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Abstract

The Empirical Mode Decomposition (EMD) is known to be a powerful tool adapted to the
decomposition of a signal into a collection of intrinsic mode functions (IMF). A key procedure in
the extraction of the IMFs is the sifting process whose main drawback is to depend on the choice
of an interpolation method and to have no clear convergence guarantees. We propose a convex
optimization procedure in order to replace the sifting process in the EMD. The considered
method is based on proximal tools, which allow us to deal with a large class of constraints such
as quasi-orthogonality or extrema-based constraints.
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1 Introduction

The concept of EMD was introduced by Huang et al. [1] in order to propose an adaptive data
analysis method to study trend and instantaneous frequency of non-linear and non-stationary data.

The principle of the EMD is to adaptively decompose a signal into a collection of intrinsic
mode functions (IMF), which are basically a set of functions oscillating around zero but non-
necessarily constant in frequency and amplitude. The IMF characterization imposes the average
of the envelope defined by the local maxima and the envelope defined by the local minima to be
zero. It results that a signal x ∈ R

N can be written as

x =

K∑

k=1

dk + aK , (1)

where, for every k ∈ {1, . . . ,K}, dk ∈ R
N is the intrinsic mode of order k, and aK ∈ R

N denotes
the trend of order K.

At each step of the EMD, the trend and the IMF of order k ≥ 1, respectively denoted by ak
and dk, are extracted from the trend of order k− 1 (note that a0 = x). In other words, it is based
on a particular case of trend-fluctuation decomposition [2]. In the EMD, this decomposition stage
is known as the sifting process and it consists in:

1- initialize a temporary variable s = ak−1,

2- identify all extrema of s,

3- interpolate between minima (resp. maxima) ending up with some envelope emin (resp. emax),

4- compute the mean envelope m = emin+emax

2 ,

5- extract the residual s = s−m,

6- iterate Steps 2-5 until the residual s achieves a zero mean envelope,

7- let the IMF of order k be dk = s and the trend of order k be ak = ak−1 − s.

Although this technique proved its efficiency through numerous applications (see [3] and references
therein), the result of this method is highly dependent on the interpolation process in Step 3 and
it has also been pointed out to be sensitive to sampling effects [4]. Most of all, this technique faces
the difficulty of having no mathematical definition besides its algorithm and thus no convergence
properties.

For the last ten years, many references have been focused on finding a rigorous mathematical
formalism for the EMD. On one hand, Daubechies et al. [5] combined synchrosqueezing (which
is a special case of reassignment methods [6]) with wavelet transform in order to model EMD.
On the other hand, convex optimization tools has been explored. In [7, 8], the sifting process is
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replaced by a constrained optimization procedure which looks for a trend of order k belonging to
the class of spline functions. In [9], the authors decompose the signal into its local median and
an IMF by solving a nonlinear optimization problem which involves a dictionary learning step.
This method has been generalized in [10] in order to simultaneously extract the K modes, but
it still requires a learning stage. In the image processing field, the matching of trend-fluctuation
decomposition is known as geometry-texture decomposition [11]. This field of interest deals with
multicomponent convex optimization techniques in order to simultaneously constrain the textural
and the geometric components [12].

The proposed approach follows the idea of texture-geometry decomposition with further spe-
cific EMD features such as quasi-orthogonality and extrema-based constraints. It results that a
multicomponent primal-dual algorithm will be proposed and the associated convergence property
will be presented.

In Section 2, we review the recent advances in non-smooth convex optimization and we de-
tail the most recent convex criteria designed for trend-fluctuation decomposition. In Section 3,
we discuss the choice of the proposed criterion and we present a multicomponent version of the
primal-dual algorithm named M+LFBF [13] as well as the associated convergence property. Ex-
perimental results and comparisons with existing methods are given in Section 4. Conclusions will
be drawn in Section 5, outlying possibilities of future works.

Notations Throughout this paper, we denote by R
X the usual X-dimensional Euclidean space

and by Γ0(R
X) the class of lower semicontinuous convex functions from R

X to ]−∞,+∞] which
are proper in the sense that domϕ =

{
y ∈ R

X
∣∣ ϕ(y) < +∞

}
6= ∅. Argmin refers to a set of

minimizers while argmin denotes a unique minimizer.

