ it is the same with ρ2(µ) replaced by ρ̃2(µ).

Case 3: α− 6= 0 and α+ = αb = 0.
From (3.3), (3.4) and (3.5) one can see that this is possible only if

ρ =
µ+ ε

λ
, (3.16)

corresponding to the boundary x = ε of the stability domain, see Figure 1. The equation
(3.8) then requires that µ > µ1(ε) and gives

α+ =

√
µ+ ε

λ
− 2ρ0(−ε). (3.17)

This case corresponds to yet another solution of the Euler-Lagrange equations, ω
(3)
β, µ, whose

free energy density is given by:

f(ω
(3)
β, µ) = −2p0(−ε) −

(µ+ ε)2

2λ
. (3.18)

We see from above that for certain values of µ there are several solutions of the Euler-
Lagrange equations. Since these equations determine only the stationary points of the free
energy functional, if there is more than one such point, in order to obtain the equilibrium
state for a fixed µ we have to decide which of the solutions, has the lowest grand-canonical
free-energy density.

To proceed with explicit analysis of solutions of the Euler-Lagrange equations it is easier
to work with the variable x = λρ − µ rather than ρ. Also in the grand-canonical ensemble
it is more usual to use the pressure instead of the free energy density. These allow to find
the grand-canonical pressure as a function of its natural variable, the chemical potential. In
terms of x and η the equations (3.10), (3.14)and (3.16) become:

2λρ0(−x) − x = µ for µ ≤ µ1(ε), (3.19)

2λρ0(−x) + ηx = µ for µ ≥ µ0 (3.20)

and
x = ε for µ > µ1(ε). (3.21)

We consider first the case ε = 0. Then µ1(0) = µ2(0) = 2λρc, where ρc := ρ0(0). So, in
this case the lower critical dimensionality the same as for the free (or mean-field) Bose-gas:
ν = 2. The equations (3.19), (3.20) and (3.21) become :

2λρ0(−x) − x = µ for µ ≤ 2λρc, (3.22)

2λρ0(−x) + ηx = µ for µ ≥ µ0 (3.23)



A Dicke Type Model for Equilibrium BEC Superradiance 11

and
x = 0 for µ > 2λρc. (3.24)

In Figure 1 we have drawn y = 2λρ0(−x) − x and y = 2λρ0(−x) + ηx. Recall that x0 is the
unique solution of 2λρ′0(−x) = η and µ0 = 2λρ0(−x0) + ηx0. It is easy to see that:

1. For µ < µ0, (3.22) has a unique solution x1(µ) while (3.23) does not have a solution.

2. In the region µ0 < µ < 2λρc, (3.22) has a unique solution x1(µ) while (3.23) has two
solutions x2(µ) and x̃2(µ), x2(µ) > x̃2(µ).

3. Finally for µ > 2λρc, (3.22) has no solution while (3.23) has a unique solutions x2(µ)
and we also have to consider the solution (3.24), x = 0.

λρ (2 )y =  +   x -x η
0

ρcλ2

µo

x
0

x

y

λρ
0
(2 )y =  - x -x

µ
2

ε( )

µ
1

ε( )

ε

Figure 1: Solution of the density equation

Let

P1(x, µ) = 2p0(−x) +
(x+ µ)2

2λ
. (3.25)

and

P2(x, µ) = 2p0(−x) +
{(x+ µ)2 − (η + 1)x2}

2λ
, (3.26)

Then the situation is as follows:
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1. For µ < µ0, the solution of the variational problem (2.36) is ω
(1)
β,µ and the corresponding

pressure P (µ) := −f(ω
(1)
β,µ) = P1(x1(µ), µ).

2. For µ0 < µ < 2λρc, the solution of the variational problem is the state out of ω
(1)
β,µ,

ω
(2)
β,µ and ω̃

(2)
β,µ which minimizes the free energy density or equivalently maximizes the

pressure. The pressures for these states are P1(x1(µ), µ), P2(x2(µ), µ) and P2(x̃2(µ), µ)
respectively.

3. For µ > 2λρc, the two candidates for the solution of the variational problem (2.36) are

ω
(2)
β,µ and ω

(3)
β,µ. The pressures for these states are P2(x2(µ), µ) and P3(µ) := −f(ω

(3)
β,µ) =

2p0(0) + µ2/2λ.

