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Exponential stabilization of switched-reluctance motors
via speed-sensorless feedback∗

Antonio Loria Gerardo Espinosa–Pérez Erik Chumacero

Abstract

We solve the control problem of switched-reluctance motors without velocity measurements. Our controller is

composed of a loop in the mechanical dynamics which consists of a PI2D controller and a “tracking” controller

closing an inner loop with the stator currents dynamics. The PI2D controller consists in a linear proportional derivative

controller in which the measurement of velocities is replaced by approximate derivatives of angular position. Then

a double integrator is added, composed of an integral of the angular position errors and a second integral correction

term in function of the approximate derivative. We show global exponential stability and illustrate the performance

of our controller in numerical simulations.

Keywords: Switched-reluctance motor, PID control, nonlinear control.

I. INTRODUCTION

Switched-reluctance drives are typically very reliable and produce high torque at low speeds. This eliminates

the use of gear boxes and makes them a suitable candidate for direct-drive applications. Nonetheless, the price

paid for high performance is a technical difficulty –they are highly nonlinear electro-mechanical machines since

the generated torque is a nonlinear function of stator currents and rotor position, and the magnetic saturation is

required for its basic operation in order to maximize torque/mass radio.

In technological systems relying on electrical machines the necessity of eliminating the use of sensors for the

mechanical variables (position and/or speed) is of special interest. This problem which is well known as sensorless

control, is beyond the theoretical interest entailed by its difficulty –the requirement of not using mechanical sensors

has its roots both in practical limitations and economic factors. On one hand, mechanical sensors exhibit undesirable

behaviors in several scenarios such as high-noise sensitivity and reduced reliability. On the other, economic factors

cannot be overestimated –the operation and implementation of this type of measurement devices may drastically

increase the cost of a given setup.

There exist a large number of efficient heuristically-based and experimentally-validated control approaches to

reduce the number of mechanical sensors in the loop –see e.g., [1], [2], [3], [4], [5], [6], [7], [8]. However, to the

best of the authors knowledge, articles on control of switched-reluctance drives that include a rigorous stability

analysis, especially in a sensorless context, are rare. The main result in [9] establishes global asymptotic stability

for a passivity-based controller in the case of unknown load however, it uses both mechanical variables, angular

velocity and position measurements. A proportional-derivative-based controller is proposed in [10] but relying on
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the knowledge of the torque load. Other works on sensorless control and containing a theoretical analysis concern

different electrical machines such as the induction motor –see e.g., [11].

This paper is the outgrowth of [12], we exploit the physical characteristics of the nonlinear model of the switched-

reluctance machine. The control design relies on the ability to separate the machine model into its electrical and

mechanical components. Torque generation is achieved by following the “torque-sharing” approach of [10] with

the aim of reducing the ripple in the mechanical variables that appears due to the electric commutation. A first

control loop is designed to steer the stator currents to a desired “reference” that may be regarded as a virtual control

input for the mechanical dynamics. Then, an “outer” control-loop is designed including a controller of proportional-

integral-derivative type, probably the most often used in control practice. Specifically, we use the so-called PI2D

controller originally proposed in [13] for robot manipulators. The control law consists in a term proportional to the

angular position error, a term which is proportional to an approximate derivative of the angular position, and two

integrators: of angular position error and of the approximate derivative. We establish global exponential stability

of the origin of the closed-loop via Lyapunov’s direct method.

The rest of the paper is organized as follows. In the next section we present the motor model and explain the

sharing-functions implementation approach. In Section III we present our main result and in Section IV we present

a case-study in simulation, which reproduces a practically reasonable scenario. We close with some concluding

remarks in Section V.

II. THE MOTOR MODEL

It is well accepted that the three stator phases of a switched-reluctance motor may be assumed to be magnetically

decoupled i.e., the mutual inductance among stator phases is negligible. Under such hypothesis, a general three-phase

dynamic model is given by

ψ̇j(θ, i) +Rij = uj , j ∈ {1, 2, 3} (1a)

Jω̇ = Te(θ, i)− TL(θ, ω) (1b)

where for each phase j, uj is the voltage applied to the stator terminals, ij is the stator current and ψj is the

flux linkage. R and J are physical parameters; the former accounts for the stator winding resistance and the latter

denotes the total rotor inertia. The state variables are the angular velocity ω, and the angular rotor position θ, hence

ω = θ̇. The rotor dynamics is driven by the two inputs TL which is the load torque and Te which accounts for the

mechanical torque of electrical origin. Te depends both on the angular rotor position and on all the stator currents

i = [i1, i2, i3]>.

