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Abstract

Recent work of Brlek et al. gives a characterization of digitally convex

polyominoes using combinatorics on words. From this work, we derive a

combinatorial symbolic description of digitally convex polyominoes and

use it to analyze their limit properties and build a uniform sampler. Ex-

perimentally, our sampler shows a limit shape for large digitally convex

polyominoes.

Introduction

In discrete geometry, a finite set of unit square cells is said to be a digitally convex
polyomino1 if it is exactly the set of unit cells included in a convex region of the
plane. We only consider digitally convex polyominoes up to translation. The
perimeter of a digitally convex polyomino is that of the smallest rectangular
box that contains it.

The notion of digitally convex polyominoes arises naturally in the context of
curvature estimators and consequently in the important field of pattern recog-
nition [18, 10].

Brlek et al. [9] described a characterization of digitally convex polyominoes,
in terms of words coding their contour. In this paper, we reformulate this
characterization in the context of constructible combinatorial classes and we
use it to build and analyze an algorithm to randomly sample digitally convex
polyominoes.
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1The usual definition of a polyomino requires the set to be connected, whereas digitally

convex sets may be disconnected. However, one can coherently define some polygon as the

boundary of any digitally convex polyomino; in the case of disconnected sets, this boundary

will not be self-avoiding.
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Our algorithm, based on a model of parametrized samplers, called Boltz-
mann samplers [11], draws digitally convex polyominoes at random. Although
all possible digitally convex polyominoes have positive probability, the perimeter
of the randomly generated polyomino being itself random, two different struc-
tures with the same perimeter appear with the same probability. Moreover, an
appropriate choice of the tuning parameter allows the user to adjust the random
model, typically in order to generate large structures. We present also in this
paper how to tune this parameter.

The Boltzmann model of random sampling, as introduced in [11], is a general
method for the random generation of discrete combinatorial structures where,
for some real parameter x > 0, each possible structure γ, with (integer) size |γ|,
is obtained with probability proportional to x|γ|. A Boltzmann sampler for a
combinatorial class C is a randomized algorithm that takes as input a parameter
x, and outputs a random element of C according to the Boltzmann distribution
with parameter x.

Samples obtained via this generator suggested that large random quarters
of digitally convex polyominoes exhibit a limit shape. We identify and prove
this limit shape in Section 2

The first section is dedicated to introducing the characterization of Brlek et
al [9] in the framework of symbolic methods. In Section 2, we analyze asymp-
totic properties of quarters of digitally convex polyominoes. Finally, we give in
Section 3 the samplers for digitally convex polyominoes and some analysis for
the complexity of the sampling.

1 Characterization of digitally convex polygons

The goal of this section is to recall (without proofs) the characterization by
Brlek, Lachaud, Provençal, Reutenauer [9] of digitally convex polyominoes and
recast it in terms of the symbolic method. This characterization is the starting
point to efficiently sample large digitally convex polyominoes, and is thus needed
in the next chapters.

1.1 Digitally convex polyominoes

Definition 1.1. A digitally convex polyomino, DCP for short, is the set of all
cells of Z2 included in a bounded convex region of the plane.

A first geometrical characterization directly follows from the definition: a
set of cells of the square lattice P is a digitally convex polyomino if all cells
included in the convex hull of P is in P .

For our propose, a DCP will be rather characterized through its contour.

Definition 1.2. The contour of a polyomino P is the closed non-crossing path
on the square lattice with no half turn allowed such that its interior is P . In the
case where P is not connected, we take as the contour, the only such path which
stays inside the convex hull of P .
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Figure 1: A few digitally convex polyominoes (in grey) of perimeter 24,26 and
16, and their contour (in black)
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Figure 2: A polyomino composed of 4 NW-convex. The W to N NW-convex
path is coded by w = 1110110101010001001.

We define the perimeter of P to be the length of the contour (note that,
for digitally convex poyominoes, it is equal to the perimeter of the smallest
rectangular box that contains P ).

The contour of DCP can be decomposed into four specifiable sub-paths
through the standard decomposition of polyominoes.

The standard decomposition of a polyomino distinguishes four extremal
points:

• W is the lowest point on the leftmost side

• N is the leftmost point in the top side

• E is the highest point on the rightmost side

• S is the rightmost point on the bottom side

The contour of a DCP is then the union of the four (clockwise) paths WN ,
NE, ES and SW . Rotating the latter three paths by, respectively, a quarter
turn, a half turn, three quarter turn counterclockwise leaves all paths containing
only north and east steps; digital convexity is characterized by the fact that each
(rotated) side is NW-convex.
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(0, 0)

(5, 2)

Figure 3: The Christoffel primitive word 0001001, of slope 2/5.

Definition 1.3. A path p is NW-convex if it begins and ends by a north step
and if there is no cell between p and its upper convex hull (see Fig. 2).

In the following, we mainly focus on the characterization and random sam-
pling of NW-convex paths.

1.2 Words

The characterization in [9] is based on combinatorics on words. Let us recall
some classical notations. We are interested in words on the alphabet {0, 1}.
Thus {0, 1}∗ is the set of all words, {0, 1}+ is the set of non-empty words.

Each NW-path can be bijectively coded by a word w ∈ {0, 1}∗. From W
to N , the letter 0 encodes a horizontal (east) step and 1 a vertical (north) step
(see figure 2).

The idea is to decompose a NW-convex path w by contacts between w and
its convex hull.

Definition 1.4. Let p, q be two integers, with p ≥ 0 and q > 0. The Christoffel
word associated to p, q is the word which codes the highest path going from (0, 0)
to (p, q) while staying under the line going from (0, 0) to (p, q). A Christoffel
word is primitive if p and q are coprime.

