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Abstract. The paper describes a new RNS modular inversion algorithm
based on the extended Euclidean algorithm and the plus-minus trick. In
our algorithm, comparisons over large RNS values are replaced by cheap
computations modulo 4. Comparisons to an RNS version based on Fer-
mat’s little theorem were carried out. The number of elementary modular
operations is significantly reduced: a factor 12 to 26 for multiplications
and 6 to 21 for additions. Virtex 5 FPGAs implementations show that
for a similar area, our plus-minus RNS modular inversion is 6 to 10 times
faster.
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1 Introduction

The residue number system (RNS), or modular representation, has been pro-
posed by Svoboda and Valach in 1955 [31] and independently by Garner in
1959 [13]. It uses a base of coprime moduli (m1,m2, . . . ,mn) to split an integer
X into small integers (x1, x2, . . . , xn) where xi is the residue xi = X mod mi.
Standard representation to RNS conversion is straightforward. Reverse conver-
sion is complex and uses the Chinese remainder theorem (CRT).

Addition, subtraction and multiplication in RNS are very efficient. They work
on residues in parallel, and independently without carry propagation between
them, instead of directly with the complete number. These natural parallelism
and carry-free properties speed up those operations and provide a high level of
design modularity and scalability. Same thing applies for exact division if the
divisor is coprime with all moduli.

But other operations are more complicated in RNS. For instance, compar-
isons and sign/overflow detection are not obvious in non-positional represen-
tations. Then operations like division and modular reduction are difficult in
RNS [1]. Efficient modular reduction methods require a lot of precomputations.
Finally such representations are not supported in CAD tools.

RNS is widely used in signal processing applications: digital correlation [6],
digital filtering [25]. Comprehensive surveys are [32,29]. In such applications with
limited accuracy, RNS basis are limited to few small moduli (2 to 5 typically).
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More recently, RNS was used in cryptographic applications to speed up com-
putations over very large operands for RSA (1024–4096 bits) [23,2,21], elliptic
curve cryptography [28,22,14] (ECC, 160–550 bits), and pairings [7,11]. Non-
positional property of RNS can be used to randomize internal computations as
a protection against side channel attacks [3,8] or fault ones [8,15].

Modular inversion remains a challenge for cryptographic RNS implementa-
tions due to its high cost. There are few references on efficient modular inversion
in hardware. They are based on the Fermat’s little theorem [22,14] or variants of
the extended Euclidean algorithm [4,22]. In this paper, we propose an improve-
ment of RNS modular inversion based on the binary extended Euclidean using
the trick presented in the plus-minus algorithm [5]. The plus-minus algorithm
replaces comparisons on large numbers represented in RNS by cheap modulo 4
tests. The number of required operations is significantly reduced. The algorithm
has been validated and implemented on FPGAs for some ECC parameters.

Context and motivations are introduced Sec. 1. Notations and state-of-art
are reported Sec. 2 and 3 respectively. Proposed solution is described Sec. 4.
Its FPGA implementation, validation and comparison to state-of-art results are
presented Sec. 5, 6 and 7 respectively. Sec. 8 concludes the paper.

2 Notations and Definitions

Notations and definitions used in this paper are:

– Capital letters, e.g. X, denote large integers or elements of FP .
– A the argument to be inverted and X,Y unspecified variables.
– P an `-bit prime (for ECC ` ≈ 160–550 bits).
– |X|P denotes X mod P .
– n the number of moduli or base elements in an RNS base.
– mi a w-bit modulo, mi = 2w−ri and ri < 2bw/2c (mi is a pseudo Mersenne).
– B = (m1, . . . ,mn) the first RNS base where all mi are coprime and odd.
– B′ = (m′1, . . . ,m

′
n) the second RNS base where all m′i are coprime and with

at most one even element. All B and B′ elements are coprime.

–
−→
X represents X in RNS base B, i.e.

−→
X = (x1, . . . , xn) where xi = |X|mi

.

–
−→
X ′ represents X in RNS base B′, i.e.

−→
X ′ = (x′1, . . . , x

′
n) where x′i = |X|m′i .

– M =
∏n
i=1mi and M ′ =

∏n
i=1m

′
i.

–
−→
TB =

(∣∣∣ Mm1

∣∣∣
m1

, . . . ,
∣∣∣ Mmn

∣∣∣
mn

)
and
−−→
TB′ =

(∣∣∣M ′m′1

∣∣∣
m′1

, . . . ,
∣∣∣M ′m′n

∣∣∣
m′n

)
.