The flux linkage may be modeled in a number of ways as for instance the experimentally obtained and well-

assimilated structure proposed in [14],

ψj(θ, i) = ψs

(
1− e−ijfj(θ)

)
, ij ≥ 0 (2)

where ψs is the saturated flux linkage and fj which is known as the winding inductance, is strictly positive and

periodic. Although Equation (2) accounts for magnetic saturation it leads to the definition of a non-invertible map

for the generated torque i 7→ Te. Therefore, the inductance of each phase may be expressed as a strictly positive
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Fourier series truncated at the first harmonic, Lj(θ) –see [14], [9]; this implies that ψj(θ, i) = Lj(θ)ij where

Lj(θ) = l0 − l1 cos
(
Nrθ − (j − 1)

2π

3

)
,

l0 > l1 > 0 and Nr is the number of rotor poles. Then, the dynamic model of the motor may be expressed as

uj = Lj(θ)
dij
dt

+Kj(θ)ωij +Rij (3a)

Jω̇ = Te(θ, i)− TL(θ, ω) (3b)

where

Kj(θ) =
∂Lj
∂θ

= Nrl1 sin
(
Nrθ − (j − 1)

2π

3

)
corresponds to the phase-inductance variation relative to the rotor angular position. It is clear that

0 < lm ≤ |Lj(θ)| ≤ lM , |Kj(θ)| ≤ kM . (4)

for some positive constants lm, lM and kM .

Considering the decoupled behavior of stator windings, the mechanical torque Te corresponds to the sum of

torques Tj produced by each phase, that is

Te =

3∑
j=1

Tj , Tj =
1

2
Kj(θ)i

2
j . (5)

This model is adopted in both the electrical-machines and the control research communities –cf. [14].

The speed-less control problem for (3) is to design a dynamic controller with output u = [u1 u2 u3]> depending

on the stator currents and rotor angular positions, such that ω(t) tracks any bounded smooth desired trajectory ω∗.

Hence, the purpose is to avoid the use of speed sensors in the control scheme. This problem cannot be overestimated;

from a control design viewpoint it is a crucial step towards full-sensorless control while from an implementation

perspective, it eliminates the use of noisy velocity sensors. As mentioned in the introduction, speed-sensorless and

full-sensorless have been addressed before however, never from an automatic-control perspective that is, without

theoretical foundation.

III. SPEED-LESS MOTOR CONTROL

ROTORTe

−
+

STATOR

PI2D

CONTROL
iu

i∗

TL

Eq. (20)

Eqs. (12)

θ

ω

Fig. 1: Implementation of control scheme, composed of an outer rotor control loop and an inner stator control loop

The control approach consists in designing two controllers separately: the first closes an inner loop with the stator

dynamics and is implemented using the input voltages that is, the actual control inputs. An outer control law, to

ha
l-0

08
31

46
2,

 v
er

si
on

 1
 - 

7 
Ju

n 
20

13



4

drive the rotor dynamics, is implemented using the mechanical torque of electrical origin as a virtual control input.

The control implementation relies on the so-called sharing-torque technique –see Section III-A for a description

and see Figure 1 for an illustration.

A. Torque delivery

Generally speaking, the control design starts with a given desired reference ω∗. Then, a desired control input

Td is designed for the mechanical equation (3b) to steer ω → ω∗. The control Td must be implemented “through”

the mechanical torque Te that is, we define the reference mechanical torque T ∗e which satisfies

T ∗e (θ, i∗) =
1

2

(
K1(θ)i∗1

2 +K2(θ)i∗2
2 +K3(θ)i∗3

2
)

(6)

where i∗j is a current reference trajectory for each phase, which must be defined as a solution to

T ∗e
J

= Td (7)

for any given Td. That is, provided that Te = T ∗e the desired control torque JTd acts upon the mechanical equation

to drive ω → ω∗. By ensuring an accurate current tracking that is, i → i∗ it is guaranteed that Te → T ∗e and

consequently, that ω → ω∗.