Note that a Christoffel primitive word always ends with 1.

1.3 Symbolic characterization of NW-convex paths

Let us recall in this section, two basic notions in analytic combinatorics: the
combinatorial classes and the enumerative generating functions.

A combinatorial class is a finite or countable set C, together with a size
function |.| : C 7→ N such that, for all n ∈ N, only a finite number cn of elements
of C have size n. The (ordinary) generating function C(z) for the class C is
the formal power series C(z) =

∑

n cnz
n =

∑

γ∈C z
|γ|. If C(z) has a positive

(possibly infinite) convergence radius ρ (which is equivalent to the condition

that lim c
1/n
n < ∞), standard theorems in analysis imply that the power series

C(z) converges and defines an analytic function in the complex domain |z| < ρ;
here we will only use the fact that C(z) is defined for real 0 < z < ρ.

Our sampler is based on the following decomposition theorem.

Theorem 1.5. [9] A word is NW-convex if and only if it is a sequence of
Christoffel primitive words of decreasing slope, beginning with 1.
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The reason of a NW-convex path to begin with a vertical step is to avoid
half-turn on the contour of a polyomino. Indeed, since all Christoffel primitive
words end with 1, this ensures compatibility with the standard decomposition
(beginning and ending on a corner). Since the Christoffel primitive words ap-
pear in decreasing order, NW-convex paths can be identified with multisets of
Christoffel primitive words, with the condition that the word 1 appears at least
once in the multiset (this condition can be removed by removing the initial ver-
tical step from NW-convex paths). This is the description we will use in what
follows next.

The generating function of Christoffel primitive words, counted by their
lengths, is

∑

n≥1

ϕ(n)zn, with ϕ the Euler’s totient function. It follows [14, p. 29]

that the generating function of the class S of NW-convex paths, counted by

length, is S(z) =
∞
∏

n=1
(1 − zn)−ϕ(n). More precisely, we can use the 3-variate

generating function S(z, h, v) = (1 − zv)−1
∞
∏

n=2

∏

p+q=n,p∧q=1
(1 − znvphq)−1, to

describe by [znhivj ]S(z, h, v) the number of NW-convex paths beginning in (0, 0)
and terminating in position (i, j).

2 Asymptotics for NW-convex paths and its limit

shape

This section is dedicated to the analysis of some properties of NW-convex paths.
The main objective is to describe a limit shape for the normalized random NW-
convex paths. This is obtained in three steps. In the first one we extract
the asymptotic of NW-convex paths using a Mellin transform approach. In
the second one, using the same approach we prove that the asymptotic of the
average number of initial vertical steps of a NW-convex path is in O( 3

√
n). Then,

using some technical lemmas, we conclude with the fact that the limit shape is√
2z−z with 0 ≤ z ≤ 1/2. Let us begin by a brief overview on Mellin transforms.

For more details, see [14].

2.1 Brief overview on Mellin transforms

The Mellin transform is an integral transform similar to Laplace transform from
which we can derive asymptotic estimates of expressions involving specific infi-
nite products or sums. Given a continuous function f defined on R

+, the Mellin
transform of f is the function

M[f ](s) :=

∫ ∞

0

f(t)ts−1dt. (1)

If f(t) = O(t−a) as t → 0+ and f(t) = O(t−b) as t → +∞, then M[f ](s)
is an analytic function defined on the fundamental strip a < Re(s) < b. In
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addition, M[f ](s) is in most cases continuable to a meromorphic function in
the whole complex plane.

The first fundamental property of the Mellin transform is that it factorizes
harmonic sums as follows:

G(t) =
∑

k≥1

akf(µkt) ⇒ M[G](s) =
(

∑

k≥1

akµ
−s
k

)

M[f ](s). (2)

In a similar way as the Laplace transform, the Mellin transform is almost
involutive, the function f(t) being recovered from M[f ](s) using the inversion
formula

f(t) =

∫ c+i∞

c−i∞
M[f ](s)t−sds for any c ∈ (a, b). (3)

From the inversion formula and the residue theorem, the asymptotic expansion
of f(t) as t → 0− can be derived from the poles of M[f ](s) on the left of the
fundamental domain, the rightmost such pole giving the dominant term of the
asymptotic expansion. If M[f ](s) is decreasing very fast as Im(s) → ∞ (which
occurs in all series to be analyzed next, based on the fact that Γ(s) is decaying
fast and ζ(s) is of moderate growth as Im(s) → ∞), then the following transfer
rule holds: a pole of M[f ](s) of order k+1 (k ≥ 0),

M[f ](s) ∼
s→α

λα
(−1)kk!

(s− α)k+1

yields a term
λαt

−α ln(t)k

in the singular expansion of f(t) around 0. In particular, a simple pole λα/(s−α)
yields a term λα/t

α.
The first step is to determine the Mellin transform of ln(S(e−t)) which is

easier than to obtain that the Mellin transform of S(z). After that it is quite
easy to compute the expansion for S(z) when z tends to 1.

Lemma 2.1. The Mellin transform associated with the series of irreducible
discrete segments is

M[ln(S(e−t))](s) =
ζ (s+ 1) ζ (s− 1)Γ (s)

ζ (s)
,

where ζ(z) and Γ(z) denote the Riemann zeta function and the Gamma function,
respectively.

