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Abstract. We propose a simple and efficient technique that allows the applica-
tion of statistical model checking (SMC) to Markov Decision Processes (MDP).
Our technique finds schedulers that transform the original MDP into a purely
stochastic Markov Chain, on which standard SMC can be used. A statistical
search is performed over the set of possible schedulers to find the best and worst
with respect to the given property. If a scheduler is found that disproves the prop-
erty, a counter-example is produced. If no counter-example is found, the algo-
rithm concludes that the property is probably satisfied, with a confidence depend-
ing on the number of schedulers evaluated.
Unlike previous approaches, the efficiency of our algorithm does not depend on
structural properties of the MDP. Moreover, we have devised an efficient proce-
dure to address general classes of schedulers by using Pseudo Random Number
Generators and Hash Functions. In practice, our algorithm allows the represen-
tation of general schedulers in constant space, in contrast to existing algorithms
that are exponential in the size of the system. In particular, this allows our SMC
algorithm for MDPs to consider memory-dependant schedulers in addition to the
memoryless schedulers that have been considered by others.

1 Introduction

Markov decision processes are a convenient model to represent systems containing both
probabilistic and non-deterministic transitions, where the non-determinism may repre-
sent behaviour that is unspecified or deployment-dependent. In such a model it is often
required to find the maximum or minimum probability that it will satisfy a particular
property, considering all possible schedulers of a given class.

Problem Given an MDP and property ϕ, verify (i) that there exists a deterministic
scheduler s.t. P(ϕ) ≥ θ or (ii) that there does not exist a scheduler s.t. P(ϕ) ≤ θ. In
both cases the procedure is to find a scheduler that maximises P(ϕ), but such schedulers
may be arbitrarily rare.

Basic idea Iterate a randomised procedure T times that has non-zero probability p of
finding the scheduler that maximises P(ϕ). If the outcome of each iteration is inde-
pendent of previous iterations, the algorithm will either find a scheduler s.t. P(ϕ) ≥ θ
within arbitrary user-defined confidence bounds or, with confidence ∝ (1 − p)T , con-
clude that no scheduler exists. In case (i) the algorithm is p-correct, true-biased; in case
(ii) the algorithm is p-correct, false-biased.
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2 B. Delahaye, A. Legay and S. Sedwards

2 Related Work

Clarke algorithm The following procedure is repeated T times: refine a probabilistic
schedulerL times, starting from a neutral scheduler, to become more focused around the
scheduler that maximises P(ϕ); determinise the final probabilistic scheduler to estimate
P(ϕ) using SMC.

The refinement is achieved as follows. For each of the L steps, generateN indepen-
dently random samples from the joint distribution formed by probabilistic schedulers
and traces. Count the occurrences of scheduler transitions ((state,action) pairs) in the
samples that satisfy ϕ and thus produce the next probabilistic scheduler by increasing
the probability of such ‘good’ transitions in proportion to the their occurrence.

With N infinite, p = 1 and a single refinement step is all that is needed to find a
probabilistic scheduler that can be determinised to maximise P(ϕ). The effect of finite
N , s.t. p < 1, is counteracted by making L > 1, T > 1 and introducing a heuristic
history parameter. The history parameter defines the fraction of results to carry forward
from the previous refinement step, to avoid losing good transitions that were not seen in
the current N simulations. Increasing the history parameter allows a greater coverage
of the distribution and thus increases p.

A further heuristic parameter, greediness, speeds up convergence to a deterministic
scheduler by effectively determinising some of the scheduling during the refinement.
By reducing some of the variance associated with the scheduling, it potentially allows
more accurate coverage of the probabilistic distribution, but risks converging to a sub-
optimal scheduler and thus reducing p.

Allocating resources between T , L and N The confidence of the result is increased
by increasing T or p. p is increased by increasing L and N . For a given problem, how
should a fixed computational budget be allocated?

Refinement is an optimistic strategy that simulations will tend to be confined to a
region of scheduler×trace space that can be adequately covered by simulation. This
may not be justified, even in the case of well structured models, especially when the
traces are long. The advantage of the refinement approach is that successive iterations
increasingly focus on better schedulers that avoid unproductive areas of the scheduler
space. The disadvantage is that such focusing may only find a local optimum when the
initialN simulations do not adequately represent the distribution. By iterating the entire
refinement process T times, the algorithm implicitly expects fewer than T local max-
ima. It is not clear why, in general, L > 1 will be better than performing all simulations
in a single step.