– MM(
−→
X ,
−→
X ′ ,
−→
Y ,
−→
Y ′ ) denotes RNS Montgomery multiplication (see Sec. 3).

– FLT stands for Fermat’s little theorem.

3 State-of-Art

3.1 RNS for Cryptographic Applications

RNS can be seen as a CRT application, which asserts that if all base elements are

coprime then any integer 0 6 X < M is uniquely represented by
−→
X . Conversion
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from
−→
X to X uses the CRT formula:

X = |X|M =

∣∣∣∣∣∣∣
n∑
i=1

∣∣∣∣∣xi
(
M

mi

)−1∣∣∣∣∣
mi

· M
mi

∣∣∣∣∣∣∣
M

.

Addition, subtraction and multiplication operations are simple and efficient
in RNS. If � is +,× or − then

−→
X �

−→
Y =

(
|x1 � y1|m1 , . . . , |xn � yn|mn

)
=
−−−−−−−→
|X � Y |M .

Exact division by Z coprime with M is equivalent to multiply by
−−−−−−→∣∣Z−1∣∣

M
=

(|Z−1|m1
, . . . , |Z−1|mn

). Due to the carry-free property, there is a natural inter-
nal parallelism for these operations. Computations over the moduli, or channels,
are independent from each other. Those operations are reduced modulo M and
this parameter must be sized according to the application. Throughout the rest
of the document modulo M is implicit to simplify notations.

RNS is a non-positional representation. Then comparisons and sign detection
are not easy. As a consequence, divisions and modular reductions are complex
and costly operations in RNS. Efficient RNS modular reduction and RNS modu-
lar multiplication methods have been proposed in [27,19,1,26] using adaptations
of Montgomery multiplication (cf. Algo. 5 presented in Appendix A.1). It re-
quires a specific operation called base extension (BE), introduced in [32], where

two different RNS bases B and B′ are necessary. BE(
−→
X ,B,B′) efficiently trans-

forms
−→
X (in B) into

−→
X ′ (in B′) without intermediate conversion to a standard

positional representation. State-of-art BE requires O(n2) operations on base ele-
ments (with n elements in each base) and O(n2) precomputations. Several types
of BE have been proposed in the literature. Using BE, RNS Montgomery multi-
plication (Algo. 5) is implemented into 2 steps: product of elements for each base
(line 1) and Montgomery modular reduction (lines 2–6). Then a complete RNS
MM mainly costs two BEs. This RNS MM algorithm requires the precomputa-

tion of constants:
−→
P ,
−→
P ′ ,

∣∣−P−1∣∣
M

and |M−1|M ′ (where P and M are fixed
parameters of the target cryptosystem).

RNS modular multiplication for RSA was studied in [27,19,1]. Full RSA in
RNS implementations can be found in [23,2,21]. As far as we know, the best RNS
exponentiation algorithm is described in [12]. It introduces a new representation
in the second base B′ which provides faster modular reduction. Few RNS imple-
mentations of ECC have been proposed [14,22,28]. As far as we know, the best
one is [14]. Pairing based cryptography can be implemented using RNS [7,11].

3.2 Modular Inversion

Two main kinds of modular inversion algorithms exist: those based on the Fer-
mat’s little theorem and those based on the extended Euclidean algorithm.
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For P prime and A not divisible by P , FLT states |AP−1|P = 1. Hence
|AP−2|P = |A−1|P . Using this property, any algorithm which computes |AP−2|P
is an inversion algorithm modulo P . This method has been used for hardware
RNS inversion in cryptographic applications [14,7]. In [12], a modular exponen-
tiation algorithm has been proposed. Using the same property, it can be used
to compute modular inversion. Algo. 1 uses a least significant bit first version of
this algorithm to compute a modular inversion.

Algorithm 1: FLT-RNS Modular Inversion

Input: (
−→
A ,
−→
A ′), P − 2 = (1 p`−2 . . . p0)2

Precomp.: P,
−−−→
|M |P ,

−−−−−−→
|M |′PTB′ ,

−−−−→
|M2|P ,

−−−−−−−→
|M2|′PTB′ ,

−−→
TB′ ,

−−−−−→
(TB′)

−1

Output: (
−→
S ,
−→
S′ ) = (

−−−−−−→
|AP−2|P ,

−−−−−−→
|AP−2|′P )

1 (
−→
R ,
−→
R′ )← (

−→
A ,
−→
A′ ·

−−−→
T−1
B′ )

2 (
−→
R ,
−→
R′ )← MM(

−→
R ,
−→
R′ ,
−−−−→
|M2|P ,

−−−−−−−−−→
|M2|′P · T−1

B′ )