Proof. The proof relies on an exp-log schema rewriting ln(S(e−t)) as an har-
monic sum, and then applying harmonic sum properties. Indeed, by an exp-log
schema, we can rewrite ln(S(e−t)) as an harmonic sum. Indeed, we have :

ln(S(e−t)) =
∞
∑

n=1

−ϕ(n) ln(1− e−tn)
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and by an expansion of ln(1− x), we get :

ln(S(e−t)) =

∞
∑

n=1

∞
∑

k=1

1

k
ϕ(n)e−tkn

We continue by swapping the sums

ln(S(e−t)) =

∞
∑

k=1

1

k
B(kz)

with B(z) =
∞
∑

n=1
ϕ(n)e−nt.

With the harmonic property of Mellin transform 2, we see that :

M[ln(S(e−t))](s) = ζ(s+ 1)M[B](s)

But, we can now apply the harmonic property to B and we get

M[B](s) =
ζ(s− 1)

ζ(s)
M(e−t)(s)

And finally, as M(e−t)(s) = Γ(s), we obtain :

M[ln(S(e−t))](s) =
ζ (s+ 1) ζ (s− 1) Γ (s)

ζ (s)

Proposition 2.2. We have the following equivalence for S(z) when z tends to
1:

S(z) ∼
exp

(

6zζ(3)

π2(1−z)2

)

(2π(1− z))
1
6

· exp
(

g(1− z) + ζ (3)

2π2
− 2 ζ′ (−1)

)

,

where
g(t) =

∑

r

t−rΓ(r)ζ(r + 1)ζ(r − 1)

and r runs over the non-trivial zeros of the Riemann zeta function.

g(t) =
∑

r

Ress=r(F (s)), (4)

F (s) =
t−sζ(s+ 1)ζ(s− 1)Γ(s)

ζ(s)
, (5)

where the right-hand side of (4) represents the sum of the residuals of F (s) over
the non-trivial zeros of the Riemann zeta function.
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Proof. Our argument is similar to that presented by Brigham [8] and Yang [21]
in the study of partitions of integers into primes. First, we apply the inversion
formula for Mellin transforms to the function from Lemma 1 and obtain

lnS(e−t) =
1

2πi

∫ c0+i∞

c0−i∞
t−sΓ(s)ζ(s+ 1)

ζ(s− 1)

ζ(s)
ds

with c0 > 2. As in [8, 21], we now shift the line of integration to the vertical
ℜ(s) = −c1, 0 < c1 < 1, taking into account the residues of the integrand at
s = 2, 0 and at the non-trivial zeros of the zeta function. Clearly the residue of
the integrand at s = 2 is 6ζ(3)/π2t2. The pole at s = 0 is of second order. To
find its residue we use the well-known expansions:

ζ(s+ 1) =
1

s
+ C + ...,

Γ(s) =
1

s
− C + ...

ζ(s− 1) = ζ(−1) + ζ′(−1)s+ ...

t−s = 1− s ln t+ ...

and
1

ζ(s)
= −2 + 2s ln (2π) + ...,

where C denotes the Euler’s constant. Multiplying these series, we obtain that
the required residue is − 1

6 ln t− 2ζ′(−1)− 1
6 ln (2π). Finally, the residues at the

zeta-zeros are accumulated by the sum

∑

r

t−rΓ(r)ζ(r + 1)ζ(r − 1) = g(t), (6)

where r runs over the non-trivial zeta-zeros . In this way we obtain

lnS(e−t) =
6ζ(3)

π2t2
+ g(t)− 1

6
ln t− 2ζ′(−1)− 1

6
ln (2π)

− 1

2πi

∫ −c1+i∞

−c1−i∞
t−sΓ(s)ζ(s+ 1)

ζ(s− 1)

ζ(s)
ds.

To estimate the last integral we use the following bounds for the zeta and
gamma functions: ζ(1− c1+ iy) ≪| y |c1/2 ln | y |, ζ(−c1 − 1+ iy) ≪| y |−1/2−c1

ln | y |,Γ(−c1 + iy) ≪| y |−c1−1/2 e−π|y|/2, | y |≥ y0 > 0 (see e.g. [16], p. 25 and
p. 492). Finally, we estimate 1/ζ(s) using the well-known representation

ζ(s) = χ(s)ζ(1 − s), χ(s) = (2π)s/(2Γ(s) cos (πs/2)). (7)

(see [16, p. 9]). For s = −c1± | y |, Stirling’s formula implies that | χ(−c1± | y |
) |= (| y | /(2π))c1+1/2(1+O(1/ | y |), | y |≥ y0 > 0. Moreover, | ζ(1− (−c1+ i |
y |) |=| ζ(1+ c1+ i | y |) |≥ (1− ǫ)ζ(1+ c1), 0 < ǫ < 1, by [16, Thm. 9.1, p. 235].
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This shows that 1/ζ(−c1 + iy) ≪| y |c1+1/2. Hence the integrand is absolutely
integrable and the integral tends to 0 as t→ 0+ since

1

2πi

∫ −c1+i∞

−c1−i∞
t−sΓ(s)ζ(s + 1)

ζ(s− 1)

ζ(s)
ds

≪ tc1
∫ ∞

0

e−π|y|/2 | y |−(c1+1)/2 ln2 | y |dy ≪ tc1 .

Thus, we finally obtain

lnS(e−t) =
6ζ(3)

π2t2
+ g(t)− 1

6
ln t− 2ζ′(−1)− 1

6
ln (2π) + o(1), t→ 0+. (8)

The proposition now follows after changing the variable t into 1− z and taking
exponents from both sides of (8).

