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Abstract

We propose a probabilistic model for a system at a threshold of instability. The distribu-

tion of residence times below the threshold that characterizes the properties of the system is

studied analytically in various cases.
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1 Introduction

Systems driven by random processes at a threshold of instability, may exhibit a random

switching of a signal between a quiescent (stable) and a bursting (unstable) state. Such an
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intermittent behavior is observed in a broad class of different systems in physics and nonlinear

dynamics. Depending on its origin, the intermittent behavior either corresponds to the classifi-

cation proposed by Pomeau-Manneville [1] (the I-III types intermittency) or shows the features

characteristic of crisis-induced intermittency [2]. In both cases, the parameters of the mod-

els are static. Another example of intermittent behavior, called on-off intermittency, has been

introduced in [3] and then observed numerically and experimentally [4]-[14]. The mechanism

for this type of intermittency relies on a random forcing of a bifurcation parameter through a

bifurcation point.

The ergodic properties of a system at a threshold of instability can be partially characterized

by the distribution of the quiescent times (the durations of laminar phases) P (t). Indeed, a

complete characterization of the statistical properties of the system would imply the knowledge

of residence times distribution in all the regions of phase space and not only in the laminar

regions. However, the former is the first important statistical indicator of such a dynamics and

this is the reason why we focus on the quiescent times distribution in the present study.

Depending on the particular type of intermittency exhibited by the system, the distribution

P (t) can display either an exponential or an inverse power law tail of exponent γ. In particular,

the power law statistics of the quiescent times distribution is claimed to be typical for the systems

showing the on-off type intermittency, and the value of exponent γ depends in general on the

nonlinearity characteristic of the dynamical system considered [13]. For example, in experiments

on ion-acoustic instabilities in a laboratory plasma [14], due to nonlinear effects, the exponent

of the power law depends on the value of a control parameter.

In the present paper, we investigate the effect produced on the statistics of laminar phases by
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the stochastic fluctuations of a system state variable (a bifurcation parameter) near the fluctu-

ating threshold of instability (a bifurcation point). In our study, we do not refer to any definite

physical system displaying an intermittent behavior. For the toy model which we introduce,

the bifurcation parameter and the bifurcation point are considered as random independent vari-

ables. It is supposed that intermittency takes place in the system, when the process crosses the

threshold value.

The control parameter of the system is the number η ∈ [0, 1], which represents a relative fre-

quency of fluctuation of the threshold value: varying the parameter η amounts to modifying the

relation between the characteristic time scales of the threshold variable and of the state variable.

At η = 0 (when the state and the threshold varible have the same time scale) the statistics of

laminar phases is exponential, while at η = 1 (the limiting case of quenched threshold) it can be

power law; for the intermediate values 0 < η < 1, the statistics is mixed, becoming exponential

for sufficiently large times.

In general, the statistics of laminar phases depends on the statistics of the random system

state variable and threshold. We believe that the investigation of such a simple model could

shed light on the dynamical origin of intermittent behavior occurring in more complex physical

systems near a bifurcation point.

Let us notice that this model reproduces, in an extremely simplified manner, certain features

of the dynamics of a weakly chaotic Hamiltonian system, with islands of stability in the phase

space. The orbit of such a system (described by our state variable) typically stays for long times

in the vicinity of a stability island until the moment when it crosses the separatrix (described

by our threshold variable): the orbit then rapidly moves to other regions of phase space, until
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it reaches the neighborhood of another island, and the process starts again [15]. The evolution

of the system is a succession of laminar phases, where diffusion dominates, and of flights; an

important indicator of the statistical properties of the system is precisely the distribution of exit

times from the neighborhood of an island of stability (corresponding to our P (t)).

The outline of the paper is as follows. In Sec. 2, we describe the model we introduce. In

Sec. 3, we compute the distribution of residence times below the threshold with a generating

functions approach. In many cases, the resulting distribution can be found explicitly. In Sec. 4,

we consider the case of uniform statistics of the system state variable and threshold. Section 5

is devoted to conclusions.

2 Description of the model

Let us suppose that the state of a system can be characterized by a real number x ∈ [0, 1].

Another real number y ∈ [0, 1] plays the role of a threshold of stability. The system is stable as

long as x < y and exhibits a sudden transition to the irregular state otherwise (x ≥ y).

We consider x as a random variable distributed with respect to some given probability

distribution function P{x < u} = F (u). In an analogous way, the value of the threshold y is

also a random variable distributed over the interval [0, 1] with respect to some other probability

distribution function (pdf) P{y < u} = G(u). In general, F and G are two arbitrary left-

continuous increasing functions satisfying the normalization conditions F (0) = G(0) = 0, F (1) =

G(1) = 1.