3 (
−→
S ,
−→
S′ )← (

−−−→
|M |P ,

−−−−−−−−→
|M |′P · T−1

B′ )
4 for i = 0 · · · `− 2 do

5 if pi = 1 then (
−→
S ,
−→
S′ )← MM(

−→
S ,
−→
S′ ,
−→
R ,
−→
R′ )

6 (
−→
R ,
−→
R′ )← MM(

−→
R ,
−→
R′ ,
−→
R ,
−→
R′ )

7 (
−→
S ,
−→
S′ )← MM(

−→
S ,
−→
S′ ,
−→
R ,
−→
R′ )

8 (
−→
S ,
−→
S′ )← MM(

−→
S ,
−→
S′ ,
−→
1 ,
−−−→
T−1
B′ )

9
−→
S′ ←

−−−−−→
S′ · TB′

10 return (
−→
S ,
−→
S′ )

The Euclidean algorithm [20] computes the greatest common divisor (GCD)
of two integers X and Y . When these integers are coprime, it can be extended to
compute U1 and U2 such that U1X = U2Y +1. Then U1 = |X−1|Y . Below we use
X = A and Y = P . A version of the RNS Euclidean algorithm using quotient
approximation has been proposed in [4] (but without complexity evaluation nor
implementation results).

The binary Euclidean algorithm has been proposed in [30]. It replaces divi-
sions by subtractions, halving even numbers and parity tests. The two aforemen-
tioned operations are straightforward in binary representation. Algo. 2 presents
the extended version of this algorithm (solution to exercise 39 § 4.5.2 in [20]).
At each main loop iteration, V1A+V2P = V3, hence if V3 = 1 then V1 = |A−1|P .
Same thing applies for U1A + U2P = U3. In [22], an RNS binary extended Eu-
clidean algorithm has been implemented but not detailed. A 48 % reduction of
the number of clock cycles is achieved compared to Fermat exponentiation for
P-192 NIST prime [24] and 32-bit moduli.

The plus-minus algorithm from [5] proposes a modification of the binary
GCD [30] where comparison line 9 in Algo. 2 is replaced by a modulo 4 test.

ha
l-0

08
25

74
5,

 v
er

si
on

 1
 - 

24
 M

ay
 2

01
3



Algorithm 2: Binary Extended Euclidean from [20]§ 4.5.2

Input: A,P ∈ N, P > 2 with gcd(A,P ) = 1
Output: |A−1|P

1 (U1, U3)← (0, P ), (V1, V3)← (1, A)
2 while V3 6= 1 and U3 6= 1 do
3 while |V3|2 = 0 do

4 V3 ← V3
2

5 if |V1|2 = 0 then V1 ← V 1
2

else V1 ← V 1+P
2

6 while |U3|2 = 0 do

7 U3 ← U3
2

8 if |U1|2 = 0 then U1 ← U1
2

else U1 ← U1+P
2

9 if V3 ≥ U3 then V3 ← V3 − U3, V1 ← V1 − U1

10 else U3 ← U3 − V3, U1 ← U1 − V1

11 if V3 = 1 then return |V1|P else return |U1|P

This trick is very interesting for non-positional representations such as RNS.
Various extended versions of plus-minus algorithm have been proposed to com-
pute modular inversion [18,9,10]. Algo. 3 from [10] is one of these extensions. Its
main idea comes from the fact that when U3 and V3 are odd, then V3 + U3 or
V3 − U3 is divisible by 4.

Algorithm 3: Plus-Minus Extended GCD from [10]

Input: A,P ∈ N with gcd(A,P ) = 1, ` = dlog2 P e
Output: |A−1|P

1 (U1, U3)← (0, P ), (V1, V3)← (1, A), u← `, v ← `
2 while v > 0 do
3 if |V3|4 = 0 then
4 V3 ← V3/4, V1 ← div4(V1, P ), v ← v − 2
5 else if |V3|2 = 0 then
6 V3 ← V3/2, V1 ← div2(V1, P ), v ← v − 1
7 else
8 V ∗3 ← V3, V ∗1 ← V1, u∗ ← u, v∗ ← v
9 if |U3 + V3|4 = 0 then

10 V3 ← (V3 + U3)/4, V1 ← div4(V1 + U1, P )
11 else
12 V3 ← (V3 − U3)/4, V1 ← div4(V1 − U1, P )
13 if v < u then
14 U3 ← V ∗3 , U1 ← V ∗1 , u← v∗ , v ← u∗ − 1
15 else v ← v − 1

