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Abstract: This paper deals with the design of high gain observers for a class of continuous
dynamical systems with discrete-time measurements. Indeed, different approaches based on high
gain techniques have been followed in the literature to tackle this problem. Contrary to these
works, the measurement sampling time is considered to be variable. Moreover, the new idea of
the proposed work is to synthesize an observer requiring the less knowledge as possible from
the output measurements. This is done by using an updated sampling time observer. Under the
global Lipschitz assumption, the asymptotic convergence of the observation error is established.
As an application of this approach, an estimation problem of state of an academic bioprocess
is studied, and its simulation results are discussed. This paper is the long version of Andrieu
et al. [2013] with detailed proofs.
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1. INTRODUCTION

The observer design for continuous nonlinear systems with
sampled measurements has been initiated by Jazwinski
who introduced the continuous-discrete Kalman filter to
solve a filtering problem for stochastic continuous-discrete
time systems (see Jazwinski [1970]). Except a few other
results, there are mainly two classes of nonlinear observers
that have been studied.

First, continuous-discrete observers based on the pop-
ular high-gain observer introduced in Gauthier et al.
[1992]. One of the well-known observers usually used for
real applications is the continuous-discrete time extended
Kalman filter (see for instance Deza et al. [1992]). In there
work, the continuous-discrete observer is obtained in two
steps: i) when no measurement is available, the estimate
is obtained by integrating the model. ii) when a measure
occurs, the observer makes an impulsive correction on the
estimate. The correction gain of this impulsive observer is
obtained by integrating a continuous-discrete time Riccati
equation. This work has been extended to other classes of
systems in Nadri et al. [2004] and Ahmed Ali et al. [2007].
Recently, it has been shown in Nadri et al. [2013] that a
constant correction term can be used.

? This work was supported by PEPS SOSSYAL and ANR LIMICOS
contract number 12 BS03 005 01.

Note also that a new continuous-time observer using
an output predictor for the time interval between two
consecutive measurements has been given in Karafyllis and
Kravaris [2009].

We note that in all works cited above, the asymptotic
convergence of the estimate to the state is obtained by
dominating the Lipschitz nonlinearities with high-gain
techniques. This can lead to restrictive design conditions
on the sampling measurement time.

Secondly, hybrid observers which use linear matrix in-
equalities (LMI) techniques for the gain calculation have
been developped. In this class we can cite Raff et al.
[2008], where the authors designed an impulsive observer
where the correction term is constant between two mea-
surements. The observer gain is synthesized to guaran-
tee that a particular error Lyapunov function (obtained
from the work of Naghshtabrizi et al. [2008]) is strictly
decreasing along the trajectories. To obtain the observer
gain some LMI conditions have to be satisfied. Recently, a
new continuous-discrete observer design methodology for
Lipschitz nonlinear systems based on reachability analysis
was presented in Andrieu and Nadri [2010]. In their work,
the authors show that the system satisfied by the estima-
tion error can be rewritten in terms of a linear parameter
varying system (LPV). The gain ensuring the convergence
toward zero of the estimation error can be obtained by
solving specific linear matrix inequalities.
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Contrary to these works, the problem we intend to solve in
this paper, is to design a high-gain observer requiring the
less knowledge as possible from the output measurements.
Following what has been done in Nadri et al. [2013]
and inspired by Andrieu et al. [2009]), we will design a
continuous discrete observer. However in opposition to
these results, we consider the case in which the sampling
time is variable and used as a tuning parameter. More
precisely, we consider that the quantity tk+1− tk is a part
of the design of the continuous discrete observer. In the
proposed algorithm, the measurement time is computed
online. In fact, the use of sensors follows an event based
on an extended observer state component. This may be
related to the event-triggered control methodology (see for
instance Tabuada [2007], Seuret and Prieur [2011]).