Given a fixed real number η ∈ [0, 1], we define a discrete time random process in the following

way. At time t = 0, the variable x is chosen with respect to pdf F , and y is chosen with respect
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to pdf G. If x < y, the process continues and goes to time t = 1. At time t ≥ 1, the following

events happen:

i) with probability η, the random variable x is chosen with pdf F but the threshold y keeps

the value it had at time t − 1. Otherwise,

ii) with probability 1 − η, the random variable x is chosen with pdf F , and the threshold y

is chosen with pdf G.

If x ≥ y, the process ends; if x < y, the process continues and goes to time t + 1.

Eventually, at some time step t, when the state variable x exceeds the threshold value y,

the process stops, the system destabilizes, and the integer value t = T acquired in this random

process limits the duration of the laminar phase. The system then regains the stable state, when

x < y, and the process starts again.

While studying the above model, we are interested in the distribution of the duration of

laminar phases Pη(T ; F, G) provided the probability distributions F and G are given and the

control parameter η is fixed.

Even if in our model the state variable x is treated as a random variable, what is really

important in what follows is the corresponding pdf F . It would be in fact possible to treat x as

a deterministic dynamical variable defined by the iterated images of a map of the interval [0, 1].

In this case we would assume the existence of an invariant ergodic (Bernoulli) measure dF , for

which x is a generic orbit.

It is also to be noticed that the model proposed resembles closely to the coherent-noise

models [16]-[17] discussed in connection with a standard sandpile model [18] in self-organized

criticality, where the statistics of avalanche sizes and durations take power law forms. No exact
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analytical results concerning the coherent-noise models have been obtained so far. The model

we propose has not been discussed in the literature before and, in principle, is much simpler

than those discussed in [16]-[17], since it does not involve any spatial dynamics typical of such

extended systems with quenched memory as the original sandpile models.

3 Distribution of residence times below the threshold

We are interested in the probability Pη(T ; F, G) that the random process introduced in

the previous section ends precisely at time T with a crossing of the threshold, provided the

distributions F and G are given and η is fixed. We shall denote Pη(T ; F, G) simply as P (T ). A

straightforward computation shows directly from the definitions of Sec. 2 that

P (0) =

∫ 1

0
dG(y) (1 − F (y)) .

For T ≥ 1, the system can either stay below the threshold in the laminar state ( a ”survival”)

(S) or cross the threshold to a burst state (a ”death”) (D). Both events can take place either in

the ”correlated” way (with probability η; see i) in Sec. 2) (we denote them Sc and Dc), or in

the ”uncorrelated” way (with probability 1 − η; see ii) in Sec. 2) (Su and Du). For T = 1, we

have for example:

P (1) = P [SDc] + P [SDu]

=

∫ 1

0
dG(y)F (y) η (1 − F (y))

+

∫ 1

0
dG(y)F (y) (1 − η)

∫ 1

0
dG(z) (1 − F (z)) =

= ηB(1) + (1 − η)A(1)B(0) .
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Similarly,

P (2) = η2B(2) + η(1 − η)A(1)B(1) + η(1 − η)A(2)B(0) + (1 − η)2A(1)2B(0) ,

where we define, for n = 0, 1, 2, . . . ,

A(n) =

∫ 1

0
dG(y)F (y)n , (1)

and

B(n) =

∫ 1

0
dG(y)F (y)n (1 − F (y)) = A(n) − A(n + 1) . (2)

The general formula for P (T ), for all T ≥ 3, is given in Appendix A.

It is useful to introduce the generating function of P (T ):

P̂ (s) =
∞

∑

T=0

sT P (T )

The generating property of the function P̂ (s) is such that

P (T ) =
1

T !

dT P̂ (s)

dsT

∣

∣

∣

∣

∣

s=0

. (3)

Defining the following auxiliary functions

p(l) = ηlA(l + 1) , for l ≥ 1 , p(0) = 0 ,

q(l) = (1 − η)lA(1)l−1 , for l ≥ 1 , q(0) = 0 ,

r(l) = ηl [ηB(l + 1) + (1 − η)A(l + 1)B(0)] , for l ≥ 1, r(0) = 0 ,

ρ = ηB(1) + (1 − η)A(1)B(0) , (4)

we find

P̂ (s) = B(0) + ρs +
s

1 − p̂(s)q̂(s)
[r̂(s) + ρp̂(s)q̂(s) + ρA(1)q̂(s) + A(1)q̂(s)r̂(s)] , (5)
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where p̂(s), q̂(s), r̂(s) are the generating functions of p(l), q(l), r(l), respectively.