With standard Monte Carlo estimation of a Bernoulli parameter, it is not necessary
to see a significant fraction of the support; the error depends only on the number of sam-
ples in relation to the parameter. By contrast, refinement requires N to be sufficiently
large to adequately cover the joint distribution of schedulers and traces. With increas-
ingly long traces, the size of scheduler space increases exponentially with respect to the
number of sampled states that attempt to cover it. The majority of (state,action) pairs
may therefore only be seen once. The algorithm thus does not entirely escape from the
‘state explosion problem’.
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A Simple and Efficient SMC Algorithm to evaluate MDPs 3

T is related to confidence η and p by

T =
log η

log(1− p)
,

for log to any base. Hence

dT
dp

=
ln η

(1− p) (ln(1− p))2

Assuming a required confidence of η = 0.95,
∣∣∣dTdp ∣∣∣ ≈ 1 when p = 0.22.

∣∣∣dTdp ∣∣∣ > 1
when p < 0.22, so for equal computational effort it is better to increase p to improve
confidence. When p > 0.22 it is better to just increase T .

3 Background

3.1 Schedulers and MDPs

Markov Decision Processes are a common formalism for modelling discrete state tran-
sition systems exhibiting both nondeterministic and probabilistic behaviours. In this
section, we recall background on MDPs and Schedulers.

Definition 1 (Markov Decision Process). A Markov decision Process (MDP) is a tuple
M = 〈S, s0, A, T,L〉 where S is a finite set of states, s0 ∈ S is an initial state, A is a
finite set of actions, T : S × A × S 7→ [0, 1] is a transition function such that for all
s ∈ S, a ∈ A, either

∑
s′∈S T (s, a, s′) = 1 (a is enabled) or

∑
s′∈S T (s, a, s′) = 0 (a

is disabled) and for all s there exists at least one action a that is enabled, and L : S →
2AP is a labelling function mapping each state to the set of atomic propositions true in
that state.

A Markov Chain is an MDP where the transition function is fully probabilistic. In
order to allow probabilistic choice between available actions, we relax the definition of
MDPs by replacing the assumption “for all s ∈ S, a ∈ A, either

∑
s′∈S T (s, a, s′) =

1 or
∑
s′∈S T (s, a, s′) = 0” with “

∑
a∈A

∑
s′∈S T (s, a, s′) = 1”. A Path in MDP

M = 〈S, s0, A, T,L〉 is an execution of the form s0
a1→ s1 . . .

an→ sn such that for all
0 ≤ i ≤ n − 1, ai+1 is enabled in si and for all 1 ≤ j ≤ n, T (si−1, ai, si) > 0. The
set of paths ofM is denoted ΠM. The set of finite paths ofM is denoted Π∗M.

A scheduler for a MDP resolves nondeterminism after each sequence of states
s0, . . . sn ∈ S+ by providing a distribution over the set of actions enabled in sn as
the next step.

Definition 2 (Scheduler). A scheduler for a MDPM = 〈S, s0, A, T,L〉 is a function
σ : S+ ×A→ [0, 1] such that for all finite sequence of states w = s0, . . . sn ∈ S+, we
have σ(w, a) > 0 only if a is enabled in sn and

∑
a∈A σ(w, a) = 1.
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4 B. Delahaye, A. Legay and S. Sedwards

The are several classes of schedulers that are addressed in practice. Deterministic
schedulers are schedulers for which either σ(w, a) = 1 or σ(w, a) = 0 for all pairs
(w, a) ∈ S+ × A. Effectively, deterministic schedulers are reduced to functions σ :
S+ → A. Memoryless schedulers are schedulers for which decisions are only based on
the last state of each sequence, i.e. such that for all a ∈ A and for all sequence w =
s0, . . . sn and w′ = s′0, . . . s

′
k with sn = s′k, we have σ(w, a) = σ(w′, a). Effectively,

memoryless schedulers are reduced to functions σm : S ×A→ [0, 1].
Given a MDP M, any scheduler σ induces a (potentially infinite-state) Markov

chain by resolving all nondeterministic choices. This Markov chain is denotedMσ .