16 if U1 < 0 then U1 ← U1 + P
17 if U3 = 1 then return U1 else return P − U1
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Function div2 corresponds to tests lines 5 and 8 in Algo. 2, i.e. div2(V1, P ) =
V1/2 or (V1 + P )/2. This function produces |div2(V1, P )|P = |V1/2|P . Function
div4(V1, P ) computes |V1/4|P . For instance if |P |4 = 3 then

div4(V1, P ) =


V1/4 if |V1|4 = 0
(V1 + P )/4 if |V1|4 = 1
(V1 + 2P )/4 if |V1|4 = 2
(V1 − P )/4 if |V1|4 = 3

Finally, all those inversion methods require O(`) iterations of the main loop.
The number of operations in each iteration depends on the algorithm.

4 Proposed RNS Modular Inversion Algorithm

The proposed RNS modular inversion combines the binary extended Euclidean
algorithm and the plus-minus trick to remove comparisons between large RNS
integers. Then, both fast modular reduction and fast exact division by 2 and 4
are required. There are two strategies for implementing these operations. First,
one element mγ of the RNS base can be set to a multiple of 4 (in that case
mγ does not follow notations from Sec. 2). Then reduction modulo 4 is easy
but it forbids divisions by 4 modulo mγ . Second, selecting an RNS base with

only odd moduli enables division by 4 (just multiply by
−−→
4−1 ) but it makes

difficult modular reduction. Cost of both strategies has been evaluated. In the
first strategy, divisions by 4 are replaced by BEs from other moduli to mγ , which
costs more than our modular reduction by 4 for the second strategy. Then the
second strategy with only odd moduli for B is used.

Our modular inversion algorithm is presented in Algo. 4. It stops when V̂3

or Û3 = ±̂1. X̂ will be completely defined below. It corresponds to
−→
X added

to a well chosen constant and multiplied by a specific factor used several times.
Somehow X̂ can be seen as a special representation of X. Like in other binary
Euclidean algorithms, |V1A|P = V3 and |U1A|P = U3. If V3 = 1 (resp. −1), then

Algo. 4 returns V1 (resp. −V1). Lines 17–20 in Algo. 4 transform back V̂1 (resp.

Û1) to
−→
V1 (resp.

−→
U1 ).

Function div2r(X̂, r, bX) replaces div2 (resp. div4) used above for r = 1

(resp. r = 2) in the case of RNS vector X̂ and bX = |X̂|4 (computed by mod4
as detailed below).

Using the second strategy, computation of |X|4 is complicated. From CRT

formulæ X =
∑n
i=1 x̃i

M
mi
−qM where x̃i =

∣∣∣∣xi (Mmi

)−1∣∣∣∣
mi

and q =

⌊∑n
i=1 x̃i

M
mi

M

⌋
,

one has:

|X|4 =

∣∣∣∣∣
n∑
i=1

|x̃i|4 ·
∣∣∣∣Mmi

∣∣∣∣
4

− |q ·M |4

∣∣∣∣∣
4

(1)
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Algorithm 4: Proposed Plus Minus RNS Modular Inversion (PM-RNS)

Input:
−→
A ,P > 2 with gcd(A,P ) = 1

Precomp.:
−→
C ,
−−→
C/2 ,

−−−−−→
(3C/4) ,

−−−−−−−→
(PT−1

B )/4 ,
−−−−−−−−−→
(−PT−1

B )/4 ,
−−−−−−−→
(PT−1

B )/2 ,
−→
TB ,
−−−→
T−1
B , |P |4

Result:
−→
S =

−−−−−→
|A−1|P , 0 6 S < 2P

1 u← 0, v ← 0, Û1 ← 0̂ , Û3 ← P̂ , V̂1 ← 1̂, V̂3 ← Â

2 bV1 ← 1, bU1 ← 0, bU3 ← |P |4, bV3 ← mod4(V̂3)

3 while V̂3 6= 1̂ and Û3 6= 1̂ and V̂3 6= −̂1 and Û3 6= −̂1 do
4 while |bV3 |2 = 0 do
5 if bV3 = 0 then r ← 2 else r ← 1

6 V̂3 ← div2r(V̂3, r, bV3), V̂1 ← div2r(V̂1, r, bV1)

7 bV3 ← mod4(V̂3), bV1 ← mod4(V̂1), v ← v + r

8 V̂ ∗3 ← V̂3 , V̂ ∗1 ← V̂1

9 if |bV3 + bU3 |4 = 0 then

10 V̂3 ← div2r(V̂3 + Û3−
−→
C , 2, 0), V̂1 ← div2r(V̂1 + Û1−

−→
C , 2, |bV1 + bU1 |4)