We conclude the proof of Proposition 1 with an estimate for the function
g(t) as t → 0+. Using (7), one can easily check that

ζ(s− 1) =
ζ(2 − s)

2(2π)1−s sin (πs/2)Γ(s− 1)
(9)

We represent ζ(s) in the denominator of (5) using Hadamard’s factorization
theorem [20, p. 30-31] as follows:

ζ(s) =
ebs

2(s− 1)Γ(s/2 + 1)

∏

r

(

1− s

r

)

es/r, (10)

where b = 1
6 ln (2π)− 1−C/2 and C denotes Euler’s constant. We assume first

that the zero r = δ + iγ (0 ≤ δ ≤ 1) of ζ(s) is simple (i.e. in (16) mr = 1).
Combining (5), (9) and (10), we obtain

(s− r)F (s) =
t−ss2(1− s)Γ(s/2)ζ(s+ 1)ζ(2 − s)e−bs

2(2π)1−s sin (πs/2)
∏

k≥1,rk 6=r(1− s/rk)es/rk
. (11)

In the last formula we assume that the complex zeros rk = δk + iγk of ζ(s)
are arranged in a non-decreasing order of the absolute values of their imaginary
parts | γk |; if some absolute values coincide the order between them is taken
arbitrarily. Clearly, 0 ≤ δk ≤ 1, k = 1, 2, .... We shall study the behavior of
(s − r)F (s) in a neighborhood of s = r, say, {s :| s − r |< ǫ}, where ǫ > 0 is
small enough. Let us take now a positive number T that satisfies the inequality
T + 1/K1 lnT <| γ |, where K1 > 0 will be specified later. Further on, by
K1,K2, ... we shall denote some positive constants. We represent the product
in the denominator of (11) in the following way:

∏

k≥1,rk 6=r

(1− s/rk)e
s/rk = Π1(s)Π2(s),

where

Π1(s) =
∏

rk 6=r,T≤|γk|<T+1

(1−s/rk)es/rk , Π2(s) =
∏

rk 6=r,|γk|/∈[T,T+1)

(1−s/rk)es/rk .
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It is now clear that (11) can be represented as follows:

(s− r)F (s) =
ψ(s)

Π1(s)
, (12)

where

ψ(s) =
t−ss2(1 − s)Γ(s/2)ζ(s+ 1)ζ(2 − s)e−bs

2(2π)1−s sin (πs/2)Π2(s)
(13)

is analytic in a neighborhood of s = r. Hence lims→r ψ(s) = ψ(r). To estimate
ψ(r) we first notice that ζ(s) has no zeros with real parts equal to 0 or 1 (see
[20, p. 49]). Hence both ℜ(r + 1),ℜ(2− r) ∈ (1, 2) and by [16, Thm. 1.9, p. 25],

ζ(r + 1) ≪ ln | γ |, ζ(2 − r) ≪ ln | γ |.

Furthermore

1

| sin (πr/2) | ≪ e−π|γ|/2, Γ(r/2) ≪ e−π|γ|/4

and
t−r ≪ t−θ,

where θ is the least upper bound for the real parts of the zeta-zeros. Finally,
1/ | Π2(r) | is bounded away from 0 since the product over those rk satisfying
| γk |≤ T has no zeros in the disc {s :| s − r |< ǫ} if ǫ is enough small and
the other factors for which | γk |> T + 1 are geometric progressions with ratios
equal to | r/rk |< 1. Combining these estimates with (13), for | s − r |< ǫ, we
obtain

| ψ(s) |≪ t−θ | γ |3 ln2 | γ |e−3π|γ|/4. (14)

Finally, we have to estimate lims→r 1/ | Π1(s) |. We shall use some basic facts
from the theory of the distribution of the zeta-zeros in the critical strip. First,
we apply the known fact telling us that, for enough large T , the number of the
zeta zeros with absolute values of their imaginary parts laying in the interval
[T, T + 1) is at most O(ln T ) (see [20, p. 211]). Let K1 be the constant in this
O-estimate. We also use an estimate for the average spacings of two successive
zeros of ζ(s) in a neighborhood of r = δ+iγ. It is ∼ 2π/ ln | γk | ∼ 2π ln | γ | (see
[20, pp. 214, 246]). Finally, it is clear that | rk |=| δk + iγk |= O(T ) = O(| γ |),
for 0 ≤ δ, δk ≤ 1 and T ≤ γ, γk < T + 1 whenever T is enough large. Therefore,
we have

| lim
s→r

Π1(s) |=
∏

rk 6=r,T≤|γk|<T+1

| 1− r

rk
| eℜ(r−rk) ≥ K2

∏

rk 6=r,T≤|γk|<T+1

| r − rk |
| rk |

≥ K3

(

2π

ln | γ |

)K1 lnT

T−K1 lnT ≥ K4

(

π

| γ | ln | γ |

)K1 ln |γ|
≥ K5e

−K6 ln2 |γ|.

Combining this estimate with (16) (where mr = 1) and (12)-(14), we obtain

| Ress=r(F (s) |≪ t−θ | γ |3 ln2 | γ | exp (ln2 | γ | − 3π | γ | /4)
≪ t−θe−K|γ|, K > 0. (15)

10
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Although all known zeros r of ζ(s) in the critical strip are simple (i.e. mr = 1),
it is not yet known whether this is in fact true. At present, there are only
estimates for mr (for recent results in this direction, see [15]). The simplest
and oldest estimate seems to be mr ≪ ln | γ | (see [20, p. 211]). The proof of
the fact that (15) is true whenever mr > 1 is technically more complicated. It
should follow the line of reasoning given above. One has to deal with a sum
containing mr = O(ln T ) summands, for r = δ + iγ, 0 ≤ δ ≤ 1, T ≤| γ |<
T +1. Each of these summands must contain after the differentiation the factor
((s − r)/t)mr−jt−s, j = 0, 1, ...,mr − 1. Since both s − r and t tend to 0, one
should to keep a balance in each summand, so that ((s − r)/t)mr−j ≪ 1. For
the remaining factors in each summand, estimates similar to those presented
above seem to be true. In this way (15) can be established.