2 Signal decomposition and convex optimization

2.1 Proximal methods

During the last decades, convex optimization methods have been shown to be very effective for
solving inverse problems (for instance, algorithms such as Projection Onto Convex Sets (POCS)
[14] or parallel approaches such as block-iterative surrogate constraint splitting [15]). However
these methods are not applicable to non-differentiable objective criteria, which become of great
interest with the compressed sensing development involving ℓ1-minimization. Consequently, since
2004, there has been a large interest for the proximal methods which are designed to deal with
convex but non-necessarily differentiable functions [16]. As indicated by the name of these methods,
they are built on the Moreau proximity operator.

Definition 2.1 [17] Let H be an Hilbert space. Let ϕ ∈ Γ0(H). For every u ∈ H, the proximity
operator of ϕ is

proxϕ : u 7→ argmin
v∈H

ϕ(v) +
1

2
‖u− v‖2. (2)
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A particular example of proximity operator is the projection onto a convex set C ⊂ H . Indeed, if
ιC denotes the indicator function of C (it takes on the value 0 in C and +∞ in H \ C) then the
projection operator PC is proxιC . For a detailed account of the theory of proximity operators, see
[16] and references therein.

The large interest for proximal tools have enabled to develop a large panel of algorithms to
efficiently solve Problem 2.2.

Problem 2.2 Let H be an Hilbert space. For every i ∈ {1, . . . , I}, let Gi be an Hilbert space, let
ϕi ∈ Γ0(Gi), and let Li : H → Gi be a bounded linear operator. The problem consists in finding

û ∈ Argmin
u∈H

I∑

i=1

ϕi(Liu). (3)

The class of proximal algorithms can be split in two groups: the primal algorithms [16] and the
primal-dual algorithms [13]. To summarize, the primal algorithms generally require to compute
the inverse of

∑
i L

∗
iLi whereas the primal-dual iterations only involve the computation of Li and

L∗
i . However, we have to note that even if the primal-dual methods are often easier to implement

than the primal methods, they generally converge slower.

A multicomponent version of Problem 2.2 can be achieved by considering the product space
H = H1 × . . .×Hm equipped with the usual vector space structure and the scalar product

(∀(u, v) ∈ H ×H), (u, v) 7→

m∑

i=1

〈ui|vi〉, (4)

where u = (ui)1≤i≤m denotes a generic element in H. The readers could refer to [12] for details on
the multicomponent primal proximal algorithms. This multicomponent formalism will be used in
Section 3 in order to deal with the primal-dual proximal algorithm M+LFBF [13].

2.2 Signal decomposition and variational approach

The first interpretation of the EMD in term of convex optimization has been proposed by Meignen
and Perrier [7]. In this former work, the authors have replaced the sifting process by convex
optimization techniques. The extraction of the trend is achieved by considering, for every k ∈
{1, . . . ,K},

ak ∈ Argmin
a∈RN

‖a‖2 s.t. a ∈ Π ∩ Cak−1
(5)

where ak denoted the trend of order k while dk = ak−1 − ak denotes the IMF of order k, Π
denotes the space of spline functions, and Cak−1

denotes a constraint onto the dynamic range of
the mean envelope at the location of the extrema of ak−1. Note that the initialization is reduced
to a0 = x. To be entirely accurate, we have to specify that the variable to be optimized in (5) is
not the trend but the coefficients associated to the Hermite interpolant of a. In [8], the dynamic
range constraint is replaced by a constraint which imposes the symmetry of the upper and lower
envelopes of ak−1 − a. The limitation stays that this approach requires a first approximation a

4

ha
l-0

08
26

82
4,

 v
er

si
on

 1
 - 

28
 M

ay
 2

01
3



of ak in order to deal with a convex constraint. Note that this approach still looks for a mean
envelope in the space of spline functions.