In the marginal cases η = 0 and η = 1, the probability P (T ) can be readily calculated. For

η = 0, equations (4), (5) give

P̂η=0(s) =
B(0)

1 − sA(1)
. (6)

Applying the inverse formula (3) to equation (6), one gets

Pη=0(T ) = A(1)T B(0) =

[∫ 1

0
dG(y)F (y)

]T ∫ 1

0
dG(y) (1 − F (y)) .

Therefore, in this case, for any choice of the pdf F and G, the probability P (T ) decays expo-

nentially.

For η = 1, equations (4), (5) yield

P̂η=1(s) = B̂(s) ,

so that,

Pη=1(T ) = B(T ) =

∫ 1

0
dG(y)F (y)T (1 − F (y)) . (7)

3.1 Some examples of decay in the correlated case η = 1

We have just seen that, in the uncorrelated case η = 0, the probability P (T ) decays exponentially

for any choice of the pdf’s F and G.

In the correlated case η = 1, many different types of behavior are possible, depending on

the form of F and G. We will examine an important class of pdf’s, for which Pη=1(T ) can be

explicitly computed from equation (7). We will take F and G absolutely continuous with respect
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to the Lebesgue measure, with

dF (u) = (1 + α) uα du , α > −1 ,

dG(u) = (1 + β)(1 − u)β du , β > −1 .

Here we recognize the family of invariant measures of a map of the interval with a fixed neutral

point [20].

Equation (7) gives in this case:

Pη=1(T ) =
Γ(2 + β) Γ(1 + T (1 + α))

Γ(2 + β + T (1 + α))
−

Γ(2 + β) Γ(1 + (T + 1)(1 + α))

Γ(2 + β + (T + 1)(1 + α))
.

Using Stirling’s approximation, we get for T ≫ 1:

Pη=1(T ) =
(1 + β) Γ(2 + β) (1 + α)−1−β

T 2+β

(

1 + 0

(

1

T

))

. (8)

For different values of β, the exponent of the threshold distribution, we get all possible

(normalizable) power law decays of Pη=1(T ). Notice that the exponent (−2 − β) characterizing

the decay of Pη=1(T ) is independent of the distribution F of the state variable.

We were not able to prove that the asymptotic decay of Pη=1(T ) is algebraic for any choice

of the distributions F and G; nevertheless, we have not found any counterexample contradicting

this conjecture. Let us consider in particular the case of F uniform (the results of this section

suggest in fact that what determines the decay of P (T ) is mostly the threshold pdf G): Pη=1(T )

is then a particular case of a Riemann-Liouville integral, and we did not find any case of non

algebraic decay for large T in the tables [19].
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3.2 Upper and lower bounds for P (T ) for any η

We now compute bounds for P (T ), valid for any η and any T ≥ 3, starting from its expression

given in Appendix A.

We will use the fact that

A(1)n ≤ A(n) ≤ A(1) and 0 ≤ B(n) ≤ A(1) , n = 1, 2, ... .

The upper bound for A(n) is trivial, since 0 ≤ F (y) ≤ 1 for any y ∈ [0, 1]. The lower bound is

a consequence of Jensen’s inequality, and of the fact that the function x :→ xn is convex on the

interval ]0, 1[ for any integer n.

We now replace these bounds for A(n) and B(n) in equations (17) to (20), and the resulting

expressions in all the terms of the sum (16), except the one corresponding to the index n = 0 in

PI(T ). (This term, which corresponds to a sequence of correlated survivals, has to be treated

separately, in order not to lose information on the case η = 1). Labeling by the index k the

number of uncorrelated survivals in the sequence of events considered in the sum (16), we get

Pη(T ) ≤
[

ηT B(T ) + ηT−1(1 − η)A(T )B(0)
]

+ [ηA(1) + (1 − η)A(1)B(0)]
T−1
∑

k=1

γT−1
k [(1 − η)A(1)]k ηT−1−k ,

and

Pη(T ) ≥
[

ηT B(T ) + ηT−1(1 − η)A(T )B(0)
]

+ (1 − η)A(1)B(0)

T−1
∑

k=1

γT−1
k [(1 − η)A(1)]k [ηA(1)]T−1−k ,

where γT−1
k represents the number of sequences of T −1 events c, u (c = correlated survival, u =
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uncorrelated survival) containing a number k of events u, so that,

γT−1
k =









T − 1

k









.

This implies the upper bound

Pη(T ) ≤ ηT B(T ) + (1 − η)A(1)B(0) [η + (1 − η)A(1)]T−1 (9)

+ ηA(1)
{

[η + (1 − η)A(1)]T−1 − ηT−1
}

,

and the lower bound

Pη(T ) ≥ ηT B(T ) + (1 − η)A(1)T B(0) (10)

= ηT Pη=1(T ) + (1 − η)Pη=0(T ) .