2. PROBLEM STATEMENT

In this work we consider the problem of designing an
observer for nonlinear systems that are diffeomorphic to
the following form

ẋ = Ax+Bfn(x, u) (1)

where the state x is in Rn; u : R → Rp is a known input.
A is a matrix in Rn×n and B is in Rn given by

A =


0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0
0 · · · · · · 0 1
0 · · · · · · · · · 0

 B = [0 . . . 0 1]
T
.

The measured output is given as a sequence of values
(yk)k>0 in R :

yk = Cx(tk), (2)

where (tk)k>0 is a sequence of times to be selected and C
is in Rn

C = [1 0 . . . 0] .

In this paper, we shall denote by | · | the euclidean
norm in Rn and we shall use the same notation for the
corresponding induced matrix norm.

We consider the case in which the function fn : Rn ×
Rp → Rn satisfies the following assumption.

Assumption 1. The function fn is such that the following
incremental bound is satisfied for all (x, e, u) ∈ Rn×Rn×
Rp,

|fn(x+ e, u)− fn(x, u)| 6 c(x, u)|e| , (3)

where c : Rn × Rp → R+ is a continuous function which
satisfies the following bound

c(x, u) 6 Γ(u) , ∀ (x, u) ∈ Rn × Rp , (4)

where Γ : Rp → R+.

Note that in the case in which we know a bound on the
input u then this would imply that we come back to the
globally Lipschitz context. However, even in this case, we
believe that employing a tighter bound in term of a state-
dependent function c implies that the sensors are less
used than it would be if we were considering directly the
Lipschitz bound.

3. UPDATED SAMPLING TIME OBSERVER

3.1 Structure of the proposed observer

This section is devoted to the design of a high gain observer
to asymptotically estimate the state of the systems of the
form (1)-(2). To do so, we consider the continuous-discrete
time observer with updated sampling period given by 1 2

˙̂x(t) =Ax̂(t) +Bfn(x̂(t), u(t)) , ∀ t ∈ [tk, tk+1) , (5)

x̂(tk) = x̂(t−k ) + δkL(t−k )K(Cx̂(t−k )− yk),

where K is a gain matrix, the matrix function L : R+ →
Rn×n is defined as L(t) = diag(L(t), . . . , L(t)n) with
L : R+ → R is given as a solution to the following system
of continuous discrete differential equations{

L̇(t) = a2L(t)M(t)c(x̂(t), u(t))

Ṁ(t) = a3M(t)c(x̂(t), u(t))
,∀t ∈ [tk, tk+1) ,{

L(tk) = L(t−k )(1− a1α) + a1α
M(tk) = 1

.

(6)

initiated from L(0) > 1 and with a1α < 1. We have for all
k,

yk = Cx(tk),

where the tk’s, k in N are given with the following iteration,

t0 = 0 , tk+1 = tk + δk ,

and,

δk = min{s ∈ R+ | sL((tk + s)−) = α}, (7)

where α, a1, a2 and a3 are positive real numbers to be
defined.

3.2 About the updating time period

Note that for all k, δk is well defined. Indeed, L is not
decreasing in every time interval [tk, tk+1). Moreover, when
there is a jump (when there exists k such that t = tk), we
see that L(tk) > 1 if L(t−k ) > 1. Hence, we get L(t) > 1 for
every t > 0. The function s 7→ sL(tk+s) being continuous,
zero at zero and going to infinity (if there is no jump), the
existence of δk is well defined by (7). Also, we have δk < α
for all k.

Moreover we have the following lemma which shows that
if the input is bounded then the high-gain parameter L is
bounded along solutions.

Lemma 1. (Boundedness of L). If u is in L∞(R+) then
L is bounded along any solution of System (1) and its
observer (5)-(6).

The proof of this lemma is postponed in Appendix A.1.
Note that since by definition we have L(t−k+1)δk = α this
implies that δk is lower bounded.

These comments implies that for all bounded input time
function u, the sequence of sampling period (δk)k∈N is well
defined, upper and lower bounded, for all k in N and that

lim
k→+∞

tk = +∞ .