11 bV3 ← mod4(V̂3), bV1 ← mod4(V̂1)

12 else

13 V̂3 ← div2r(V̂3− Û3 +
−→
C , 2, 0), V̂1 ← div2r(V̂1− Û1 +

−→
C , 2, |bV1 − bU1 |4)

14 bV3 ← mod4(V̂3), bV1 ← mod4(V̂1)

15 if v > u then Û3 ← V̂ ∗3 , Û1 ← V̂ ∗1 , swap(u, v)
16 v ← v + 1

17 if V̂3 = 1̂ then return (V̂1 −
−→
C )
−→
TB +

−→
P

18 else if Û3 = 1̂ then return (Û1 −
−→
C )
−→
TB +

−→
P

19 else if V̂3 = −̂1 then return −(V̂1 −
−→
C )
−→
TB +

−→
P

20 else return −(Û1 −
−→
C )
−→
TB +

−→
P

To speed up computation of Eqn. (1), we select all (odd) moduli in B as
|mi|4 = 1. Then Eqn. (1) becomes:

|X|4 =

∣∣∣∣∣
n∑
i=1

|x̃i|4 − |q|4

∣∣∣∣∣
4

. (2)

Function mod4 evaluates Eqn. (2) by computing the two terms:
∣∣∣∑n

i=1 |x̃i|4
∣∣∣
4

and |q|4 (obtained from q). Finally, these terms are subtracted modulo 4.

In the first term, computations x̃i =

∣∣∣∣xi (Mmi

)−1∣∣∣∣
mi

for all moduli is
−−−−→
XT−1B

which can be performed once at the beginning of Algo. 4. Only one multiplication

by
−−→
T−1B is required in expressions of

−→
X which contain linear combinations of

RNS terms. For instance
−−−−−−−→
(X/4)T−1B +

−−−−→
Y T−1B =

−−−−−−−−−−−→
(X/4 + Y )T−1B . All operations

on RNS values in Algo. 4 are linear as well as div2r (see below). The first term is
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obtained by the sum modulo 4 of all
−−−−→
XT−1B elements. In our algorithm,

−−−−→
XT−1B

is a part of X̂.

The computation of the second term |q|4 uses q′ an approximation of q as
proposed in [19] with:

q′ =

⌊
α+

n∑
i=1

trunc(x̃i)

2w

⌋
, (3)

where trunc(x̃i) keeps the t most significant bits of x̃i and set the other ones
to 0. Constant parameter t is chosen depending on B, B′ and P (see [19] for
details). In our case, t = 6 is selected. [19] proves that q′ = q for constraints
0 6 n · errmax 6 α < 1 and 0 6 X 6 (1−α)M for a chosen α and where errmax
is the approximation error. Choosing moduli that fit these constraints is easy.
We use state-of-art results from [14]: M > 45P , M ′ > 3P , 0 6 X < 3P and
α = 0.5. Values x̃i are already computed in the first term.

Now the problem is that negative values can be generated by subtractions
at line 13 in Algo. 4. In such cases, direct computation of q using Eqn. (1) may
be false. Our plus-minus RNS modular inversion algorithm ensures X > −P for
all intermediate values X. The idea is to select a constant C0 > P such that
X + C0 > 0. We choose |C0|4 = 0, hence |X|4 = |X + C0|4. In practice, a good

choice is
−→
C0 =

−−→
4P since computing

−−−−−→
X + C0 instead of

−→
X provides a correct

value modulo P but with a different domain ([3P, 5P [ instead of [0, 2P [).

Let us define X̂ =
−−−−−−−−−−→
(X + C0)T−1B . The value X̂ behaves as an RNS repre-

sentation of X which handles correctly negative values (using C0 the value X̂
is always non-negative) and the common factor T−1B . This representation al-

lows to compute mod4 function from Eqn. (2). We introduce
−→
C =

−−−−−→
C0T

−1
B then

X̂ =
−−−−−−−−→
XT−1B + C .

Function div2r(X̂, r, bX) correctly handles representation X̂ (propagation of
−→
C ). For r = 2, div2r(X̂) = div4(X̂) +

−−−→
3C/4 = ̂div4(X). For r = 1, div2r(X̂) =

div2(X̂) +
−−→
C/2 = ̂div2(X).