µxP µ
22
( ),( )

~

µxP µ
22
( ),( )

µ

µP( )

ρcλ2µo

µxP µ
11
( ),( )

µc

P µ
3
( )

Figure 2: The pressure

In Figure 2 we have sketched P1(x1(µ), µ), P2(x2(µ), µ), P2(x̃2(µ), µ) and P3(µ0). One can
check that P1(x1(µ), µ) and P2(x2(µ), µ) are convex in µ. One also has

dP2(x2(µ), µ)

dµ
=
x2(µ) + µ

λ
,

dP2(x̃2(µ), µ)

dµ
=
x̃2(µ) + µ

λ
(3.27)

and
dP1(x1(µ), µ)

dµ
=
x1(µ) + µ

λ
. (3.28)

Therefore since for µ0 < µ < 2λρc, x2(µ) > x̃2(µ) > x1(µ), in this interval we have

dP2(x2(µ), µ)

dµ
>
dP2(x̃2(µ), µ)

dµ
>
dP1(x1(µ), µ)

dµ
. (3.29)
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As P2(x2(µ0), µ0) = P2(x̃2(µ0), µ0), it follows from (3.29) that P2(x2(µ), µ) > P2(x̃2(µ), µ)
for µ0 < µ < 2λρc. Now

P1(x1(2λρc), 2λρc) = P2(x̃2(2λρc), 2λρc) = 2p0(0) + 2λρ2
c (3.30)

and consequently P2(x2(2λρc), 2λρc)>P1(x1(2λρc), 2λρc). Also if P2(x̃2(µ0), µ0) were greater
than P1(x1(µ0), µ0), then (3.29) would imply that P2(x̃2(2λρc), 2λρc) > P1(x1(2λρc), 2λρc)
contradicting (3.30). Thus we must have

P2(x2(µ0), µ0) = P2(x̃2(µ0), µ0) < P1(x1(µ0), µ0). (3.31)

Therefore there exists a unique µc satisfying µ0 < µc < 2λρc such that P2(x2(µc), µc) =
P1(x1(µc), µc).
Finally we consider µ > 2λρc. We have P3(2λρc) = P1(x2(2λρc), 2λρc) < P1(x2(2λρc), 2λρc)
and

dP3(µ)

dµ
=
µ

λ
<

(x2(µ) + µ)

λ
=
dP2(x2(µ), µ)

dµ
. (3.32)

Therefore P2(x2(µ), µ) > P3(µ) for µ > 2λρc.

Summarizing: There exists a unique critical chemical potential µc such that

1. For µ < µc, the solution of the variational problem (2.36) is ω
(1)
β,µ. For ω

(1)
β,µ, α+ =

α− = αb = 0, i.e. the two ± Bose gases behave like two mean field Bose gases with
no BEC and do not interact with the external b-bosons which do not condense either.
The corresponding pressure is P (µ) = P1(x1(µ), µ).

2. For µ > µc, the solution of the variational problem is ω
(2)
β,µ. For this state

α+ = α− =
2
√

Ωx2(µ)

g
and αb = −2x2(µ)

g
, (3.33)

i.e. there is BEC for the two ± Bose gases and for the external bosons laser field (su-
perradiance). Moreover the condensation of the ± bosons is enhanced by the presence
of the laser field (b-bosons), known as the equilibrium BEC superradiance [6]. The
pressure for the system is P (µ) = P2(x2(µ), µ).

We now return to the case ε > 0. We have to redefine P2 and P3 but P1 remains unchanged:

P2(x, µ) = 2p0(−x) +
{(x+ µ)2 − (η + 1)x2}

2λ
+

(η + 1)ε2

2λ
(3.34)

and

P3(µ) = 2p0(−ε) +
(µ+ ε)2

2λ
. (3.35)

Note that
P1(x1(µ1(ε)), µ1(ε)) = P3(µ1(ε)) (3.36)

and

P2(x̃2(µ2(ε)), µ2(ε)) = P3(µ2(ε)) for ε < x0

P2(x2(µ2(ε)), µ2(ε)) = P3(µ2(ε)) for ε > x0. (3.37)



A Dicke Type Model for Equilibrium BEC Superradiance 14

Also by again considering the derivatives

P2(x2(µ), µ) > P3(µ) (3.38)

for µ > µ2(ε) and as before P2(x2(µ), µ) > P2(x̃2(µ), µ) for µ0 < µ < 2λρ0(−ε) in the region
where it applies.