1 The solution x̂ is a right-continuous function.
2 Given a right-continuous function φ : R → Rn, the notation φ(t−)
stands for

φ(t−) = lim
h→0,h<0

φ(t+ h)
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Note that if we know a bound on u, the function c(x̂, u) in
(6) could be simply replaced by a constant depending on

the function Γ. Note however that in this case, L̇ is larger
and this reduces the size of each sampling period (δk)k∈N.
Consequently, the sensors are more frequently employed
which is something we would like to avoid.

3.3 Observer convergence

With this property in hand, we are now able to state our
main result.

Theorem 1. (Updating continuous-discrete time observer).
There exists a gain matrix K and αm > 0 such that
for all α in [0, αm], there exist a1, a2, a3 such that for
all bounded input functions the estimation error obtained
using the observer (5)-(6) converges asymptotically toward
zero. More precisely, for all initial condition (x(0), x̂(0)) in
Rn×Rn and L(0)) > 1 for all input function u in L∞(R+)
the associated solution of System (1)-(5)-(6) satisfies

lim
t→+∞

|x(t)− x̂(t)| = 0 .

Proof. Let D be the diagonal matrix in Rn×n defined by

D = diag(1, 2, . . . , n) .

Let P be a positive definite matrix in Rn×n and K a vector
in Rn such that the following inequality is satisfied (see
[Praly, 2003, equation (14)] or [Krishnamurthy et al., 2003,
equation (18)] or Andrieu et al. [2008])

p1I 6 P 6 p2I , (8)

I being the identity matrix, and

(A+KC)′P + P (A+KC) 6 −I , (9)

p3P 6 PD +DP 6 p4P ,

with p1, . . . , p4 positive real numbers.

Let e , x̂ − x be the estimation error; e satisfies the
following differential equation (cf. equations (1)-(5))

ė(t) = Ae(t)+B∆(x̂(t), e(t), u(t)), ∀ t ∈ [tk, tk+1), (10)

where the function ∆ : Rn × Rn × Rp → Rn is defined as

∆(x̂, e, u) = fn(x̂, u)− fn(x̂− e, u) , ∀ (x̂, e, u) .

From Assumption 1 (i.e., inequality (3)), this function
satisfies

|∆(x̂, e, u)| 6 c(x̂, u)|e| , ∀ (x̂, e, u) .

If we integrate equation (10) on the interval [tk, tk + τ)
with τ < δk, we get

e(tk + τ) = exp(Aτ)e(tk)+ (11)∫ τ

0

exp(A(τ − s))B∆(x̂(tk + s), e(tk + s), u(tk + s))ds ,

and so,

e(tk+1) = (I + δkL(t−k+1)KC)e((tk + δk)−) . (12)

In the sequel, and using the results presented in Khalil
and Saberi [1987] (see also Andrieu et al. [2009]) we
consider the scaled observation error defined for all t by
E(t) = L(t)−1e(t). In the remaining part of the proof, we
shall show that the Lyapunov function

V (E(tk)) = E(tk)′PE(tk),

is decreasing toward zero along the solution of the system;
here the ′ denotes the transposition.

To simplify the presentation, we introduce the notations
L−k = L(t−k ) , L−k = L(t−k ) , Lk = L(tk) , Lk = L(tk) ,
Ek = E(tk) .

In order to evaluate the Lyapunov function, let us first
remark the following algebraic properties of the matrix
function Lk. Note that we have(
L−k+1

)−1
(I + δkL−k+1KC) = (I + δkL

−
k+1KC)

(
L−k+1

)−1
= (I + αKC)

(
L−k+1

)−1
, (13)

where the last equality has been obtained from (7). More-

over, since we have for all k,
(
L−k
)−1

A = L−k A
(
L−k
)−1

, it
yields for all k(
L−k
)−1

Ai = L−k A
(
L−k
)−1

Ai−1 = (L−k A)i
(
L−k
)−1

,

and(
L−k
)−1

exp(As) =
(
L−k
)−1 +∞∑

i=0

Aisi

i!
= exp(L−k As)

(
L−k
)−1

.