It is then interesting to remark that a similar problem has been looked at in image processing.
This problem is known as image decomposition into texture and geometry components and, more
generally, the idea is to decompose an image in elementary structures. In the context of denoising,
this decomposition has been achieved in [18] with a total variation potential in order to extract a
piecewise smooth component. In [11, 19], a criterion combining total variation and G-norm has
been considered in order to perform geometry-texture decomposition. Note that the G-norm had
been theoretically introduced few years before in [20] in order to model strong oscillations. In
most recent works, the oscillating patterns have been extracted in considering ℓ1-norm applied on
frame coefficients [12, 21, 22]. The use of composite criteria have also been proposed in [23]. The
general variational formulation associated to the geometry-texture decomposition is presented in
Problem 2.3.

Problem 2.3

Find (â, d̂) ∈ Argmin
a∈RN, d∈RN

h(a, d) + g(a) + f(d),

where g ∈ Γ0(R
N ) and f ∈ Γ0(R

N ) are potentials promoting the properties of the geometry
and texture components separately, while h ∈ Γ0(R

N × R
N) is a coupling term modeling their

interaction.

The case of three components jointly estimated has been considered in [11].

3 Proposed approach

Based on the state-of-the-art of EMD and image decomposition, we propose to replace the sift-
ing process by a trend-fluctuation decomposition method based on a multicomponent variational
analysis. First, we have to specify the properties that we want to impose onto each component.
On one hand, the IMF of order k is expected to

• have a zero-mean envelope,

• be quasi-orthogonal to the IMF of order j < k.

The first condition is the most difficult to impose. We propose a method derived from [8] in
order to deal with it. We denote by (tk[ℓ])1≤ℓ≤L the location of the local extrema of ak−1, and
these extrema are alternatively minima and maxima. We can approximate the first condition by
considering, for every ℓ ∈ {1, . . . , L},

∣∣∣∣∣d
[
tk[ℓ]

]
+

αℓd
[
tk[ℓ− 1]

]
+ βℓd

[
tk[ℓ+ 1]

]

αℓ + βℓ

∣∣∣∣∣ < εℓ (6)

where αℓ = tk[ℓ+1]− tk[ℓ], βℓ = tk[ℓ]− tk[ℓ− 1], and εℓ > 0. The coefficients αℓ and βℓ are chosen
so that, in Eq. (6), the extremum d

[
tk[ℓ]

]
(e.g., a maximum) is approximately compared to its
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mirror-point on the would-be other envelope (e.g., the minimum envelope) which would be locally
defined thanks to d

[
tk[ℓ− 1]

]
and d

[
tk[ℓ+1]

]
. Note that no envelope is explicitly computed. This

condition can be globally rewritten as

‖Dkd‖1 ≤ εk, (7)

where εk > 0 and Dk ∈ R
N×N denotes a linear operator which models the penalization imposed

on d at each location tk[ℓ]. The second condition requires to impose a constraint taking the form

|〈d, dj〉| ≤ ζk,j, (8)
where ζk,j > 0.

On the other hand, the trend of order k has to be a smooth signal. This condition can be
achieved by imposing

‖Aa‖pp ≤ ηk, (9)

where ηk > 0, p ≥ 1 (typically p = 1 or p = 2), and A denotes a derivative operator (1st or 2nd
order derivative). If p = 1, it corresponds to a total variation constraint. At last, we want to
impose that the sum of the extracted trend and the IMF is close to ak−1. However, we avoid to
use a strict equality in order to limitate the sampling effects.

The criterion we propose to consider is summarized in Problem 3.1.

Problem 3.1 Let d0 = 0 and let a0 = x. For every k ∈ {1, . . . ,K},

(ak, dk) ∈ Argmin
a∈RN , d∈RN

‖ak−1 − a− d‖22

subject to





‖Aa‖pp ≤ ηk,

‖Dkd‖1 ≤ εk,

(∀j ∈ {0, . . . , k − 1}), |〈d, dj〉| ≤ ζk,j,

where ηk>0, ǫk>0, ζk,j≥0, p≥1, A ∈ R
N×N, and Dk ∈ R

N×N .