To obtain the final estimate for g(t), we need to use the bound [20, p. 211]
∑

r=δ+iγ,T≤|γ|<T+1

1 ≪ lnT.

Hence, by (4),

g(t) ≪
∑

r=δ+iγ

e−K|γ|/2t−θ ≪ t−θ.

Remark 2.3. Note that

Ress=r(F (s)) =
1

(mr − 1)!
lim
s→r

dmr−1

dsmr−1
((s− r)mrF (s)), (16)

where mr denotes the multiplicity of the zeta zero r.

Remark 2.4. Let θ denote the least upper bound of the real parts of non-trivial
zeros of the Riemann zeta function (θ = 1/2 if Riemann hypothesis is true).
We also proved that the function g(t) defined above satisfies g(t) = O(t−θ) as
t→ 0.

As a by-product, the equivalence in Proposition 1 allows us to calculate,
using technical approach [13] following saddle point methods, the asymptotic
growth of the number of NW-convex paths of size n:

Proposition 2.5. For the number pNW (n) of NW-convex paths of size n, we
have

pNW (n) ∼ αn−11/18 exp

(

βn2/3 + g

(

(

12ζ(3)

nπ2

)1/3
))

,

with g(t) =
∑

r t
−rΓ(r)ζ(r + 1)ζ(r − 1) where r runs over the non-trivial zeros

of the Riemann zeta function and

α =
1

6

25/9e
(5/2) ζ(3)−2 ζ′(−1)π2

π2 9
√

ζ (3)3
11
18

π
8
9

∼ 0.3338488807...
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and β =
3

22/3

(

ζ(3)

ζ(2)

)1/3

=
2−1/334/3ζ(3)1/3

π2/3
∼ 1.702263426...

Proof. The function S(z) can be analyze exactly in the same vein that the
generating function of integer partitions (see. [14, p574-578]). This explains
that we can use saddle point analysis on the approximation of S(z) to obtain
the asymptotics of pNW (n). The aim of the proof is to verify the H-admissibility
of the function S(z). After that, the calculations are standard and the result
ensues.

So, let xn = 1−
(

12ζ(3)
π2n

)1/3

be the root of the saddle point equation and let

tn = − lnxn ∼
(

12ζ(3)
π2n

)1/3

(i.e., xn = e−tn). We shall prove the following decay

property:
| S(xneiθ) |= o(S(xn)/

√

b(xn)), n→ ∞, (17)

uniformly for tn ≤| θ |< π.
First we notice that

| S(e−tn+iθ) |
S(e−tn)

= exp (ℜ(lnS(e−tn+iθ))− lnS(e−tn)). (18)

(Here ln (.) denotes the main branch of the logarithmic function, so that ln y < 0
if 0 < y < 1.) Then, setting θ = 2πu, for tn/2π ≤| θ | /2π =| u |< 1/2, we have

ℜ(lnS(e−tn+iθ)− lnS(e−tn)) =

= ℜ
(

−
∞
∑

k=1

ϕ(k) ln

(

1− e−ktn+2πiuk

1− e−ktn

)

)

= −1

2

∞
∑

k=1

ϕ(k) ln

(

1− 2ektn cos (2πuk) + e−ktn

(1− ektn)2

)

= −1

2

∞
∑

k=1

ϕ(k) ln

(

1 +
4ektn sin2 (πuk)

(1− ektn)2

)

≤ −1

2

∞
∑

k=1

ϕ(k) ln (1 + 4ektn sin2 (πuk))

≤ − ln 5

2

∞
∑

k=1

ϕ(k)e−ktn sin2 (πuk) = − ln 5

2
Un, (19)

where the last inequality follows from the fact that ln (1 + y) ≥ ln 5
4 for 0 ≤ y ≤

4. Further, we shall obtain a bound from below for the sum

Un =

∞
∑

k=1

ϕ(k)e−ktn sin2 (πuk). (20)
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We also denote by {d} the fractional part of the real number d, and by ‖ d ‖
the distance from d to the nearest integer, so that

‖ d ‖=
{

{d} if {d} ≤ 1/2,
1− {d} if {d} > 1/2.

It is not difficult to show that

sin2 (πd) ≥ 4 ‖ d ‖2 (21)

We notice that ‖ uk ‖= uk if | u | k < 1/2, that is, if k < 1/2 | u |≤ π/tn.
Hence, applying (21), the inequality | u |≥ tn/2π and the fact that ϕ(k) ≥
c0k/ ln ln k for k ≥ 3 (this fact is due to Landau), we obtain

Un ≥ 4

∞
∑

k=1

ϕ(k)e−ktn ‖ uk ‖2

≥ 4u2
∑

1≤k≤π/tn

k2ϕ(k)ektn ≥ t2n
π2

∑

3≤k≤π/tn

k2
(

c0
k

ln ln k

)

ektn

≥ c0t
2
n

ln ln (π/tn)
t−4
n

∫ π

0

y3e−ydy ≥ c1
t−2
n

ln | ln tn | . (22)

Here c0 and c1 are positive constants. Replacing (19), (20) and (22) into (18)
and taking into account the asymptotic equivalence for tn, we get

| S(xneiθ) |= O(S(xn) exp (−c3n2/3/ ln lnn)).

This implies immediately (17) since
√

b(xn) is of order const.n
2/3 - much smaller

than the exponential one given above.

Remark 2.6. The contribution of g

(

(

12ζ(3)
nπ2

)1/3
)

is a fluctuation of very small

amplitude as it is classically observe in similar analysis. In particular, this
contribution is imperceptible on the first 1000 coefficients.