In order to solve (6) for i∗j , we exploit the physics of the switched reluctance motor. Note that the torque sign

is only determined by the variation of the inductance that is, Tj > 0 if and only if Kj > 0 and Kj = 0 implies

that no torque is produced ‘through’ the phase j –see Equation (5). Then, using ideas reported in [14] and [10] we

introduce the following smooth current-switching policy. Define the sets

Θ+
j = {θ ∈ [−π, π] : Kj(θ) ≥ 0}

Θ−j = {θ ∈ [−π, π] : Kj(θ) < 0}

where the superscripts + and − stand for required positive and negative torques respectively. Accordingly, let us

introduce

m+
j (θ) > 0,

3∑
j=1

m+
j (θ) = 1 ∀θ ∈ Θ+,

m−j (θ) > 0,

3∑
j=1

m−j (θ) = 1 ∀θ ∈ Θ−

and given Td, define

mj(θ) =

{
m+
j (θ) if Td ≥ 0,

m−j (θ) if Td < 0.
(8)

Then, we define the reference currents for j ∈ {1, 2, 3} as

i∗j =


[

2Jmj(θ)Td
Kj(θ)

]1/2
if |Kj(θ)| 6= 0

0 otherwise.
(9)

The definition of mj(θ) ensures that i∗j exists for any θ and Td. That is, depending on the current phase of the

motor, the function mj(θ) ensures that the respective signs of the numerator and of the denominator in the previous

expression are equal for at least one j ∈ {1, 2, 3} and the denominator sin
(
θ− (j − 1)

2π

3

)
6= 0. Furthermore, for
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implementation purposes hysteresis is typically introduced in the definition of i∗j –see Eq. (9) to smoothly avoid the

singularity at the points θ in the neighbourhood of {Kj(θ) = 0}. In addition, it is imposed that m1 +m2 +m3 ≡ 1

so by construction,

Td = m1(θ)Td +m2(θ)Td +m3(θ)Td.

Thus, roughly speaking the virtual control Td is induced into the mechanical dynamics through a different

reference, depending on the current phase. The transition is ensured by a proper definition of the functions mj –cf.

[9]. See also Section IV for a case-study.

B. Control of the rotor dynamics

The rotor controller that produces Td is of the proportional-integral-derivative type, possibly the most popular

controller in practice. It is reminiscent of the Proportional-Derivative-plus-load-compensation controller presented

in [14] where the sharing-functions approach was proposed. However, we relax the assumption that the torque-load

is known and that velocity is measured. Our main result extends previous work using both mechanical velocity and

position measurements as in [9] as well as [10]. In contrast with available sensorless ad hoc controllers proposed

without theoretical foundation, we establish global exponential stability hence robustness with respect to external

disturbances, neglected dynamics, etc.

For control purposes, we view the rotor dynamics equation (1b), as a drift-less system perturbed by the input

TL. Its complexity comes from the fact that it is non-affine in the (virtual control) inputs i; such difficulty is

overcome by using the torque-sharing technique described previously. Then, for a given reference ω∗ and defining

eω = ω − ω∗, Equation (3b) may be equivalently written as

ėω = Td −
TL
J

+
Te
J
− T ∗e

J
− ω̇∗ (10)

and the control problem comes to designing a control law Td to stabilize the origin {eω = 0} of (10). Such controller

must compensate for the constant perturbation TL/J and be robust to the “disturbance” Te−T ∗e which vanishes by

design. The former is compensated for by integral action; the latter, which accounts for the difference between the

ideal mechanical torque T ∗e /J that stabilizes the system and the actual mechanical torque which depends on the

stator currents, vanishes provided that the external control loop achieves current tracking. Indeed, this difference

satisfies

|Te − T ∗e | ≤
kM
2

[
|ei|2 + 2 |i∗| |ei|

]
, (11)

since Te and T ∗e are quadratic functions uniformly bounded in θ.

For the rotor control law Td, we chose to use the PI2D controller introduced in [13] for robot manipulators.

Its name comes from the fact that it corresponds to a modified PID controller; it consists in a correction term

proportional to the tracking errors eθ, a ‘derivative’ term proportional to filtered velocities ϑ and a double integral

action, both on eθ and ϑ. The choice of this controller is motivated by its mathematical simplicity and its physical

properties: it is a linear controller which conserves the passivity properties of Lagrangian systems and ensures

asymptotic stability, provided a property of detectability holds –see [15].
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∫

ROTOR
Td

eθ

ϑ

PASSIVE
BLOCK

ε

kd

+

−

ε

−+

+ −

+
eω

bs

s+ a

s

TL/J

z − ki
ε

+

−
TL/J

k′p

Fig. 2: For analysis purpose note that the rotor dynamics in closed loop forms a passive systems interconnection.