Definition 3 (Markov Chain induced by a scheduler). Given a MDPM = 〈S, s0, A, T,L, 〉
and a scheduler σ : S+ × A → [0, 1] for M, the (infinite-state) Markov chain in-
duced by σ is Mσ = 〈S+, w0, A, T

∗,L∗〉, where w0 = s0 is the finite sequence of
length 1 consisting of only s0, L∗ is such that for all finite sequence w ending in sn
L∗(w) = L(sn), and for all w, T ∗(w, a,w′) = σ(w, a)T (sn, a, sn+1) if w ends in sn
and w′ = w.sn+1, and 0 otherwise.

3.2 Probabilistic and Statistical Model Checking

We are interested in verifying that a given MDPM satisfies a formula ϕ specified in
Bounded Linear Temporal Logic (BLTL) [3] with a probability at most (resp. at least)
θ. This problem, denoted P≤θ(ϕ) (resp. P≥θ(ϕ)), consists in deciding whether, for all
schedulers σ forM, the measure of the set of traces in the induced Markov chainMσ is
greater than (resp. lower than) θ. Exact Probabilistic Model Checking techniques exist
to solve this problem [1, 4, 6]. They rely on symbolic techniques to encode the MDP in
efficient data structures and numerical methods to compute the exact maximum (resp.
minimum) probability of satisfying the given property.

Another approach to the problem is to reduce it to finding the scheduler σm that
maximizes (resp. minimizes) the measure of the set of traces satisfying ϕ, and com-
pare the measure of this set under scheduler σm to θ. It has been proven [2] (Remark
10.99) that deterministic schedulers are sufficient for achieving maximum probability,
hence we only consider deterministic schedulers from this point. In [5], Henriques et
al. propose to use an adaptation of Kearns’ learning algorithm to find a locally opti-
mal scheduler σ and then to use Statistical Model Checking (SMC) on Mσ to check
satisfaction of P≤θ(ϕ).

Statistical Model checking [7] comes in two flavours: hypothesis testing, that di-
rectly solves P≤θ(ϕ) without computing the actual probability P(ϕ); and interval esti-
mation, that estimates the probability P(ϕ) using samples of traces and then compares
it to θ. In both cases, the result is obtained with confidence and precision parameters
that we denote conf and pre respectively.

In the rest of the paper, we propose to sample from deterministic schedulers and
check each induced Markov chain using SMC techniques. If a scheduler disproving the
property is found, a counterexample is produced. After N positive trials, we conclude
that the property is probably satisfied with confidence conf = ... Sean, can you fill-in?.
Our technique is detailed in the next section.
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A Simple and Efficient SMC Algorithm to evaluate MDPs 5

4 Statistical Model Checking MDPs

In this section, we present in details our SMC algorithm for evaluating MDPs. We
first introduce and explain the algorithm, and then identify the challenges that such an
algorithm raises and study its complexity and convergence bounds.

4.1 Main Algorithm

Our SMC algorithm for MDPs is based on the following observation: In learning algo-
rithms such as the ones presented in [5], a lot of effort is spent on optimizing proba-
bilistic schedulers in order to derive the optimal deterministic scheduler. This technique
is complex and implies a huge memory consumption, as one has to store quality mea-
sures for each state-action pair. Furthermore, the technique does not scale in the case
of unstructured systems because the learning algorithm needs some structure to make
progress. Finally, due to the large memory consumption, the authors have to limit them-
selves to memoryless schedulers. We choose to follow an orthogonal approach based
on statistical sampling of deterministic schedulers to search for the optimum. While our
technique does not learn or optimize schedulers, it is much less memory-intensive and
behaves in the same way for structured and unstructured systems. All the effort spent
on optimizing in the case of learning algorithms is here spent on searching for new
random deterministic schedulers. By the law of large numbers, the optimal scheduler
will be found eventually and a lower bound on the confidence in our algorithm can
be computed. Finally, once this algorithm is coupled with a very efficient technique for
representing schedulers in practice (which we present in Section 5), our SMC algorithm
for MDPs becomes very efficient in terms of memory consumption.