Now, we focus on the study of the average number of initial vertical steps
(which corresponds to the size of the first block of 1 in its associated word) in
a NW-convex path.

Lemma 2.7. The average number of initial steps is equivalent to
3√
18π2n

6 3
√

ζ(3)
.

Proof. A classical way to tackle this type of problem is to mark by a new
parameter the contribution of initial steps in the generating function. So, we

have the following bivariate generation function S(z, u) = (1 − zu)−1
∞
∏

n=2
(1 −

zn)−ϕ(n) where clearly, the coefficient [znuk]S(z, u) is the number of NW-convex
path of size n having exactly k initial vertical steps. Now, the average number
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of initial steps for the NW-convex path of size n is just
[zn]

∂S(z, u)

∂u
|u=1

[zn]S(z, 1)
. So,

we need to extract the asymptotic of G(z) :=
∂S(z, u)

∂u
|u=1 =

z

(1− z)2

∞
∏

n=2
(1−

zn)−ϕ(n). Again, we proceed by a Mellin transform approach and we get that:

M[ln(G(e−t))](s) =
ζ (s+ 1) (ζ (s− 1) + ζ (s))Γ (s)

ζ (s)

So, G(z) ∼
exp

(

6zζ(3)

π2(1−z)2

)

(2π(1− z)7)
1
6

· exp
(

g(1− z) + ζ (3)

2π2
− 2 ζ′ (−1)

)

. Finally, using

saddle point analysis and dividing by the asymptotic of pNW (n), we obtain
lemma 2.7.

In particular, if we renormalize the NW-convex path by 1/n, the contribution
of the initial steps for the limit shape is null.

Now, we are interested in the average position of the terminating point of a
random NW-convex path. If we consider NW-convex path without their initial
vertical steps, then by symmetry, we can conclude that the average ending
position is (xn ∼ n

2 , yn ∼ n
2 ). But by lemma 2.7 and the fact that the length of

the renormalized initial vertical steps is o(1), it follows that:

Lemma 2.8. The average position of the ending point of a random NW-convex
path of size n is (xn ∼ n

2 , yn ∼ n
2 ).

Following the same approach, with a little more work, we can prove that:

Proposition 2.9. The average abscissa of the point of slope x in a renormalized

by 1/n NW-convex path of size n is
1

2

(

1−
(

x

1 + x

)2
)

.

Proof. From lemma 2.8 we deduce:

∂(1− zv)S(z, h, v)

∂h
|h=1,v=1 =

z

2

∂(1− zv)S(z, h, v)

∂z
|h=1,v=1,

Additionally, expanding of the derivative, we have

∂(1− zv)S(z, h, v)

∂h
|h=1,v=1 = (1− zv)S(z, h, v)|h=1,v=1

∞
∑

n=2

∑

p+q=n,p∧q=1

pzn

1− zn
.

So, we deduce from this the following technical lemma which will be useful
in the sequel:
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Lemma 2.10. The following identity holds:

∞
∑

n=2

zn

1− zn

∑

p+q=n,p∧q=1

p =

∞
∑

n=2

nϕ(n)zn

2(1− zn)
=
z

2

∂(1− zv)S(z, h, v)

∂h
|h=1,v=1

(1− zv)S(z, h, v)|h=1,v=1
.

Let us continue with the average position of the point of slope x for 0 ≤
x < ∞. The position of the ending point, previously done, is a special case of
this question (where x = 0). For that purpose, let us consider the generating
function

Fx(z, u) = (1−z)−1
∞
∏

n=2

∏

p+q=n,p∧q=1, qp>x

(1−znup)−1
∏

p+q=n,p∧q=1, qp≤x

(1−zn)−1.

The average abscissa of the point of slope x in a NW-convex path of size n is

nothing but the expectation
[zn]

∂Fx(z, u)

∂u
|u=1

[zn]Fx(z, 1)
. Expanding the derivative, we

get:

∂Fx(z, u)

∂u
|u=1 = Fx(z, u)|u=1

∞
∑

n=2

zn

1− zn

∑

p+q=n,p∧q=1, qp>x

p.

Now, we need the following short number theory lemma:

Lemma 2.11. The following equivalence holds for every fixed x ∈ [0,∞[:

∑

p+q=n,p∧q=1, qp>x

p =
1

2

(

1−
(

x

1 + x

)2
)

nϕ(n)(1 + ε(n)) with ε(n) → 0 as n

tends to ∞.

The proof is quite immediate.
Finally, using the lemma 2.10, we get proposition 2.9.

At this stage, to prove that the limit shape is deterministic, we need to show
that the standard deviation of the abscissa is in o(n). This proof is long and tech-
nical, but follows the same way that we do for the expectation. We conclude by

solving the differential equation:

{

f (0) = 0, 2f (z) = 1− ( d
dz f(z))

2

(1+ d
dz f(z))

2

}

which

explains the fact that the slope of f(z) is x at the abscissa
1

2

(

1−
(

x

1 + x

)2
)

.

Consequently, we have:

Theorem 2.12. The limit shape for the renormalized by 1/n NW-convex path
of size n as n tends to the infinity is the curve of equation f(z) =

√
2z − z.
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3 Boltzmann samplers for NW-convex paths

Boltzmann samplers have been introduced in 2004 by Duchon et al. [11] as
a general framework to generate uniformly at random specifiable combinato-
rial structures. These samplers are very efficient, their expected complexity is
typically linear. In comparison with the recursive method of sampling, the prin-
ciple of Boltzmann samplers essentially deals with evaluations of the generating
function of the structures, and avoids counting coefficient (which need to be
pre-computed in the recursive method). Quite a few papers have been written
to extend and optimize Boltzmann samplers [19, 3, 6, 5, 7, 2, 4].