The control implementation is illustrated in Figure 1.

The PI2D controller for the rotor dynamics is defined by

Td = −kpeθ − kdϑ+ ν + ω̇∗ (12a)

ν̇ = −ki(eθ − ϑ) (12b)

q̇c = −a(qc + beθ) (12c)

ϑ = qc + beθ (12d)

where kp, ki, kd, a, b are positive constants and we use the tracking errors eω = ω − ω∗ and eθ = θ − θ∗ where

θ∗(t) =

∫ t

0

ω∗(s)ds, θ∗(0) = θ∗0 ∈ [−π, π].

Note that since the variable to be controlled is ω, the initial value of θ∗(t) is innocuous. As usual, the integral gain

ki is chosen ‘small’ consequently, the estimation error of the load torque ν̃ converges slowly to zero; this is not a

drawback since the variable of interest is the angular velocity ω.

The last two equations in (12) correspond to the well-known and widely used ‘dirty derivatives’ or ‘approximate

differentiation’. The nicknames come from the observation that they are equivalent to

ϑ =
b

s+ a
eω

where s is the Laplace variable. That is, ϑ is not an estimate of the velocities eω but a filtered version of it. In the

limit case, when the pole is at −∞, ϑ = eω modulo the DC gain b/a.

One of the most attractive features of the controller (12) is that as for robot manipulators –see [15], the system

(10) in closed loop with (12) may be regarded as the feedback interconnection of two passive systems; see Figure

2. The first passive block (shadowed in the figure) is defined by the map z 7→ ε[eθ − ϑ] + eω where

z = ν − TL
J
− ki

ε
eθ (13)

and ε > ki is a small positive parameter. The second passive block is a simple integrator.

ha
l-0

08
31

46
2,

 v
er

si
on

 1
 - 

7 
Ju

n 
20

13



7

The rotor closed-loop dynamics, which corresponds to the feedback interconnection showed in Figure 2 is obtained

by substituting (12a) and (13) into (10) and by differentiating on both sides of (12d) and (13), to obtain

ėθ = eω (14a)

ėω = −kdϑ− k′peθ + z +
1

J

(
Te − T ∗e

)
(14b)

ϑ̇ = −aϑ+ beω (14c)

ż = −ki(eθ − ϑ)− ki
ε
eω (14d)

where k′p := kp−ki/ε, ki ≤ ε. Note that we have added the input
(
Te−T ∗e

)
that comes from the stator dynamics

although this is not represented in Figure 2. This input vanishes provided that the stator controller performs a

perfect current tracking; this is better seen from the structure of (14) which may be rewritten in the clearer form
ėθ

ėω

ϑ̇

ż

 =


0 1 0 0

−k′p 0 −kd 1

0 b −a 0

−ki −ki/ε ki 0


︸ ︷︷ ︸

A


eθ

eω

ϑ

z


︸ ︷︷ ︸
ζ1

+


0

1/J

0

0


︸ ︷︷ ︸
B

(
Te − T ∗e

)
.

Note that the only nonlinearity corresponds to the additive input term
(
Te − T ∗e

)
and on the other hand, for

appropriate values of the control gains, one can render the matrix A Hurwitz. Therefore, the system may be made

input to state stable with respect to the input
(
Te− T ∗e

)
and asymptotic stability follows if Te− T ∗e tends to zero;

this is the job of the stator controller, which we present next.

C. Control of the stator dynamics

The controller (12) stabilizes (the origin of) (10) exponentially, provided that perfect current tracking is achieved.

Therefore, an inner control loop is added to steer ei = i−i∗ to zero. This task may be achieved with the model-based

nonlinear tracking controller

u∗ = L(θ)
di∗

dt
+K(θ)ω∗i+Ri∗ − kpxei, kpx > 0 (15)

where for convenience, we introduced L(θ) = diag{Lj(θ)} and K(θ) = diag{Kj(θ)}.

The motivation to use this controller relies on the fact that it stabilizes the stator dynamics, robustly with respect

to additive disturbances. This may be clear from the expression of the closed-loop dynamics (3), (15) to which we

add an external input v, that is

ėi = L(θ)−1[−(R+ kpx)ei −K(θ)ieω] + v. (16)

To see that the origin of the ‘nominal’ system ėi = −L(θ)−1(R + kpx)ei is exponentially stable, it suffices to

invoke Lyapunov’s direct method with the Lyapunov function

V2(ei) =
1

2
|ei|2 ,

whose total time derivative along the trajectories of the nominal system yields

V̇2 = −(R+ kpx)e>i L
−1ei ≤ −

1

lM
(R+ kpx) |ei|2
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where for the last inequality, we used (4).