(14)
Hence employing the previous algebraic equalities (13) and

(14), we get, when left multiplying (12) by
(
L−k+1

)−1
,(

L−k+1

)−1
ek+1 = Q(α)(L−k+1)

−1LkEk +R,

with
Q(α) = (I + αKC) exp(Aα) ,

and

R = (I + αKC)

∫ δk

0

exp(AL−k+1(δk − s))
(
L−k+1

)−1
·B∆(x̂(tk + s), e(tk + s), u(tk + s))ds .

Note that, since we have Ek+1 = Ψ
(
L−k+1

)−1
ek+1 with

Ψ = (Lk+1)
−1 L−k+1, it yields

V (Ek+1) = V (Ek) + T1 + T2 ,

with

T1 = E′k Lk(L−k+1)
−1
Q(α)′ΨPΨQ(α) (L−k+1)

−1Lk Ek
− V (Ek),

and

T2 = 2E′k (Lk+1)
−1 LkQ(α)′ΨPΨR+R′ΨPΨR.

The remaining part of the proof is divided into three parts.
The first two ones are devoted to upper bound the two
terms T1 and T2. The fact that the Lyapunov function is
decreasing is due to the term T1 which will be shown to
be negative. The second term is handled by robustness.
In the last part of the proof we show that the Lyapunov
function is decreasing.

Upper bounding T1 In this part of the proof we show
that there exists α1 > 0 such that for all α in [0, α1) there
exists a1 such that

T1 6 −

(
a2p3p1
a3

[
exp

(
a3

∫ δk

0

c(r)dr

)
− 1

]
+
αp1
4p2

)
×
∣∣∣(L−k+1

)−1
ek

∣∣∣2 , (15)

where c(r) = c(x̂(r), u(r)).
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First of all, to show the previous inequality, note that
we have the following lemma which proof is given in
Appendix.

Lemma 2. Taking a1 sufficiently small, there exists α1

sufficiently small such that for all α < α1 we have

Q(α)′ΨPΨQ(α) 6 P − α 1

4p2
P. (16)

On another hand, we have, for all v in Rn

v′Lk
(
L−k+1

)−1
P
(
L−k+1

)−1 Lkv − v′Pv
= v′

(∫ tk+1

tk

Lk
d

ds

(
L(s)−1

)
PL(s)−1Lk

+ LkL(s)−1P
d

ds

(
L(s)−1

)
Lkds

)
v.

However, we have for all s in [tk, tk+1)

d

ds

(
L(s)−1

)
= − L̇(s)

L(s)
DL(s)−1.

Consequently, it yields

v′Lk
(
L−k+1

)−1
P
(
L−k+1

)−1 Lkv − v′Pv
= −v′

(∫ tk+1

tk

L̇(s)

L(s)
LkL(s)−1[PD +DP ]L(s)−1Lkds

)
v.

Bearing in mind that L > 1 and L̇ > 0 and taking into
account the bounds on DP + PD in (9) and P in (8), we
get

v′Lk
(
L−k+1

)−1
P
(
L−k+1

)−1 Lkv − v′Pv
6 −p3v′

(∫ tk+1

tk

a2c(s) exp

(
a3

∫ s

tk

c(r)dr

)

LkL(s)−1PL(s)−1Lkds

)
v

6 −p3p1v′
(∫ tk+1

tk

a2c(s) exp

(
a3

∫ s

tk

c(r)dr

)

LkL(s)−1L(s)−1Lkds

)
v.

Note that since Lk 6 L(s) 6 L−k+1, we finally get

v′Lk
(
L−k+1

)−1
P
(
L−k+1

)−1 Lkv − v′Pv
6 −a2p3p1

a3

[
exp

(
a3

∫ tk+1

tk

c(r)dr

)
− 1

] ∣∣∣(L−k+1

)−1 Lkv∣∣∣2 .
Consequently, the bound (15) is obtained from the previ-
ous inequality with v = Ek, and from inequality (16) in
Lemma 2 together with (8).