Data: MDP M, Property ϕ, Probability bound θ, SMC Confidence conf, SMC Precision
pre, Number of rounds N

Result: probablytrue, (false, scheduler)
for int i = 1, i ≤ N , i++ do

Deterministic Scheduler σd = Random();
if !SMC(Mσd , ϕ, θ, conf, pre) then

Return (false, σd);

Return probablytrue;

Algorithm 1: SMC for MDP

The SMC algorithm for MDPs, presented in Algorithm 1, is simplistic in theory:
Given a number N as a parameter, it samples N deterministic schedulers σd and per-
forms SMC on the induced Markov chainMσd . As soon as a scheduler is found that
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6 B. Delahaye, A. Legay and S. Sedwards

falsifies the property, the algorithm returns false and the counter-example σd. If no such
scheduler is found, the algorithm returns probablytrue, meaning that the property is
probably satisfied, with a confidence that depends on N . Although very simple, Algo-
rithm 1 raises several challenges that need to be resolved in order to provide efficient
solutions. The main challenge is to be able to represent deterministic schedulers effi-
ciently, and to sample traces from the resulting Markov chain. By definition, a determin-
istic scheduler σd is a function that maps finite histories w ∈ S+ to choices of available
actions. Representing general deterministic schedulers in practice would thus require
infinite memory. As a consequence, researchers usually restric themselves to memory-
less schedulers, which can be represented with a linear amount of memory in the size
of the system. Although memoryless schedulers are sufficient for computing maximal
and minimal bounds for infinite properties [], they are not sufficient for bounded prop-
erties []. In the following section, we present solutions that allow to represent wider
classes of deterministic schedulers in constant memory, by using hash functions and
random number generators. These methods are coupled with efficient algorithms that
allow sampling from the resulting Markov chain.

4.2 Convergence and Bounds

Since our algorithm is based on random sampling from the set of general schedulers, the
law of large numbers ensures that the optimal scheduler will eventually be found. More-
over, since we are looking for counter-example schedulers to the property under test
P≤θϕ, the absolute optimal scheduler may not need to be found: a good enough sched-
uler may suffice as long as it allows us to disprove the property. This algorithm thus
amounts to a false-biased Monte Carlo algorithm. Such algorithms have been widely
studied in the litterature [], and confidence bounds exist, which we report here. Let p be
the measure of probability of optimal schedulers, which may be very small. By [?], the
required number of samples Np,η to achieve a confidence bound of 1 − η, where η is
the probability of answering probablytrue while the correct answer is false, is

Np,η =
log(η)

log(1− p)
.

For instance, if η = .01 and p = 10−5, then Np,η ≡ 460514.

5 Schedulers

As seen in the previous section, one of the main challenges of performing SMC for
MDPs is to be able to represent schedulers in an efficient way, and to simulate the
Markov Chain induced by a given scheduler.

In this section, we propose several algorithms that allow to sample the Markov
chain induced by M under a given scheduler σ. The most important feature of these
algorithms is that the internal representation of scheduler σ is an integer. Selecting uni-
formly among schedulers is thus reduced to choosing uniformly a random integer. The
section is structured as follows: we first introduce briefly the notions of (pseudo)random
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A Simple and Efficient SMC Algorithm to evaluate MDPs 7

number generators and hash functions, on which our algorithms are base; We then intro-
duce our algorithms, starting from the less expressive one which allows to understand
the underlying concepts easily albeit addressing a restricted class of schedulers, and
then increase expressivity until we address the class of general schedulers.

5.1 Random Number Generators and Hash Functions

(Pseudo)Random Number Generators A Random Number Generator (RNG) is a func-
tion that allows to produce an infinite sequence of random numbers that are evenly
distributed on a given interval (parameter of the function). In practice, RNGs allow to
resolve nondeterminism in a uniform way, e.g. allowing to choose one transition among
a set of available transitions. Unfortunately, real RNGs cannot be adressed in practice.
Pseudorandom Number Generators (PRNGs) have been developed for this purpose. A
PRNG is an algorithm that generates an infinite sequence of numbers that approximate
the properties of a truly random sequence. The sequence is not truly random as it is
entirely determined using a small set of parameters. In practice, PRNGs are initialized
using a seed ξ, e.g. in the form of an integer, that is then used to generate the sequence
of pseudo random numbers. Once the seed is fixed, the sequence will always be the
same. Since true RNGs cannot be computed, PRNGs are often used in computation to
approximate uniform distributions. In the rest of the document, PRNGs will be adressed
as PRξ : N → [0, 1], such that PRξ(n) returns the nth number of the sequence initial-
ized with seed ξ.