Exponential stability implies robustness with respect to disturbances, more precisely, local input to state stability.

To make this property global, we chose the control gain kpx as a function of the measured states. To that end, note

that ∣∣L(θ)−1[−K(θ)ieω]
∣∣ ≤ kM

lm

(
|eω| |i|

)
,

so the total derivative of V2 along the trajectories of the ‘perturbed’ system (16), yields

V̇2 ≤ −
(
R+ kpx
lM

− kM
2lm
|i|2
)
|ei|2 + v>ei +

kM
2lm

e2ω. (17)

Hence, it suffices to make kpx dependent on the measured stator currents i, to render the factor of |ei|2 negative.

Under this condition and in the case of perfect rotor velocity tracking (eω = 0), the map v 7→ ei is output strictly

passive. Note also that the system is input to state stable with respect to the input v + eω.

Although the control law (15) renders the stator dynamics robustly stable, note that the column vector
di∗

dt
=

d
dt [i
∗
1 i
∗
2 i
∗
3]> depends on Ṫd where Td is defined in (12a) hence, also on the unmeasurable error eω. That is,

di∗j
dt

=

{
αj [ρj + δjeω] if |Kj(θ)| 6= 0

0 otherwise.
(18)

where

αj =

(
2JmjTd
Kj

)− 1
2

, (19a)

ρj =
J

Kj

(
βj +m′jω

∗Td
)
, (19b)

βj = mj

(
kidϑ− kieθ + ω̈∗ −

TdK
′
jω
∗

Kj

)
, (19c)

δj =
J

Kj

(
m′jTd −mj

(
kpd +

TdK
′
j

Kj

))
, (19d)

kid = ki+akd, kpd = kp+ bkd, m′j =
∂mj

∂θ
and K ′j =

∂Kj

∂θ
. Since it is assumed that eω is not measured, only the

terms α =diag{αj} and ρ = [ρ1 , ρ2 , ρ3]> may be implemented in the control law. Therefore, we use the control

law

u = L(θ)αρ+K(θ)ω∗i+Ri∗ − kpxei (20)

which satisfies u = u∗−L(θ)αδeω where δ = [δ1 δ2 δ3]>. With this modification, the closed-loop dynamics takes

the form (16) with v = αδeω. Therefore, after (17) and the triangle inequality, the total derivative of V2 along the

closed-loop trajectories of (3a), (20) yields

V̇2 ≤ −
(
R+ kpx
lM

− kM
2lm
|i|2 − 1

2
|αδ|2

)
|ei|2 +

1

2

(
kM
lm

+ 1
)
|eω|2 (21)

that is, for an adequate choice of kpx the factor of |ei|2 is negative and the system is input to state stable with

respect to the input eω.
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D. Main result

We are ready to present our main result: global exponential stabilization of the switched-reluctance motor without

velocity measurements. The result relies on the fact that the rotor dynamics in closed-loop with the PI2D controller

is input to state stable with respect to the input ei while the stator dynamics in closed loop with the control law

(20) is input to state stable with respect to the input eω.

T ∗e

+
Te

ROTOR

PI2D

θ, i

u

eω , eθ

eω

∆

i∗

ISS SYSTEM

ISS SYSTEM

Td

TL

CONTROL

STATOR

−

Eqs. (12)

Eq. (20)

Fig. 3: Analysis: the closed-loop system consists in two ISS controlled sub-systems

Proposition 1: Consider the system (3) in closed loop with the controller (12), (19), (20). Let k′px, γ1 > 0,

λ ∈ (0, 1),

kd >
3b

b− 1

[
kM
lm

+ 1

]
, kd <

3a

2

λ

λ+ 1
(22)

b ≥ 2a+ 1, k′p > kd (23)

kpx := k′px +
lM
2

[
kM
lm
|i|2 + |αδ|2 +

γ1kM lm
2

(
|ei|2

µ2
+

4 |i∗|2

µ1

)]
. (24)

Then, the origin of the closed-loop system is globally exponentially stable.