Consequently, we choose Boltzmann sampling for the class of digitally convex
polyominoes. After a short introduction to the method, we analyze the com-
plexity of the sampler. This part is based on an analysis by Mellin transform
techniques.

3.1 A short introduction to Boltzmann samplers

Let us recall the definitions and the main ideas of Boltzmann sampling.

Definition 3.1. Let A be a combinatorial class and A(x) its ordinary generating
function. A (free) Boltzmann sampler with parameter x for the class A is a
random algorithm ΓxA that draws each object γ ∈ A with probability:

Px(γ) =
x|γ|

A(x)
.

Notice that this definition is consistent only if x is a positive real number taken
within the disk of convergence of the series A(x).

The great advantage of choosing the Boltzmann distribution for the output
size is to allow simple and automatic rules to design Boltzmann samplers from
a specification of the class.

Note that from free Boltzmann samplers, we easily define two variants: the
exact-size Boltzmann sampler and the approximate-size one, just by rejecting
the inappropriate outputs until we obtain respectively a targeted size or a tar-
geted interval of type [(1 − ε)n, (1 + ε)n]. In order to optimize this rejection
phase, it is crucial to tune efficiently the parameter x. A good choice is generally
to take the unique positive real solution xn (or an approximation of it when n

tends to infinity) of the equation
xA′(x)

A(x)
= n which means that the expected

size of the output tuned by xn equals n.
To conclude, let us recall that authors of the seminal paper [11] distinguished

a special case where Boltzmann samplers are particularly efficient (and we prove
in the sequel, that we are in this situation). This case arises when the Boltzmann
distribution of the output is bumpy, that is to say, when the following conditions
are satisfied:

• µ1(x) → ∞ when x→ ρ−
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• σ(x)/µ1(x) → 0 when x→ ρ−,

where µ1(x) (resp. σ
2(x)) is the expected size (resp. the variance) of the output,

and ρ is the dominant singularity of A(x).

3.2 The class of the digitally convex polyominoes

Let us recall that the digitally convex polyominoes can be decomposed into
four NW-convex paths, each of them being a multiset of discrete irreducible
segments. Moreover, according to the previous section, we have a specification
for the discrete irreducible segments in terms of word theory. This brings us the
generating function associated to a NW-convex path:

S(z) =
∞
∏

n=1

(1− zn)−ϕ(n),

where ϕ(n) designs the Euler’s totient function.
The first question that occurs concerns the determination of the parameter

xn which is a central point for the tuning of the sampler. In order to approximate
xn as n tends to infinity, we need to apply the asymptotic of S(z) as z → 1, we
already calculate for the asymptotic of the NW-convex paths.

3.3 The Boltzmann distribution of the NW-convex paths

The first step to analyze the complexity of exact- and approximate-size Boltz-
mann sampler is to characterize the type of the Boltzmann distribution. In this
subsection we prove that the Boltzmann distribution is bumpy. This ensures
that we only need on average a constant number of trials to draw an object of
approximate-size. Moreover, a precise analysis allows us to give the complexity
of the exact-size sampling.

Firstly, we derive from the equivalence of S(z) close to its dominant singu-
larity ρ = 1, an expression for the tuning of the Boltzmann parameter:

Corollary 3.2. A good choice for the Boltzmann parameter xn in order to draw

a large NW-convex paths of size n is xn = 1− 3

√

12ζ (3)

nπ2
.

Proof. The expected size of the output is
xS′(x)

S(x)
which is an increasing function

in x. Using the equivalent of S(x) when x tends to 1, we can approximate the

first member of the equation
xS′(x)

S(x)
= n to obtain

12ζ (3)

(1− x)
3
π2

= n. The result

ensues immediately.

So, the first condition for the bumpy distribution is clearly verified. We now
focus our attention on the fraction σ(x)/µ1(x).

17
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Lemma 3.3. The expected size of the Boltzmann output satisfies:

µ1(x) ∼
12ζ (3)

(1− x)
3
π2

as x tends to 1.

The variance of the size of the Boltzmann output satisfies:

σ(x) ∼ 6
√

ζ (3)x

π(1− x)
2 as x tends to 1.

So, the Boltzmann distribution of the NW-convex paths is bumpy.

Finally, we describe the sampler for digitally convex polyominoes. This needs
some care during the stage when we glue the NW-convex paths together.

3.4 Random sampler to draw Christoffel primitive words

We now look more precisely how to implement the samplers. Firstly, we address
the question of drawing two coprime integers which is non-classical in Boltzmann
sampling, from which we derive a Boltzmann sampler for NW-convex paths.
The first step to generate NW-convex paths is to draw Christoffel primitive
words with Boltzmann probability. We recall that this is equivalent to draw

two coprime integers p, q with probability xp+q
∑

n≥1 ϕ(n)xn .

Let b(x, n) :=
ϕ(n)xn

∞
∑

n=1
ϕ(n)xn

. The following algorithm is an elementary way to

answer the question posed above:

Algorithm 1: ΓCP

Input: a parameter x
Output: Two coprime integers
Draw n with Boltzmann probability b(x, n)1

Do Draw p uniformly in {1, ..., n}2

While p, n not coprime3

return (p, n− p)4

The average complexity of the algorithm is in O(n ln ln(n)).