(a) The simplest case to consider is when ε > x0. In this case for µ < µ1(ε) only (3.19) has
a solution x1(µ), for µ1(ε) < µ < µ2(ε) only (3.21) is satisfied i.e. x = ε and for µ > µ2(ε)

only (3.20) has a solution x2(µ). Thus the states are ω
(1)
β , ω

(3)
β and ω

(2)
β as µ increases. This

means that as we increase µ the system goes from no BEC, to BEC for the σ = − bosons
only, to BEC for both species and superradiance.

(b) When ε < x0 we have to consider two cases, µ1(ε) < µ0 < µ2(ε) and µ0 < µ1(ε).

In the first case we can use the same arguments as for ε = 0 to show that P3(µ0) >
P2(x2(µ0), µ0) and P3(µ2(ε)) < P2(x2(µ2(ε)), µ2(ε)). This implies that there exists µc(ε)
between µ0 and µ2(ε) such that P3(µc(ε)) = P2(x2(µc(ε)), µc(ε)). Thus at µc(ε) the state

changes from ω
(3)
β to ω

(2)
β . This means that the situation is the same as for ε > x0 except

that the changes of state occur at µ1(ε) and at µc(ε).

For ε < x0 and µ0 < µ1(ε) the same argument applies. However we did not determine
on which side of µ1(ε), the value of µc(ε) lies. Thus we know that there is no BEC for
µ < µ0 and there is BEC for both types of bosons for µ > µc(ε), but we do not know if the
intermediate phase with BEC for − bosons only is present.

4 Conclusion: Equilibrium BEC Superradiance

The above results may be summarized as follows:

There exist two critical chemical potentials µ
(1)
c (ε) and µ

(2)
c (ε), µ

(1)
c (ε) ≤ µ

(2)
c (ε).

For µ < µ
(1)
c (ε), the solution of the variational problem (2.36) is ω

(1)
β, µ. For the state ω

(1)
β, µ,

α+ = α− = αb = 0, (4.1)

i.e. the two σ = ± Bose gases behave like two mean field Bose gases with no BEC and they
do not interact with the external b-boson laser field, in which there is no condensation either.

For µ > µ
(2)
c (ε), the solution of the variational problem is ω

(2)
β, µ. By virtue of (3.13) for this

state we have
0 < α+ ≤ α− and αb 6= 0, (4.2)

i.e. there is BEC for the two σ = ± Bose gases and for the external boson laser field
(superradiance). Moreover, for ε > 0 the condensation of the σ = ± bosons is enhanced by
the presence of this laser field: one gets it even for dimensions ν = 1, 2, because ρ0(−ε) <∞
for ν ≥ 1. We interpret this quantum state as that of equilibrium BEC superradiance [6].

When µ
(1)
c (ε) < µ

(2)
c (ε), for µ

(1)
c (ε) < µ < µ

(2)
c (ε), the solution of the variational problem is

ω
(3)
β, µ. For this state we have

α− 6= 0 and α+ = αb = 0, (4.3)
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i.e. there is BEC only for the σ = − Bose gas.

(a) The simplest case to consider is when ε > x0. In this case µ
(1)
c (ε) = µ1(ε) and µ

(2)
c (ε) =

µ2(ε). Thus the states are ω
(1)
β , ω

(3)
β and ω

(2)
β as µ increases. This means that as we increase

µ we observe three stages: the system goes from no BEC, to BEC for only the σ = − bosons,
and then to BEC for both σ = ± boson species and for the laser field (superradiance).

(b) When 0 < ε < x0 we have to consider two subcases: µ1(ε) < µ0 < µ2(ε) and µ0 < µ1(ε).

In the first subcase µ1(ε) = µ
(1)
c (ε) < µ

(2)
c (ε) < µ2(ε). Otherwise the situation is as in (a).

For µ0 < µ1(ε), µ1(ε) < µ
(2)
c (ε) < µ2(ε) but we did not determine if µ

(1)
c (ε) < µ

(2)
c (ε). Thus

we do not know if the intermediate phase with BEC for only σ = − bosons is present.

(c) If ε = 0, then µ
(1)
c (ε) = µ

(2)
c (ε) and the intermediate phase with BEC for only σ = −

bosons is not present.
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FIGURE CAPTIONS

Figure 1: Solution of the density equation

Figure 2: The pressure