The conditions of the proposition hold if the control gains are chosen as follows: 1) define c = kM/lm + 1 and

let kd ≈ 3c but satisfying kd > 3c; 2) pick λ ∈ (0, 1) and define k′p := kd/λ; 3) choose a such that the second

inequality in (22) holds; 4) define b such that b ≥ 2a+ 1 and verify that kd > 3bc/(b− 1); if necessary, redefine

kd so as to satisfy the latter.

The proof of Proposition 1 is based on Lyapunov’s direct method and the previous developments. Define ζ1 =

[eθ eω ϑ z]
> then we write (14) as ζ̇1 = Aζ1 + B(Te − T ∗e ). Let ε1 = ε > ki and ε2 be two “small” positive

numbers and consider the Lyapunov function V1(ζ1) = 1
2ζ
>
1 Pζ1 with

P =


k′p ε1 0 0

ε1 1 −ε1 −ε2
0 −ε1 kd/b 0

0 −ε2 0 ε1/ki

 .
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This matrix is diagonal dominant, hence positive definite, if

k′p > ε1, 1 > 2ε1 + ε2
kd
b
> ε1

ε1
ki
> ε2

which hold for sufficiently small ki, ε1 and ε2. Also, we have

−1

2
(A>P + PA) =

1

2


ε1k
′
p −ε2ki ε1(kd − k′p) 0

−ε2ki ε1(b− 1)− 2
ε2ki
ε1

ε2ki − ε1a 0

ε1(kd − k′p) ε2ki − ε1a kd

(
a

b
− ε1

)
0

0 0 0 ε2


︸ ︷︷ ︸

Q1

+

1

2


ε1k
′
p 0 0 −ε2k′p

0 ε1(b− 1) 0 0

0 0 kd

(
a

b
− ε1

)
−kdε2

−ε2k′p 0 −kdε2 ε2


︸ ︷︷ ︸

Q2

(25)

The matrix Q1 in (25) is positive definite if each element in its main diagonal is positive and the matrix is

diagonal dominant. This holds for small values of ε1 and ε2 and control gains satisfying (23). The matrix Q2

is positive semidefinite for sufficiently small values of ε1 and ε2; indeed, −ζ>1 Q2ζ1 ≤ −(1/2)ε1(b − 1)e2ω. See

Appendix VI-A for details. We conclude that

−1

2
(A>P + PA) = Q, Q = Q> > 0

and the total time derivative of V1(ζ1) yields

V̇1 = −ζ>1 Qζ1 + ζ>1 PB(Te − T ∗e ).

To prove input-to-state stability with input ei let qm be the smallest eigenvalue of Q1 and let γ1 ≥ |PB| then,

V̇1 ≤ −qm |ζ1|2 + γ1 |ζ1| |Te − T ∗e | .

Next, we use (11) to obtain

V̇1 ≤ −qm |ζ1|2 +
γ1kM

2
|ζ1|

[
|ei|2 + 2 |i∗| |ei|

]
+
γ1kM

4

[
4 |i∗|2 |ei|2

µ1
+ µ1 |ζ1|2

]
≤ −

[
qm −

γ1kM
4

(µ1 + µ2)
]
|ζ1|2 +

γ1kM
4

[
|ei|2

µ2
+

4 |i∗|2

µ1

]
|ei|2

and we see that for sufficiently small values of µ1 and µ2 the factor of − |ζ1|2 is positive, say actually not smaller

than qm/2. Thus, in view of (24) and −ζ>1 Q2ζ1 ≤ −(1/2)ε1(b− 1)e2ω,

V̇1 + V̇2 ≤ −
qm
2
|ζ1|2 −

[R+ k′px]

lM
|ei|2 −

1

2

[
ε1(b− 1)− kM

lm
− 1

]
e2ω (26)
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in which the factor of e2ω is positive for sufficiently large b. Moreover, in view of the positivity of P , for appropriate

(large) values of the control gains a, b, kp, kd, kpx and small values of ki, ε1 and ε2 there exist positive constants

q1, q2, q3 such that (see the appendix for details)

q1

(
|ei|2 + |ζ1|2

)
≤ V1(ζ1) + V2(ei) ≤ q2

(
|ei|2 + |ζ1|2

)
V̇1(ζ1) + V̇2(ei) ≤ −q3

(
|ei|2 + |ζ1|2

)
.

Global exponential stability of the origin follows.