Hash Functions A Hash Function is an algorithm that allows to map a large set of data
to a smaller set of fixed size. In our case, hash functions will be used to map vectors v
of integers or reals to a single integer or real number. The main characteristics of hash
functions are their uniformity: the images should be uniformly distributed on the target
set. One additional property that we will require in our algorithms is that hash functions
are randomly distributed: there should be no correlation between the images of two
vectors that are themselves correlated. A perfect hash function will ensure that there
are no collisions in it image, i.e. that two distinct vectors cannot have the same image.
However, due to physical limitations, real hash functions will not be able to ensure this
property, and their aim will be to minimize the number of collisions.

5.2 Using PRNG to resolve nondeterminism

When simulating sample executions of a system that resolves nondeterministic choices
with a uniform probabilistic decision (i.e., using the uniform scheduler), it is usual to
make such decisions using a PRNG. In our case, we want to select a deterministic sched-
uler uniformly and use it to resolve nondeterminism in the MDP of interest. Choosing
a scheduler amounts to deciding in advance how all nondeterministic choices will be
resolved.

Example 1. Consider the MDP Mex given in Figure 1. The initial state is s0 and all
states have nondeterministic choices between actions a1 and a2, each corresponding
transition leading to distributions on next states. The overall execution tree ofMex up
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8 B. Delahaye, A. Legay and S. Sedwards

to depth 3 is given in Figure 2. Choosing a scheduler forMex amounts to choosing a
subtree where all nondeterministic choices are resolved. Such subtrees are given later
in Figures 4,6, and 8.

.5

a2

.5

.5
s2

a1

a1

.5

a2

.5

.5

.5 .5
1

.5

a1

s0 a2

.5

s1

Fig. 1: MDPMex

a1

a1 a2 a1 a2 a2a1a2a1

a2

s0

s1 s2 s0 s2

s1 s2 s0 s1 s2 s1 s2 s1 s2 s0 s2 s2 s1 s2

Fig. 2: Partial execution tree ofMex

In practice, deciding in advance how all nondeterministic choices are resolved may
be very costly, as it implies storing potentially infinite data. If PRNGs are used in order
to resolve nondeterministic choices on the fly, then storing the seed that initializes a
given PRNG is sufficient to be able to reproduce all choices identically. Since fixing
the seed of a PRNG suffices to determine the sequence of random numbers generated,
storing a PRNG scheduler amounts to storing its seed. In the following, we propose
a simplistic algorithm that allows to simulate the Markov Chain induced by a deter-
ministic scheduler σRξ , generated using a PRNG initialized with seed ξ. Although we
will see later on that this algorithm only allows to represent an unrealistic subclass of
schedulers, it is needed for understanding. In the following, the function resolve(r,A)
returns an element a of set A chosen uniformly using random number r, and the func-
tion NextstateM(s, a) resolves the probabilistic choices according to the distribution
associated to action a in state s.

As expected, the above algorithm produces simulations of the Markov chain in-
duced by MDPM and scheduler σRξ . Indeed, given a finite sequence w = s0, . . . sn,
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A Simple and Efficient SMC Algorithm to evaluate MDPs 9

Data: MDPM, seed ξ, length L

Result: Trace w ofMσRξ of length L
State s =M.initialstate;
Trace w = s;
for int i = 1, i ≤ L, i++ do

Action a = resolve(PRξ(i), s.Actions);
s = NextstateM(s, a);
w.append(s);

Return w;

Fig. 3: PRNG Scheduler

the choice produced by σRξ for the next action will always be the same, determined
by resolve(PRξ(n), sn.Actions). The main advantage of Algorithm 3 is that it allows
to represent deterministic schedulers by only storing the seed ξ used for initializing
the PRNG. Moreover, since every nondeterministic choice is taken uniformly among
the available actions using independent random numbers, selecting a seed ξ uniformly
allows to select uniformly among all schedulers of this form.