The criterion involved in Problem 3.1 is a particular case of Problem 2.2 with I = k + 2 and
u = (a, d). Consequently, Problem 3.1 can be solved with a multicomponent version of M+LFBF
[13] whose iterations and convergence result are detailed in Algorithm 1 and Proposition 3.2. The
choice of this specific proximal algorithm among the other ones is motivated by the presence of
the linear operator D and the presence of the quadratic term for the objective function (i.e. a
Lipschitz differentiable function).

Proposition 3.2 The sequence (a(n), d(n))n∈N generated by Algorithm 1 converges to a solution

(ak, dk) of the minimization problem involved in Problem 3.1.

The convergence result in Proposition 3.2 is obtained by applying [13, Theorem 4.2] in H =
R
N × R

N and using Eq. (4).

In Algorithm 1, the constraints sets (C
ζk,i−2

i )2≤i≤k+1, C
ηk
1 , and Cεk

1 are involved. The definition
of this convex sets subject to Problem 3.1 are specified below as well as the associated projection
operators.
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The projection onto the convex set Cεk
1 = {u ∈ R

N | ‖u‖1 ≤ εk} can be computed iteratively by
considering [24] or by using epigraphical projection techniques as detailed in [25]. The projection
onto the convex set Cηk

1 = {u ∈ R
N | ‖u‖pp ≤ ηk} has been previously detailed for the case where

p = 1 and it has an explicit form when p = 2:

(∀u ∈ R
N ), PC

ηk
1

u =

{
u, if ‖u‖2 ≤ ηk
ηku
‖u‖2

, otherwise.
(10)

For every i ∈ {2, . . . , k+1}, the projection onto the constraint set Ciζk,i−2 = {u ∈ R
N | |〈u, di−2〉| ≤

ζk,i−2} is, for every u ∈ R
N ,

P
C

ζk,i−2

i

u =

{
u, if |〈u, di−2〉| ≤ ζk,i−2

u+
ζk,i−2−〈u,di−2〉

‖di−2‖22
di−2, otherwise.

(11)

4 Experimental results

We propose to compare the proposed method (P-EMD) with the classical EMD (C-EMD) [26] and
the optimization-based EMD (O-EMD) proposed in [8]. We consider two experiments for which
the original signals (IMFs and trend) are represented in black, the results obtained with traditional
EMD [26] are plotted in blue, the results extracted with the optimization procedure of Oberlin et

al. [8] in green, and those by the proposed approach in red. For each figure, the signal x to be
decomposed is plotted on the left column, the resuls are presented on the middle column, and a
zooming in of the results is plotted on the right column.

The first experiment is presented in Figure 1. The signal to be decomposed consists in a sum
of a triangular signal and an AM signal (K = 2) with N = 1000. The oscillating part is plotted
on the top row while the trend is presented on the bottom row. The experimental parameters are
η1 = 0.02, ε1 = 0.58, ζ1,0 = 0, p = 1, and A denotes the matrix associated to the filter (14 ,−

1
2 ,

1
4).

Note that the choice of p = 1 allows us to model the non-smooth behavior of a1. When p = 2 the
proposed method achieves a mean square error of 14.1 × 10−5. For this example, it appears that
all the methods give good results, however we can observe that the proposed approach allows us
to avoid the spline behaviour which is not desired in the trend component.

The second experiment is presented in Figure 2. The signal consists in a sum of a three
components (K = 3) of size N = 1000: the first mode and the trend have a constant amplitude
and frequency while the second mode denotes a AM signal. The experimental parameters are
η1 = 37.2, η2 = 0.05, ε1 = 13.6, ε2 = 69.2, ζ1,0 = 0, ζ2,0 = 0, ζ2,1 = 0.1, p = 1, and A denotes the
matrix associated to the filter (14 ,−

1
2 ,

1
4 ). The results obtained with the proposed approach are

very close to the classical EMD results for a2 and d1 and are better than the convex optimization
procedure developed in [8] for a2. However, we have to remark that in the low amplitude part of
d2 our approach introduces some undesired residual oscillations.