IV. SIMULATION RESULTS

In the previous section we establish global exponential stability for the system in closed loop with the controller

(20). This is a strong stability property since it implies robustness with respect to perturbations with arbitrarily large

initial tracking errors. However, the theoretical contribution comes at the expense of high-order nonlinear gains

–see (24) which in turn, is likely to cause large control values u. Other causes of large voltage inputs are clear from

formula (20); notice that ω̇∗ is used in Td and ω̈∗ enters in u through the expression βj –see (19c). In addition to

this, the nature of the switched-reluctance motor which imposes the use of the sharing-torque technique, induces

discontinuous switches in the expression of i∗ –note that αj may be considerably large in the neighborhood of

{Kj(θ) = 0}.

Thus, in order to implement the controller (20) with reasonable control inputs some precautions must be taken.

Firstly, a smooth reference velocity is to be preferred even if stability is guaranteed for piecewise differentiable

reference trajectories. Hence, we mostly use a sequence of smoothened steps generated by

ω∗(t) = ω∗0 +

(
ω∗f − ω∗0

)
2

(
1 + tanh(t− T )

)
(27)

–see Figure 4 for an illustration and the definition of the different design parameters. Note that different reference

0

ω
f
*

ω
0
*

 ω*(t)

 t

T

Fig. 4: Generic velocity reference profile constructed using hyperbolic tangent function

signals can be constructed by changing the numerical values of ω∗0 , ω∗f , T and γ.

The functions mj , which ensure the proper commutation of the motor, are defined via (8) where

m+
j (θ) =



fj(qaj) 0 < qaj ≤
π

3Nr

1
π

3Nr
< qaj ≤

2π

3Nr

1− fj(qaj)
2π

3Nr
< qaj ≤

π

Nr
0 otherwise

(28)
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m−j (θ) =



fj(qaj)
π

Nr
< qaj ≤

4π

3Nr

1
4π

3Nr
< qaj ≤

5π

3Nr

1− fj(qaj)
5π

3Nr
< qaj ≤

2π

Nr
0 otherwise

(29)

and

qaj = mod
(
q,

2π

Nr

)
+ (j − 1)

2π

Nr
. (30)

Thirdly, it is customary to protect the motor to introduce input voltage saturation that is, using satδ(ui) in place

of ui where satδ(ui) = ui if |ui| < δ and satδ(ui) = δsgnui otherwise.

Under the previous conditions we used SIMULINKTMof MATLABTMto test the controller (15) on the nonlinear

model (1), (2) with parameters borrowed from [9] and [14]: R = 5, l0 = 0.030H , l1 = 0.020H , J = 0.001kg−m2,

ψs = 0.25Wb and Nr = 8.

The controller gains are set to kpx = 2000, a = 2580, b = 1900, kd = 5050, ki = 5e-4 and kp = 900. Based on

these values and the definitions of Kj(θ), Lj(θ), P and Q we have kM = 0.085, lm = 0.01, lM = 0.05, γ1 = 105

and qm = 1e-5 respectively then, the conditions for positive definiteness of P and Q are satisfied if µ1 = 3e-6,

µ2 = 1e-6, ε1 = 0.04 and ε2 = 1e-5.

For the sake of comparison, we present the results corresponding to two different runs of simulations: in the

first case the control inputs are implemented without saturation, in the second case we set the saturation level to

δ = 100. The reference velocity consists in a smooth step as described above.

The simulation results are presented in Figs. 5–10. In Figs. 5, 6 and 9 are depicted, respectively, the current, the

input voltages and the velocity tracking responses for the simulation test without input saturation. In Figs. 7, 8 and

10 we present the simulation results for the controller with an input saturation level of 100V. In both cases one

may appreciate the fairly good performance; note the almost perfect velocity tracking albeit the slight increase of

the response time, in the case that the inputs are saturated. Furthermore, the smaller plots in Figs. 5 and 7 show

a zoom on the currents to appreciate the switching mechanism with hysteresis, employed to implement the virtual

control input Td.