However, this algorithm only allows to represent a non-realistic subclass of sched-
ulers. Indeed, we remark that the scheduler σRξ induced by this algorithm is such that all
nondeterministic choices taken at depth n depend on the same random number PRξ(n).
In practice, this means that whenever w = s0, . . . sn and w′ = s′0, . . . s

′
n are such that

sn.Actions = s′n.Actions, we will have σRξ (w) = σRξ (w′). In the following, we propose
more involved algorithms that allow to target larger classes of schedulers.

Example 2 (PRNG Scheduler Algorithm). Consider MDP Mex depicted in Figure 1.

Applying the Algorithm 3 toMex with a given seed ξ yields the Markov chainMσRξ
ex

depicted as a darker subtree of the executions ofMex in Figure 4. Notice that choices
of the associated scheduler σRξ depend on the depth of the execution. Indeed, nondeter-
ministic choices labeled 2 and 3 are resolved using the same random number PRξ(2),
and thus select the same action a1. Similarly, the resolution of nondeterministic choices
labelled 4,5 and 6 will be resolved using the same random number PRξ(3). As a con-
sequence, a scheduler resembling the one depicted in Figure 6 cannot be obtained using
the Algorithm 3, since choices labelled 2 and 3 in this scheduler are resolved in a dif-
ferent way.

5.3 Advanced scheduling using PRNG and Hash Functions

We now propose more advanced algorithms that use the same principle as Algorithm 3
for the representations of the scheduler, but use PRNG together with hash functions in
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10 B. Delahaye, A. Legay and S. Sedwards

a1 a1

a1

s0

s1 s2

s1 s2 s2

a2

s0 s2

a2

s2s1s2

a1a2

s0 s2s2s1

a1a2

s2s1s1s0

a2

2

4 5 6

3

1

Fig. 4: Execution ofM
σRξ
ex according to the Algorithm 3

order to simulate the underlying Markov chain. Using both PRNG and hash functions
allows to address larger classes of schedulers, as we show below.

Memoryless Schedulers A state of the system is an assignment of values to a vector of n
system variables vi. Each vi is represented by a number of bits bi, typically correspond-
ing to a primitive data type. The state vector can thus be represented by an integer of∑n
i=1 bi bits, denoted v. Our algorithm works by generating a pseudo-random number

that is dependent on the state of the system at any given instant and the chosen sched-
uler. The scheduler is represented by an integer ξ, that our algorithm chooses uniformly
at random. We thus generate a hash code hξ(v) from scheduler seed ξ and state vector
v. h is then used as the seed of a standard linear congruential PRNG, that is used to
make the next non-deterministic choice in the simulation.

Data: MDPM, seed ξ, length L, hash function Hash

Result: Trace w ofMσHξ of length L
State s =M.initialstate;
Trace w = s;
for int i = 1, i ≤ L, i++ do

Vector v = s.vector;
Int hξ = Hash(ξ,v);
Action a = resolve(PRhξ (1), s.Actions);
s = NextstateM(s, a);
w.append(s);

Return w;

Fig. 5: H-PRNG Scheduler Algorithm

The choice of the hash function used in our algorithms is of paramount importance,
as we need to be able to range over all schedulers. In the rest of the section, we assume
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A Simple and Efficient SMC Algorithm to evaluate MDPs 11

we have a perfect hash function Hash in order to present our algorithms. We discuss the
right choice for Hash in practice in Section ??.