Upper bounding T2 In this part of the proof we show
that there exist two continuous functions N1 and N2 such
that the following inequality holds

T2 6
∣∣∣(L−k+1

)−1
ek

∣∣∣2 [N1(α)

[
exp

(∫ δk

0

c(tk + r)dr

)
− 1

]

+N2(α)

[
exp

(∫ δk

0

c(tk + r)dr

)
− 1

]2 ]
. (17)

In order to show that (17) holds, let us first analyse the
term R. Note that we have

|R| 6 |I + αKC|
∫ δk

0

exp(|A|L−k+1(δk − s))
(
L−k+1

)−n
|∆(x̂(tk + s), e(tk + s), u(tk + s))|ds

6 |I + αKC|
∫ δk

0

exp(|A|L−k+1(δk − s))
(
L−k+1

)−n
c(tk + s)|e(tk + s))|ds. (18)

On another hand, we have for all s in [tk, tk+1)

|e(tk + s)| 6 exp

(∫ s

0

|A|+ c(tk + r)dr

)
|e(tk)|. (19)

Let us prove equation (19). From (10), we get

|ė(tk + s)| 6 |A| |e(tk + s)|+ c(tk + s)|e(tk + s)|, (20)

for every s ∈ [0, δk) (we have |B| = 1). On the other hand

d

ds
(log |e|) =

〈e, ė〉
|e|2

6
|ė|
|e|

6 |A|+ c(tk + s) (according to (20)),

and the result follows easily from this last inequality.

Hence, according to (18) and (19),we get

|R| 6 |I + αKC|
∫ δk

0

exp
(
|A|L−k+1(δk − s)

) (
L−k+1

)−n
c(tk + s) exp

(∫ s

0

|A|+ c(tk + r)dr

)
|ek|ds

= |I+αKC| exp (|A|α)
|ek|(
L−k+1

)n ∫ δk

0

exp
(
s|A|(1− L−k+1)

)
c(tk + s) exp

(∫ s

0

c(tk + r)dr

)
ds

6 |I + αKC| exp (|A|α)
|ek|(
L−k+1

)n∫ δk

0

c(tk + s) exp

(∫ s

0

c(tk + r)dr

)
ds

= |I + αKC| exp (|A|α)
|ek|(
L−k+1

)n[
exp

(∫ δk

0

c(tk + r)dr

)
− 1

]
Since L−k+1 > Lk, we have

|ek|(
L−k+1

)n 6
∣∣∣Lk (L−k+1

)−1
Ek

∣∣∣ ,
and we finally get the following inequality

|R| 6 |I + αKC| exp(|A|α)
∣∣∣Lk (L−k+1

)−1
Ek

∣∣∣[
exp

(∫ δk

0

c(tk + r)dr

)
− 1

]
Hence, employing Lemma 3 this gives the existence of two
continuous functionN1 andN2 such thatN1(0) = N2(0) =
1 and
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2E′k(L−k+1)
−1LkQ(α)′ΨPΨR

6
∣∣∣(L−k+1)

−1LkEk
∣∣∣2N1(α)

[
exp

(∫ δk

0

c(tk + r)dr

)
− 1

]
.

Moreover,

R′ΨPΨR 6∣∣∣(L−k+1)
−1LkEk

∣∣∣2N2(α)

[
exp

(∫ δk

0

c(x̂(tk + r))dr

)
− 1

]2
.

The two previous inequalities imply that (17) holds.

Lyapunov analysis With the two bounds obtained for
T1 and T2 in (15) and (17), we finally get

V (Ek+1)− V (Ek) 6
∣∣∣(L−k+1)

−1
ek

∣∣∣2 · [N1(α)[eβ − 1]

+N2(α)[eβ − 1]2 − a2p3p1
a3

[
ea3β − 1

]
− αp1

4p2

]
,

where β denotes the integral β =
∫ δk
0
c(tk+r)dr. Note that

for all α, thanks to a good choice of a3 and a2 it yields
that the right-hand member in the previous inequality is
negative for every β. For example, if we take a3 = 2, the
previous inequality becomes

V (Ek+1)− V (Ek) 6
∣∣∣(L−k+1)

−1
ek

∣∣∣2 · [− αp1
4p2

+
[
eβ − 1

] [
−a2p3p1

2

[
eβ + 1

]
+N1(α) +N2(α)[eβ − 1]

] ]
,

6
∣∣∣(L−k+1)

−1
ek

∣∣∣2 · [− αp1
4p2

+
[
eβ − 1

] [
eβ + 1

] [
−a2p3p1

2
+N1(α) +N2(α)

] ]
.