The computational time is about 20 secondes for the first experiment and 100 secondes for the
second one.
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5 Conclusions and perspectives

We propose an efficient method in order to replace the sifting process in EMD. This work follows
the one in [8] but it requires neither the use of splines nor a first estimate of the trend of order
k. The proposed approach is based on proximal tools and its good behaviour is evaluated and
compared to the state-of-the-art methods.

The proposed approach allows us to be robust to sampling effects and to avoid a spline inter-
polation procedure which is known to lead to some artefacts. Moreover, the proposed approach
has convergence guarantees that classical EMD does not have. The first results are encouraging
and they pave the way to many questions such as: how could we easily select the parameters ε
and η which have a key role in the efficiency of the proposed approach or do we need to add other
constraints? How is the sensitivity of these parameters regarding the decomposition results? How
can we insure the robustness to noise?
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Algorithm 1 – Multicomponent M+LFBF.

Initialization
Let τ = 4 +

√
max(‖A‖2, ‖Dk‖2) + (k − 1)

Let σ ∈]0, 1/(τ + 1)[, γ ∈ [σ, (1− σ)/τ)], a(0) ∈ R
N , d(0) ∈ R

N

For every i ∈ {1, . . . , k + 1}, v
(0)
i ∈ R

N and ṽ
(0)
i ∈ R

N

For n = 0, 1, . . .

– Steps involving gradient and adjoint operators–

y(n) = a(n) − γ
(
2(a(n)+ d(n)− ak−1) +A⊤v

(n)
1 +

∑k+1
i=2 v

(n)
i

)

ỹ(n) = d(n) − γ
(
2(a(n)+ d(n)− ak−1) +D⊤

k ṽ
(n)
1 +

∑k+1
i=2 ṽ

(n)
i

)

– Steps involving linear operators–

z
(n)
1 = v

(n)
1 + γAa(n)

z̃
(n)
1 = ṽ

(n)
1 + γDkd

(n)

– Steps involving proximity operator computation–

p
(n)
1 = z

(n)
1 − γPC

ηk
1

(z
(n)
1 /γ)

p̃
(n)
1 = z̃

(n)
1 − γP

C
εk
1

(z̃
(n)
1 /γ)

– Steps involving linear operators–

q
(n)
1 = p

(n)
1 + γAy(n)

q̃
(n)
1 = p̃

(n)
1 + γDkỹ

(n)

– Updating steps–

v
(n+1)
1 = v

(n)
1 − z

(n)
1 + q

(n)
1

ṽ
(n+1)
1 = ṽ

(n)
1 − z̃

(n)
1 + q̃

(n)
1

For i = 2, . . . , k + 1

– Updating steps–

z
(n)
i = v

(n)
i + γa(n)

z̃
(n)
i = ṽ

(n)
i + γd(n)

– Step involving proximity operator computation–

p̃
(n)
i = z̃

(n)
i − γP

C
ζk,i−2

i

(z̃
(n)
i /γ)

– Updating steps–

q
(n)
i = γy(n)

q̃
(n)
i = p̃

(n)
i + γỹ(n)

v
(n+1)
i = v

(n)
i − z

(n)
i + q

(n)
i

ṽ
(n+1)
i = ṽ

(n)
i − z̃

(n)
i + q̃

(n)
i

– Steps involving gradient and adjoint operators–

u(n) = y(n) − γ
(
2(y(n)+ ỹ(n)− ak−1) +A⊤p

(n)
1

)

ũ(n) = ỹ(n) − γ
(
2(y(n)+ ỹ(n)− ak−1) +D⊤

k p̃
(n)
1 +

∑k+1
i=2 p̃

(n)
i

)

– Updating steps–

a(n+1) = a(n) − y(n) + u(n)

d(n+1) = d(n) − ỹ(n) + ũ(n)
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Figure 1: Sum of two signals. The signal x is on the left, the results are on the middle, and a zoom of
the results is on the right. Signal is in black, traditional EMD is in blue, the optimization procedure of [8]
is in magenta, and the proposed approach is in red. The mean square errors for the different methods are
similar for a1 and d1: 8.3× 10−5 (C-EMD), 49× 10−5 (O-EMD), 7.5× 10−5 (P-EMD).
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