The H-PRNG scheduler algorithm mixes the use of the hash function Hash in-
troduced above with random numbers for resolving nondeterministic choices at each
step. The resulting scheduler is denoted σHξ . As expected, Algorithm 5 produces traces

of MσHξ , and σHξ is a correct scheduler. Indeed, for all sequence w = s0, . . . sn of
M, the choice produced by σHξ for the next action will always be the same, deter-
mined by resolve(PRhξ(s)(1), s.Actions), where hξ(s) = Hash(ξ,v). As for Algo-
rithm 3, Algorithm 5 allows to use a single integer value (the seed ξ) in order to
represent the scheduler σHξ . Since Hash is a perfect hash function, selecting a seed
ξ uniformly allows to select uniformly among all schedulers that can be otained this
way. Contrary to Algorithm 3, Algorithm 5 allows to represent a meaningfull class of
schedulers: memoryless schedulers. Indeed, the resolution of nondeterministic choices
in Algorithm 5 is only based on the original seed ξ and on the vector representing
the last state visited v. Thus, for a given scheduler σHξ , the seed ξ is fixed and the
resolution only depends on the vector representing the last state visited v. This is
enough to justify that all schedulers of the type σHξ are memoryless. Moreover, if the
hash function is well chosen and there are no collisions, all local choices of the type
resolve(PRhξ(s)(1), s.Actions) are independent as they use the same PRNG PR initial-
ized with a different seed. By the properties of PRNGs and hash functions, the following
property holds: for all memoryless scheduler σ, there exists a seed ξ such that for all
state s, we have σ(s) = resolve(PRhξ(s)(1), s.Actions), which implies that σ = σHξ .

Example 3 (H-PRNG Scheduler Algorithm). Consider MDPMex depicted in Figure 1.

Applying Algorithm 5 toMex with a given seed ξ yields the Markov chainMσHξ
ex de-

picted as a darker subtree of the executions ofMex in Figure 6. Notice that the sched-
uler σHξ is memoryless, i.e. resolution of nondeterministic choices only depend on the
current state in the execution. Indeed, nondeterministic choices labeled 1 and 2 are re-
solved using the same random number PRhξ(s0)(1), and thus select the same action a2.
Similarly, the resolution of nondeterministic choice labeled 4 will also be a2 and nonde-
terministic choices labeled 3,5 and 6 will be resolved using the same random number
PRhξ(s2)(1). As a consequence, a scheduler resembling the one depicted in Figure 8
cannot be obtained using Algorithm 5, since choices labelled 1 and 2 in this scheduler
are resolved in a different way.

a2

a2 a1

s0

s0

s0 s2 s2

s2

1

2 3

4 5 6

a1

s1

a1

s1 s2 s0 s1

a2

s2

a2a1

s2 s1 s2 s1 s2

a1 a2

s2s1

Fig. 6: Execution ofM
σHξ
ex according to Algorithm 5

ha
l-0

08
56

70
4,

 v
er

si
on

 1
 - 

2 
Se

p 
20

13



12 B. Delahaye, A. Legay and S. Sedwards

The above result assumes that there are no collisions in the hash function. In prac-
tice, this may pose problems as collisions might appear. If this is the case, then some
schedulers may not be representable. However, we assume that the number of collisions
is limited, and thus that deterministic memoryless schedulers that cannot be represented
using Algorithm 5 are rare (neglectable). In the following, we present other algorithms
that allow to represent even larger classes of schedulers.

Data: MDPM, seed ξ, length L, hash function Hash

Result: Trace w ofMσDξ of length L
State s =M.initialstate;
Trace w = s;
for int i = 1, i ≤ L, i++ do

Vector v = s.vector;
Int hiξ = Hash(PRξ(i),v);
Action a = resolve(PRhi

ξ
(1), s.Actions);

s = NextstateM(s, a);
w.append(s);

Return w;

Fig. 7: State-depth Dependant Scheduler Algorithm

State-depth dependant schedulers In order to obtain a larger class of schedulers, one
can tweek Algorithm 5 in order to use new seeds each time a state is visited along an
execution. In Algorithm 5, the scheduler seed ξ is mixed with the state-vector v using a
hash function, and the result is used in order to resolve nondeterminism. A simple way
to extend this principle is to use the next random number generated using seed ξ instead
of ξ itself: instead of using hξ(v) = Hash(ξ,v) as a seed for PR, we propose to use
hnξ (v) = Hash(PRξ(n),v), where n is the current depth in the execution. The resulting
scheduler is addressed as σDξ .