Each function div4 or div2 is an addition of a variable and a selected constant
(2 possible constants for div2 and 4 for div4). Then div2r is the addition of a
variable and 2 constants. To speed up the computations, we precompute all
possible combinations of the 2 constants. Then div2r requires only one addition.

In the proposed algorithm, there are computations over only one base because
no modular reduction is needed. Each main loop iteration (lines 3–16) in Algo. 4
has a bounded part (lines 8–16) and unbounded part (inner loop at lines 4–7).
We will see in Sec. 7 that the number of iterations of the inner loop is very small
in practice (about 2/3 inner loop iteration per main loop iteration). The average
number of RNS operations is small for each main loop iteration (and each RNS
operation requires n operations over base elements).
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5 Architecture and FPGA Implementation

Both state-of-art FLT based version (denoted FLT-RNS) and our plus-minus
version (denoted PM-RNS) of modular inversion algorithms have been imple-
mented on FPGAs. As we target the complete design of cryptographic RNS
processors for ECC applications in the future, we use an architecture similar to
the state-of-art one presented in [14]. The overall architecture depicted in Fig. 1
and global architecture-level optimizations are shared for both versions. Some
components are specialized and optimized for efficiency purpose for each version.
The architecture is based on cox-rower components introduced in [19]. The ar-
chitecture is decomposed into n channels, where each channel is in charge of the
computation for one base element over w bits values (in both B and B′ bases
when BE is used for the FLT-RNS version). Control, clock and reset signals are
not totally represented in Fig. 1. Control signals are just represented by very
short lines terminated by a white circle (e.g. ).

rower 1

w

w

rower 2

w

w

. . .

. . .

rower n

w

w

cox

q

s

. . .
...

. . .

t+ 2

...

dlog2 ne

...

re
gi
st
er
s

I/O

w
channel 1

w w

channel 2

w w

channel n

w w

. . .

. . .

CTRL

Fig. 1. Global architecture.

There is one rower unit per channel. It contains a w-bit arithmetic unit (AU),
local registers for intermediate values and constant memories for precomputa-
tions. Implemented AU is the 6-stage unit described in [14] which is optimized
for ECC operations. It can compute at each cycle:

U(xi, yi, β, δ, di) = |xi · yi + β · U∗ + δ · di|mi
(4)
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with β , δ ∈ {0, 1} and U∗ is the result of the previous cycle. Constant memories
in rowers contain 19 precomputed values for:

– multiplication by yi in Eqn. (4).
– addition by di in Eqn. (4).
– ri and r′i where mi = 2w − ri and m′i = 2w − r′i.

There is one cox unit in the architecture. The cox unit for our plus-minus
version is different from the one used in [14] for the FLT-RNS version. It com-

putes the sum q defined in Eqn. (3) and the sum s =
∣∣∣∑n

i=1 |x̃i|4
∣∣∣
4
. There are

n inputs of t-bit numbers to compute q and n other inputs of 2-bit numbers
to compute s. The cox inputs are (t + 2)-bit values obtained from the rower

w-bit outputs (small squares between rowers and cox are just bit extraction and
routing of t MSBs and 2 LSBs of the w bits). The 2-bit output s is sent to the
controller. The dlog2 ne-bit output q is broadcasted to all rowers. The 2 LSBs
of q are sent to the controller (bit extraction is performed by a specific small
square).

The global register file on top of Fig. 1 has 4 registers with (n×w)-bit words.
These words are decomposed over the n channels with one specific input and
output for each channel. This register file is also used for communications with
the host through the I/O w-bit port (top left).

Architectures for both FLT-RNS and PM-RNS versions of the modular inver-
sion have been implemented on Virtex 5 FPGAs: on a XC5VLX50T for ` = 192
bits and on a XC5VLX220 for ` = 384. Synthesis as well as place-and-route
tools have been used with standard effort and for speed optimization. To eval-
uate the impact of dedicated hard blocks, two variants have been implemented:
one with DSP blocks and block RAMs (36Kb for Virtex 5 FPGAs) and one
without dedicated blocks. The complete implementation results are presented in
Appendix A.2 Tab. 1 for the variant with dedicated hard blocks and Tab. 2 for
the one without dedicated hard blocks. Timing (resp. area) aspects are summa-
rized in Fig. 2 (Fig. 3). Both versions (FLT-RNS and PM-RNS) have similar
areas for almost all parameters. For w > 25 bits, frequency falls due to the use
of multiple 25 × 18-bit DSP blocks for one multiplication in the rowers (see
Appendix A.2).