V. CONCLUDING REMARKS

We have presented the first controller guaranteeing global exponential stability for switched-reluctance motors

without velocity measurements. Our main result is a preliminary step towards the open problem of theoretically-

validated global sensorless control for switched-reluctance motors. Current research is being carried out in this

direction, in particular it focuses on the design of an angular-position observer to be implemented with a certainty-

equivalence controller. Other significant problems under study include control under parametric uncertainty and

control for the fully-nonlinear motor model (with inductances depending both on the angular position and the

currents).
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Fig. 5: Unsaturated controls: stator currents for the three

phases and references
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Fig. 6: Unsaturated controls: Input voltages
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Fig. 7: Saturated controls (at 100V): stator currents for

the three phases and references
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Fig. 8: Saturated controls (at 100V): Input voltages
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VI. APPENDIX

A. Positivity of Q

Positivity of Q1

Claim 1: Given k′p, kd, ki and a, b such that:

b ≥ 2a+ 1 k′p > kd (31)
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then ∃ ε1, ε2 > 0 s.t. Q1 ≥ 0

Proof of Claim 1. Let

λ =
kd
k′p
< 1, (32)

ε1 ≤ min
{

1,
kd
3b
,

aλ

2b(λ+ 1)

}
, (33)

λ2 :=
a

ε1b
(34)

and ε2 be such that

ε2
ε1
≤ 1

ki
min
{
α1, α2, α,α4

}
(35)

where α1 = kd, α2 =
(b− 1− 2a)

2
, α3 =

ε1a

2
and α4 =

ki
k′p

[
1 +

λ

λ2 − 1

]−1
.

Note that given a, b, k′p, ki and kd satisfying (31), the conditions (33) and (35) hold for sufficiently small values

of ε1 and ε2. Also note that λ2 > 1 since, in view of (33) we have a > bε1. We show that if (32)–(35) hold then

Q1 is diagonal dominant. It is so if the following hold

ε1 |λ− 1| k′p + ε2ki ≤ ε1k′p (36)

ε2ki + |ε2ki − ε1a| ≤ ε1(b− 1)− 2ε2ki
ε1

(37)

ε1k
′
p |λ− 1|+ ε2ki + ε1a ≤ λk′p

(
a

b
− ε1

)
(38)

Since λ < 1 (36) holds if

ε1k
′
p ≥ ε2ki + ε1(1− λ)k′p ⇔ ε1λk

′
p ≥ ε2ki

which is equivalent to
ε2
ε1
≤
λk′p
ki

(39)

which holds in view of (35) and (32).

Now, we show that (37) holds. Again, from (35) we have

ε2
ε1
≤ aε1

2ki
⇔ 2ε2ki ≤ ε21a (40)

hence, (37) holds if

ε1(b− 1)− ε1a ≥ 2ε2ki + ε1a

which is satisfied if

ε1(b− 1) ≥ 2(ε2ki + ε1a)

or equivalently if

b− 1− 2a ≥ 2ε2ki
ε1
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which in turn, holds in view of (35).

Finally, we show that inequality (38) holds. Indeed since λ < 1, (38) is implied by

λk′pa

b
≥ ε1k′p + ε2ki + ε1a+ λk′pε1

which holds if
λa

2b
≥ ε1(1 + λ) (41)

and
λk′pa

2b
≥ ε2ki + ε1a. (42)

Inequality (41) holds in view of (33) and since 2ε2ki ≤ ε21a. Inequality (42) holds if

λk′pa

2b
≥ ε1

(
aε1
2

+ a
)
⇔

λk′p
2b
≥
(
ε21
2

+ ε1

)
.

Since ε1 < 1, the latter holds if
λk′p
2b
≥ 3ε1

2
⇔ kd

3b
≥ ε1

which holds in view of (33).

Positivity of Q2

Define η := (1/2)ε1(b − 1) and Q′2 := diag{[0 η 0 0]} then, ζ>1 Q2ζ1 = ζ>1 [Q2 − Q′2]ζ1 + (1/2)ε1(b − 1)e2ω.

The Schur Complement of [Q2 −Q′2] is non-negative if

ε2 ≥

[
−ε2k′p
−kdε2

]> ε1k′p 0

0 kd
(a
b
− ε1

)
−1 [−ε2k′p

−kdε2

]

the latter is equivalent to

ε2 ≥
ε22k
′
p

ε1
+

ε22k
′
pλ(a

b
− ε1

) (43)

using λ2 :=
a

bε1
we see that (43) holds if

ε2 ≥
ε22k
′
p

ε1
+

ε22k
′
pλ

(λ2 − 1)ε1
=
ε22k
′
p

ε1

[
1 +

λ

λ2 − 1

]
which holds in view of (35).

B. Negativity of V̇

We establish that the factor of e2ω in (26) may be rendered positive. From (22) and (23) we see that the argument

of min{·} in (33) equals kd/3b. Therefore, ε1 must belong to the interval[
c

b− 1
,

kd
3b

]
which is non-empty in view of (22).
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