If a2 > 2N1(α)+N2(α)
p3p1

it yields

V (Ek+1)− V (Ek) 6 −αp1
4p2

∣∣∣(L−k+1

)−1
ek

∣∣∣2 .
The function V being lower bounded, it yields that

lim
k→+∞

∣∣∣(L−k+1

)−1
ek

∣∣∣ = 0 .

The function L being upper and lower bounded (by
Lemma 1), this implies that the error e(tk) goes to zero.
With (11), we get the result. 2

4. ILLUSTRATION

In this section, the performance of the proposed observer
is illustrated through a bioreactor. In most cases, a cheap
and reliable instrumentation required for real-time mea-
surement of key variables of such process (biomass, sub-
strate) are not available. Nevertheless, biomass measure-
ment can be obtained using off-line analysis (sampled
measurements) which require time and staff investment.
The proposed approach allows to reduce the measurements
frequency and consequently, the monitoring cost is also
reduced.

The bioprocess considered is an academic bioreactor which
consists of a microbial culture which involves a biomass

X growing on a substrate S. The bioprocess is supposed
to be continuous with a scalar dilution rate D and an
input substrate concentration Sin. We assume also that
a filtration element is installed at the reactor output.
Under these conditions and using the Contois model, the
dynamical model of the process is

Ẋ(t) =
K1S(t)

K2X + S(t)
X(t)

Ṡ(t) = −K3
K1S(t)

K2X(t) + S(t)
X(t)−D(t) (S(t)− Sin(t)) ,

(21)

where Ki; (i = 1, 2, 3) are positive constants. Our objective
is the on-line estimation of the substrate concentrations
S through sampled biomass measurements. In the case
where the output is assumed to be a time-continuous, the
authors in Gauthier et al. [1992] gave a stationary high
gain observer. In the sequel, the same hypothesis as in
Gauthier et al. [1992] and the same notations are used.
Set the state vector z(t) = [X(t), S(t)]T , the input u(t) =
D(t) and the output y(tk) = X(tk). Under the constraint
0 < umin 6 u(t) 6 umax < K1, the authors in Gauthier
et al. [1992], determined a compact domain Mz ∈ R2

which is invariant under the normal form (1). Using
normalized variables, and Ki = 1 we have

Mz = {z ∈ R2 : X > ε1, S > ε2, X + S 6 1},
where ε1 = (1−umax)ε2

Sinumax

Then, using the change of coordinates Φ(z) = x(z) =[
X, SX

X+S

]T
system (21) takes the normal form (1) with

n = 2 and

f2(x, u) = Sinu−
(

1 + u+
2Sinu

x1

)
x2+

(
2

x1
+
Sinu

x21

)
x22,

and x evolving in Mx = Φ(Mz).

Moreover, the function f2 can be trivially extended to a
global Lipschitz C1 function on the whole domain R2 ×
Mu. For all (x̂, x, u) ∈ R2 × Mz × Mu, where Mu =
[umin, umax], we can write

|f2(x, u)− f2(x̂, u)| 6 |f2(x1, x2, u)− f2(x1, x̂2, u)|
+ |f2(x1, x̂2, u)− f2(x̂1, x̂2, u)|

6 c1(x1, x2, x̂2, u)|x2 − x̂2|
+ c2(x1, x̂1, x2, u)|x1 − x̂1|,

where,

c1(x1, x2, x̂2, u) = −
(

1 + u+
2Sinu

x1

)
+

(
2

x1
+
Sinu

x21

)
(x2 + x̂2),

and,

c2(x1, x̂1, x̂2, u) =
−2Sinux̂2 + 2x̂22

x̂1x1
+ Sinux̂

2
2

x̂1 + x1
x̂21x

2
1

.