3.4.1 Correctness

p∧n = 1 ⇔ p∧n− p = 1, so drawing p coprime with n uniformly in {1, .., n} is
equivalent to draw uniformly p, q coprime with p+ q = n. With the choice of n

with the probability ϕ(n)xn

∞∑

n=1
ϕ(n)xn

, we obtain a Boltzmann sampler for Christoffel

primitive words.
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3.4.2 Complexity

To evaluate the complexity of this sampler there are two steps of the algorithm
that should be analyzed: the drawing of n with probability b(x, n) and the
drawing of two coprime numbers. The drawing of n is essentially related to the
generating function evaluation and to ϕ(k) for all k ≤ n. In the following, we
consider that both the generating function and a table for large enough ϕ(n)
are to be precomputed. So, the complexity of the drawing of n is in O(n).
Experimentally, the precomputation takes a couple of minutes on a standard
personal computer. Now let us evaluate the complexity of drawing the coprime
numbers. The probability for p to be taken uniformly from {1, .., n} being also
coprime with n is ϕ(n)/n and the following classical inequality [1, Thm 8.8.7]
on totient’s function:
ϕ(n)

n
>

1

eγ log log(n) +
3

ln ln(n)

(valid for all positive integers n) proves that on

average the number of trials in the loop is O(log log(n)).

Remark 3.4. In fact, we can expect a better complexity. Indeed, with Boltz-
mann probability, we have better chance to draw an integer n such that ϕ(n) is
close to n and in this case the probability to draw a coprime p is positive.

3.5 Random sampler drawing a NW-convex path

To draw a NW-convex path, we use the isomorphism between NW-convex paths
and multisets of Christoffel primitive words. The multiset is a classical construc-
tor, for which its Boltzmann sampler in the unlabelled case had been given in
[12]. The idea is to draw with an appropriate distribution (called IndexMax
distribution) an integer M , and then draw a random number of Christoffel
primitive words with a Boltzmann sampler of parameter xi and to replicate
each drawn object i times, for all 1 ≤ i ≤M . Well chosen probabilities ensures
the Boltzmann distribution.

Once we get a multiset of pairs of coprime integers, we can transform it into
a NW-convex path coded on {0, 1} as follows:

• Draw a multiset m in MSet(PC),

• Sort the elements (p, q) of m in decreasing order according to q/p,

• Transform each element into the discrete line of slope q/p coded on {0, 1},

• add a 1 at the beginning.

Clearly, this transformation has a complexity in O(n ln(n)), due to the sorting.
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3.6 Complexity of sampling a NW-convex path in approx-

imate and exact size

The previous sections bring all needed elements to determine the complexity
of the Boltzmann sampler for a NW-convex path. The two following theorems
respectively tackle the complexity of the sampling in the case of approximate-
size output or exact size output.

Theorem 3.5. An approximate-size Boltzmann sampler for NW-convex paths
succeeds in one trial with probability tending to 1 as n tends to infinity. The
overall cost of approximate-size sampling is O(n ln(n)) on average.

Theorem 3.6. An exact-size Boltzmann sampler for NW-convex paths suc-

ceeds in mean number of trials tending to κ · n2/3 with κ =
6
√
2 3
√
3π5/6

6
√

ζ (3)
≈

4.075517917... as n tends to infinity. The overall cost of exact-size sampling is
O(n5/3 ln(ln(n))) on average.

Remark 3.7. Since ϕ(n) grows slowly, the parameter xn tuned to draw large
objects will be close to 1, which gives big replication orders. A consequence is
that we do not need to calculate the generating function of primitive Christoffel
words to a huge order to have a good approximation of our probabilities.

3.7 Random sampler drawing digitally convex polyomi-

noes

We can now sample independent NW-convex paths with Boltzmann probabil-
ity. We want to obtain an entire polyomino by gluing four (rotated) NW-convex
path.
However, gluing a 4-tuple of NW-convex paths, we do not necessarily obtain
the contour of a polyomino. Indeed, we need the following extra conditions: the
four NW-convex paths should be non-crossing, and they need to form a closed
walk with no half-turn.

Algorithm 2: ΓP

Input: a parameter x
Output: a quadruple of compatible NW-convex paths.
Repeat:1

Draw WN, NE, ES, SW using independent calls to a Boltzmann2

sampler of
NW-convex path of parameter x.3

If |WN |0 + |NE|1 = |ES|0 + |SW |1 and4

|NE|0 + |ES|1 = |SW |0 + |WN |1
then return (WN,NE,ES, SW )5
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The non-crossing and no half-turn conditions are trivially satisfied when the
four paths are NW-convex. Then the closing problem stays and we need to add
a rejection phase at this step. More precisely, to be closed, we need to have
as much horizontal steps in the upper part from W to E as in the lower part
from E to W, and as much vertical steps in the left part from S to N as in the
right part from N to S. A naive way to sample DCP according to a Boltzmann
distribution is presented in Algorithm 2. A more efficient uniform sampler can
probably be adapted from [2] and is currently under development.

Figure 4: To the left, a random polyomino of perimeter 81109 drawn with
parameter x = 0.98. To the right perimeter distribution of a NW-convex path
drawn with x = 0.8908086616.

Conclusion

We proposed in this paper an effective way to draw uniformly at random digitally
convex polyominoes. Our approach is based on Boltzmann generators which
allows us to build large digitally convex polyomioes. These samples point out
the fact that random digitally convex polyominoes admit a limit shape as their
size tends to infinity. The limit shape of the NW-convex paths we proved in
this paper seems to be also the limit shape for NW part of the digitally convex
polyominoes. The tools to tackle it are for the moment beyond our reach. Even,
the simpler question of a precise asymptotic enumeration of the digitally convex
polyominoes (the order of magnitude is proven [17]) is currently a challenge.
We conclude by noting that our work could certainly be extended to higher
dimensions. But, this is a work ahead...
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