6 Validation

The RNS representation in Algo. 4 just affects the way internal operations
are handled but not the algorithm behavior. The algorithm was tested using
Maple 15 over many different random values for A the argument to be inverted,
for modulo values P-160, P-192, P-256, P-384 and P-521 (see [17]), for at least
2 sets of bases for each length. Total number of tests is about 700 000.

A few (about 10) VHDL simulations have been performed for both P-192
and P-384 configurations to check the complete implementation. For other con-
figurations, the architecture has been tested for 2 or 3 random input values.
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7 Comparison to State-of-Art

Both state-of-art (FLT-RNS) and our proposed modular inversion (PM-RNS)
algorithms have O(`) iterations of the main loop for `-bit arguments. So the
main difference comes from internal computations. Below we denote elementary
w-bit operations:

– EMA a w-bit elementary modular addition, e.g. |xi ± yi|m.
– EMM a w-bit elementary modular multiplication, e.g. |xi × yi|m.
– Cox-add is an addition of two t-bit numbers.
– Mod4-add is an addition of two 2-bit numbers modulo 4 (the cost of this

operation is very small).

For evaluating the cost of the FLT-RNS version presented in Algo. 1 (used
with |AP−2|P = |A−1|P ), one has to determine the number of operations at
lines 5 and 6. At line 6, MM is executed at each iteration. At line 5, MM is
executed with a probability 1/2 for a randomly chosen argument. One MM
costs 2n2 + 6n EMMs, 2n2 + n EMAs and 2n cox-adds. Thus, Algo. 1 average
complexity is O(`× n2) EMMs and EMAs.

For evaluating the cost of our algorithm presented in Algo. 4, one has to
evaluate the cost of mod4 and div2r. Function mod4 computes q using n cox-
adds and n+ 1 mod4-adds (|q|4 +

∑n
i=1 |x̃i|4). Function div2r requires n EMMs

(multiplication by 4−1 or 2−1) and n EMAs. The number of iterations in the
inner loop at lines 4–7 has to be evaluated. The probability to get only one
iteration is 1

2 (|V3|2 = 0), to get only two iterations is 1
8 (|V3|8 = 0), and for only

j iterations it is 1
2·4j−1 . Then, on average the number of iterations of the inner

loop is 1
2

∑∞
j=0

1
4j = 2

3 . Each iteration of the inner loop requires 2 mod4 and
2 div2r. This leads to 2n EMMs, 2n EMAs, 2n cox-adds and 2n+ 2 mod4-adds.
Bounded part at the end of the main loop lines 9–16, there are 2 mod4 and
2 div2r, this leads to 2n EMMs, 4n EMAs, 2n cox-adds and 2n+ 2 mod4-adds.
Formal evaluation of the number of the main loop iterations is very complex.
We used statistical tests over 700 000 values on various cryptographic sizes `.
These tests give on average 0.71` iterations. This is close to 0.70597` which is
the estimation presented in [20](pp. 348–353) for the classical binary Euclidean
Algo. 2. To conclude, Algo. 4 has average complexity of O(` × n) EMMs and
EMAs. In Appendix A.3, Tab. 3 details actual values for several configurations.

Accurately estimating efficiency of parallel architectures is difficult. [16] es-
timates about 10 % the number of idle cycles in rowers for a complete ECC
RNS scalar multiplication. These idle cycles mainly occur during modular in-
versions and conversions binary to/from RNS. They represent 7040 cycles for
n = 6 base elements and ` = 192 bits (20250 cycles for n = 12 and ` = 384).
Because conversions are much faster than modular inversion, those numbers are
good approximations of the number of idle cycles for state-of-art modular in-
version presented in [14,16]. We estimate the number of idle cycles about 60 to
65 % in this architecture. Our FLT-RNS implementation only has from 25 (for
NIST primes) to 40 % (for random primes) idle cycles and does fewer operations
thanks to the trick proposed in [12].
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8 Conclusion

A new RNS modular inversion algorithm based on the extended Euclidean al-
gorithm and the plus-minus trick has been proposed. Using this trick, compar-
isons over large RNS values are replaced by cheap tests modulo 4. Removing
comparisons is important for RNS implementations since it is a non-positional
representation.

The number of operations over RNS channels is significantly reduced: by a
factor 12 to 26 for elementary modular multiplications and by a factor 6 to 21
for elementary modular additions compared to inversion based on the Fermat’s
little theorem. Implementations on Virtex 5 FPGAs show that for similar areas
our plus-minus RNS modular inversion is 6 to 10 times faster than the FLT-RNS
version.