Consequently, we obtain

|f2(x, u)− f2(x̂, u)| 6 c(x̂, u)|e| ,

where

c(x̂, u) = max
x∈Mx

{c1(x1, x2, x̂2, u) + c1(x1, x̂1, x̂2, u)} .
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Now, it suffices to use (5)-(7) to give the updated sampling
time observer.

4.1 Simulation results

For the simulation test 3 , the output has been corrupted
by an additive noisy signal as shown in Fig.1. The observer
simulation was performed under similar operating condi-
tions as the model (Ki = 1) and Sin = .1, and u(t) is given
in 1

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 
x

1
(t)

Noisy measurement y(t
k
)

Input u(t)

Fig. 1. Input u(t) = D(t) and output y = X(tk) with
measurement noise.

Fig. 2 displays displays the calculated values of the
sampling-time δk. It may be noted that the sampling-
time suggested by the proposed approach is relatively
small when the estimation error is important and take a
large value when the error is close to zero. In practice,
where the initial error may be significant, the use an
output sampling-time uniform can significantly increase
the measurement cost. However, using this approach, we
can significantly reduce the cost of measures.

0 5 10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

Time

δ k

Fig. 2. Updated sampling-time δk.

Fig. 3 shows that, in spite of the measurement noise, the
obtained estimation are not disturbed.

3 The Matlab files can be downloaded from
https://sites.google.com/site/vincentandrieu/

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time

S

 

 
Simulation
Estimation

Fig. 3. S given by the model (21) compared to Ŝ given by
system (5)-(7).

0 5 10 15 20 25 30
1

1.5

2

2.5

Time

L

Fig. 4. Evolution of L .

5. CONCLUSION

In this paper, a high gain observer for continuous-discrete
time systems in the observability normal form has been
designed. The problem of observer synthesis for these
systems is related to the sampling time of the output
measurement which is always uniform and should be small
to guarantee the observer convergence. To overcome this
constraint which increases the control cost, a high gain
updated sampling-time observer has been proposed. The
principal advantage of this observer is that it requires the
less knowledge as possible from the output measurement.
The obtained results have been illustrated in the biological
process and demonstrated good performances.
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Appendix A. PROOFS OF LEMMAS

A.1 Proof of Lemma 1

Assuming the input u is a bounded time function (with
unknown bound), thanks to (4) we get that the function
t 7→ c(x̂(t), u(t)) is bounded on the time of existence of the
solution. Let cm be an upper bound of c(x̂(t), u(t)). Note
that by integrating equation (6) with the previous upper
bound on the interval [tk, tk+1), it yields for all k

L(t−k+1) 6 κ(δk)L(tk), (A.1)

where κ is a strictly increasing function such that κ(0) = 1
defined as

κ(δk) = exp(a2δkcm exp(a3δkcm)).

Hence, we have

L(tk+1) 6 (1− a1α)κ(δk)L(tk) + a1α .

Note moreover that we have L̇(s) > 0 for all s in
[
tk, t

−
k+1

)
,

and so
L(t−k+1) > L(tk).

Hence, since we have L(t−k+1)δk = α we get δk 6 α
L(tk)

which gives

L(tk+1)

L(tk)
6 (1− a1α)κ

(
α

L(tk)

)
+

a1α

L(tk)
. (A.2)

Note that for L(tk) sufficiently large, it yields that the
left hand side of the previous inequality is smaller than
1. Hence this implies that the sequence (L(tk))k∈N is
bounded. Consequently, it yields that δk is lower bounded
on the time of existence of the solutions. To see this, denote
by ϕ the function defined on the interval (0,+∞) as

ϕ(`) = (1− a1α)κ
(α
`

)
+
a1α

`
.