Although the schedulers defined as above are more general than memoryless sched-
ulers, they still do not encompass all memory-dependant schedulers. Indeed, every
scheduler of the form σDξ as defined above suffers from a certain type of dependency:
for all sequence w = s0, . . . sn and w′ = s′0, . . . s

′
n with s′n = s′n, we have hnξ (w) =

hnξ (w
′), i.e. the same hash number is generated. Hence, the resolution of nondeterminis-

tic choices after w and w′ are not independent. As a consequence, all schedulers cannot
be addressed using the State-depth Dependant algorithm presented above. Neverthe-
less, the set of schedulers we address with this algorithm contains, but is not limited to,
memoryless schedulers.
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Example 4 (State-depth Dependant Scheduler Algorithm). Consider MDPMex depicted
in Figure 1. Applying the State-depth dependant scheduler algorithm to Mex with a

given seed ξ yields the Markov chain MσDξ
ex depicted as a darker subtree of the exe-

cutions of Mex in Figure 8. Notice that the scheduler σDξ cannot be obtained using
Algorithms 3 or 5. However, schedulers obtained using the state-depth dependant al-
gorithm are still not fully general. Indeed, nondeterministic choices labelled 4 and 6
will be resolved using the same random number PRh3

ξ(s1)
(1). Similarly, the resolution

of nondeterministic choices labelled 5 and 7 will be resolved using the same random
number PRh3

ξ(s2)
(1).

a2

a1 a2

s0

s2s0

s1 s2

1

2 3

s1 s2
4 5 6 7

a1

s2s1

a1

s1 s2 s0 s1

a2 a1

s2 s1

a2

s2

a2

s2s0 s2

a1

Fig. 8: Execution ofM
σDξ
ex according to the State-depth Dependant Scheduler Algorithm

General schedulers in theory Following the same principles as in Algorithm 5, one
can device an algorithm that addresses memory-dependant schedulers. In Algorithm 5,
a random number is generated in each step in order to resolve nondeterminism, using
a hash of the seed ξ and the current state vector v. In order to represent memory-
dependant schedulers, we propose to use a number h that represents both the current
path and the original seed, that we then hash with the state-vector in order to produce
a random number that resolves nondeterminism for the next transition. Formally, con-
sidering a seed ξ, we propose to use the following sequence of numbers (hξ(n))n∈N to
produce random numbers that are successively used in order to resolve nondeterminism
along an execution. Obviously, each number hξ(n) that resolves nondeterminism in the
nth step will depend on all choices made up to depth n. hξ(n) is thus defined recur-
sively as follows. Given seed ξ and initial state s0, we define hξ(0) = Hash(ξ,v0),
where v0 is the state-vector corresponding to state s0. When resolving nondeterminism
in the nth step after a history w = s0, . . . , sn, we define hξ(n) = Hash(hξ(n−1),vn),
where vn is the state-vector corresponding to state sn. Such a scheduler is denoted σξ.

Obviously, Algorithm 9 indeed yields samples of executions from Mσξ , and σξ
is a correct scheduler: after a given history w = s0, . . . sn, the next nondeterministic
choice is always resolved using the same random number PRhξ(n)(1). Moreover, σξ is
clearly history-dependant: two different executions w = s0, . . . sn and w′ = s′0, . . . s

′
k

ending in the same state s′k = sn will resolve nondeterminism in the next state us-
ing independant random numbers, generated using hξ(n) and h′ξ(k). Indeed, we have
hξ(n) = Hash(hξ(n− 1),vn) and h′ξ(k) = Hash(h′ξ(k − 1),vk). Although vn = vk,
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14 B. Delahaye, A. Legay and S. Sedwards

Data: MDPM, seed ξ, length L, hash function Hash
Result: Trace w ofMσξ of length L
State s =M.initialstate;
Trace w = s;
Int hξ = ξ;
for int i = 1, i ≤ L, i++ do

Vector v = s.vector;
hξ = Hash(hξ,v);
Action a = resolve(PRhξ (1), s.Actions);
s = NextstateM(s, a);
w.append(s);

Return w;

Fig. 9: General Scheduler Algorithm

we know that hξ(n − 1) is independant from h′ξ(k − 1), which ensures independance
in the results given that the hash function Hash is perfect. Unfortunately, for this same
reason, it appears that Algorithm 9 cannot yield memoryless schedulers. Thus, in order
to consider the set of all possible schedulers, Algorithms 5 and 9 will both have to be
used in practice.
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