In a near future, we plan to evaluate the performances of a complete ECC
scalar multiplication using our plus-minus RNS modular inversion. We also plan
to evaluate power consumption aspects for ASIC implementations.
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A Appendix

A.1 Secondary Algorithms

Algorithm 5: RNS Montgomery Multiplication (MM) [27]

Input: (
−→
X ,
−→
X ′ ), (

−→
Y ,
−→
Y ′ )

Precomp.: (
−→
P ,
−→
P ′ ),

∣∣−P−1
∣∣
M
, |M−1|M′

Output:
−→
S′ and

−→
S =

−−−−−−−−−−−→∣∣∣XY |M−1|P
∣∣∣
P

+ ε
−→
P with ε ∈ {0, 1}

1
−→
U ←

−→
X ×

−→
Y ,

−→
U ′ ←

−→
X ′ ×

−→
Y ′

2
−→
Q ←

−→
U ×

−−−−−−−−→∣∣(−P−1)
∣∣
M

3
−→
Q′ ← BE(

−→
Q ,B,B′)

4
−→
R′ ←

−→
U ′ +

−→
Q′ ×

−→
P ′

5
−→
S′ ←

−→
R′ ×

−−−−−−→
|M−1|M′

6
−→
S ← BE(

−→
S′ ,B′,B)

7 return (
−→
S ,
−→
S′ )ha
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A.2 Complete Implementation Results

Area Freq. Number Duration

Algo. ` n× w slices (FF/LUT) DSP BRAM MHz of cycles µs

FLT-RNS

192

12× 17 2473 (2995/7393) 26 0 186 13416 72.1

9× 22 2426 (3001/7150) 29 0 185 11272 60.9

7× 29 2430 (3182/6829) 48 0 107 9676 90.4

384

18× 22 4782 (5920/14043) 56 0 178 34359 193.0

14× 29 5554 (5910/16493) 98 14 110 28416 258.3

12× 33 5236 (5710/15418) 84 12 107 25911 242.1

PM-RNS

192

12× 17 2332 (3371/6979) 26 0 187 1753 9.3

9× 22 2223 (3217/6706) 29 0 187 1753 9.3

7× 29 2265 (3336/6457) 48 0 120 1753 14.6

384

18× 22 4064 (5932/13600) 56 0 152 3518 23.1

14× 29 4873 (6134/14347) 98 14 102 3518 34.4

12× 33 4400 (5694/12764) 84 24 103 3518 34.1

Table 1. FPGA implementation results with dedicated hard blocks.

Area Freq. Number Duration

Algo. ` n× w slices (FF/LUT) DSP BRAM MHz of cycles µs

FLT-RNS

192

12× 17 4071 (4043/12864) 4 0 128 13416 104.8

9× 22 4155 (3816/13313) 4 0 122 11272 92.3

7× 29 4575 (3952/15264) 0 0 126 9676 76.7

384

18× 22 7559 (7831/27457) 0 0 163 34359 210.7

14× 29 9393 (7818/30536) 0 0 126 28416 225.5

12× 33 9888 (7640/31599) 0 0 107 25911 242.1

PM-RNS

192

12× 17 3899 (4212/12519) 4 0 150 1753 11.6

9× 22 3809 (3986/12782) 4 0 146 1753 12.0

7× 29 4341 (4107/14981) 0 0 141 1753 12.4

384

18× 22 7677 (8053/128306) 0 0 168 3518 20.9

14× 29 9119(8113/30619) 0 0 127 3518 27.7

12× 33 9780 (7908/31902) 0 0 108 3518 32.5

Table 2. FPGA implementation results without dedicated hard blocks.
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A.3 Complete Comparison Results

Algo. ` n× w w-bit EMM w-bit EMA cox-add mod4-add

FLT-RNS

192

12× 17 103140 85950 6876 0

9× 22 61884 48991 5157 0

7× 29 40110 30083 4011 0

384

18× 22 434322 382617 20682 0

14× 29 273462 233247 16086 0

12× 33 206820 172350 13788 0

FLT-RNS

192

12× 17 137520 114600 9168 0

9× 22 85512 65322 6876 0

7× 29 53480 40110 5348 0

384

18× 22 579096 510156 27576 0

NIST 14× 29 364616 310996 21448 0

12× 33 275760 229800 18 384 0

PM-RNS

192

12× 17 5474 8750 5474 5930

9× 22 4106 6562 4106 4562

7× 29 3193 5104 3193 3650

384

18× 22 16487 26376 16487 17402

14× 29 12823 20514 12823 13738

12× 33 10991 17584 10991 11907

Table 3. Comparison of operation numbers.
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