Notice that ϕ is decreasing on this interval, that lim`→0 ϕ(`) =
+∞ and that lim`→+∞ ϕ(`) = 1−a1α < 1; so there exists
a unique `1 ∈ (0,+∞) such that ϕ(`1) = 1. Assume now
that L(tk) 6 `1 for every k > 0, then we can say that the
sequence (L(tk))k>0 is bounded. If L(tk) > `1 for every
k > 0, the inequality (A.2) implies that

L(tk+1) 6 L(tk)ϕ(L(tk))

6 L(tk)ϕ(`1) (because L(tk) > `1)

= L(tk)

and, arguing by induction, we see easily that L(tk) 6 L(t0)
for every k. The last situation is when some L(tk) are less
than `1 while some others are greater than `1. So assume
that we have, for some index k0,

L(tk0) 6 `1 L(tk0+1) > `1, . . . L(tk0+i) > `1.

As above, we can prove that L(tk0+i) 6 . . . 6 L(tk0+1).
Now, from (A.1) and using the fact that δk0 6 α

L(tk0
) we

get

L(tk0+1) = (1− a1α)L(t−k0+1) + a1α

6 (1− a1α)κ(δk0)L(tk0) + a1α

6 (1− a1α)κ
( α

L(tk0)

)
L(tk0) + a1α

6 (1− a1α)κ(α)`1 + a1α,because 1 6 L(tk0) 6 `1.
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Thus, we proved that L(tk) 6 max(`1, (1 − a1α)κ(α)`1 +
a1α) for every index k.

A.2 Proof of Lemma 2

In order to prove Lemma 2, we need the following lemma
which will be proved in the next section.

Lemma 3. The matrix P satisfies the following property
for all a1 and α such that a1α < 1

ΨPΨ 6 ψ0(α)Pψ0(α) , (A.3)

where

ψ0(α) = diag

(
1

1− a1α
, . . . ,

1

(1− a1α)n

)
Given v in Sn−1 = {v ∈ Rn | |v| = 1}, consider the
function

ν(α, v) = v′Q(α)′ψ0(α)Pψ0(α)Q(α)v .

We have

ν(0, v) = v′Pv,

∂ν

∂α
(0, v) = v′ [P [A+KC + a1D] + [A+KC + a1D]′P ] v,

so using the inequalities in (9) and setting a1 = 1
2p2p4

, we
get

∂ν

∂α
(0, v) 6 v′

(
a1p4P −

1

p2
P

)
v

= − 1

2p2
v′Pv. (A.4)

Now, we can write

ν(α, v) = v′Pv + α
∂ν

∂α
(0, v) + ρ(α, v)

with limα→0
ρ(α,v)
α = 0. This equality together with (A.4)

imply that

ν(α, v) 6 v′Pv

[
1− α 1

2p2

]
+ r(α, v).

The vector v being in a compact set and the function r
being continuous, there exists αm such that for all α in
[0, αm) we have r(α, v) 6 α 1

4p2
v′Pv for all v. This gives

ν(α, v) 6 v′Pv

[
1− α 1

4p2

]
,∀ α ∈ [0, αm) ,∀ v ∈ Sn−1 .

This property being true for every v, this ends the proof
of Lemma 2.

A.3 Proof of Lemma 3

Consider the matrix function defined as

P(s) = diag(s, . . . , sn)Pdiag(s, . . . , sn) .

Note that for all v in Rn
d
dsv
′P(s)v

= 1
sv
′diag(s, . . . , sn)(D′P + PD)diag(s, . . . , sn)v > 0.

Hence P is a strictly increasing function. Furthermore, we
have

ΨPΨ = L−1k+1L
−
k+1PL

−
k+1L

−1
k+1

= P

(
L−k+1

L−k+1(1− a1α) + a1α

)
,

so as

L−k+1

L−k+1(1− a1α) + a1α
6

1

1− a1α
,

we get the inequality of Lemma 3

ΨPΨ 6 P
(

1

1− a1α

)
.
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