We thus see that, for any 0 ≤ η < 1, the decay of distribution P (T ) is bounded by ex-

ponentials. Furthermore, the bounds (9) and (10) are exact in the marginal cases η = 0 and

η = 1.

3.3 Behavior of P (T ) for intermediate times

We have seen in section 3.1 that it exists a class of pdf’s for which Pη(T ) decays like a power

law when η = 1. In section 3.2, we show that for any η 6= 1 the asymptotic decay of Pη(T ) is

exponential. We now make some remarks about the behavior of Pη(T ) for η close to 1.

The first thing to be noticed is that, for T fixed, Pη(T ) is a continuous function of η, since

it is a finite sum of continuous functions (see Appendix A). The results of section 3.2 imply of

course that the continuity cannot be uniform in T .
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This means that, for any fixed interval of times [T−, T+], with T− in the range of validity of

the power law asymptotics (8) of P1(T ), Pη(T ) will be arbitrarily close to the same power law

for η sufficiently close to 1.

For times T ≫ T+, the decay becomes exponential. We shall see in the next section that

for the case of uniform densities, it is possible to estimate the value of the crossover time to the

exponential behavior as a function of η.

4 Distribution of quiescent times for the case of uniform densi-

ties

In this section, we consider the distribution of quiescent times for the special case of uniform

densities dF (u) = dG(u) = du for all u ∈ [0, 1] and for any η ∈ [0, 1]. In this case, simpler and

explicit expressions can be given for P̂ (s) and P (T ).

After some tedious but trivial computation, we get from equation (5):

P̂ (s) =
1

1 + (1 − η)γ(s)

[

1 + γ(s)

s
− ηγ(s)

]

, (11)

where γ(s) is defined by

γ(s) =
ln(1 − ηs)

ηs
.

The asymptotic behavior of P (T ) is determined by the singularity of the generating function

P̂ (s) that is closest to the origin.

For η = 0, the generating function P̂ (s) = (2 − s)−1 has a simple pole, and therefore P (T )

decays exponentially, which agrees with the result of the previous section. In Figure 1, we have

presented the distribution of quiescent times P (T ) in log-linear scale for η = 0.
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For the intermediate values 0 < η < 1, the generating function P̂ (s) has two singularities.

One pole, s = s0, corresponds to the vanishing denominator 1 + (1 − η)γ(s), where s0 = s0(η)

is the unique nontrivial solution of the equation

− ln(1 − ηs) = s
η

1 − η
. (12)

Another singularity, s = s1 = η−1, corresponds to the vanishing argument of the logarithm. It

is easy to see that 1 < s0 < s1, so that the dominant singularity of P̂ (s) is of polar type, and

the corresponding decay of P (T ) is exponential, with rate ln(s0(η)), for times much larger than

the crossover time Tc(η) ∼ ln(s0(η))−1.

The results of section 3.2 about the upper bound for the distribution P (T ) allow to be more

precise about this decay rate. Equation (9) implies in particular (since B(T ) ≤ A(1)) that

P (T ) ≤ [ηA(1) + (1 − η)A(1)B(0)] [η + (1 − η)A(1)]T−1 ,

which in the case of uniform densities gives

P (T ) ≤
1

2

(

1 + η

2

)T

.

We have then

1

s1
= η <

1

s0
≤

1 + η

2
,

and we see that the rate ln(s0(η)) vanishes like 1 − η as η tends to 1.

When η tends to one, the two singularities s0 and s1 merge. More precisely, we have

P̂η=1(s) =
s + (1 − s) ln(1 − s)

s2
. (13)
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The corresponding dominant term in (13) is of order O(T−2) [21]. This obviously agrees with

the exact result one can get from equation (7), with dF (u) = dG(u) = du :

Pη=1(T ) =
1

(T + 1)(T + 2)
. (14)

In Figure 2, we have drawn the distribution of quiescent times Pη=1(T ) that exhibits the power-

law decay, with the slope γ = −2.

In the case of uniform densities, it is possible to get an expression of P (T ) for all times,

and for any value of η, by applying the inversion formula (3) to equation (11). We have (see

Appendix B):

P (T ) =
ηT

(T + 1)(T + 2)
+

T
∑

k=1

ηT

(T − k + 1)(T − k + 2) k

k
∑

m=1

(

1 − η

η

)m

c(m, k) , (15)

where c(m, k) is defined by

c(m, k) = m!
∑

l1+l2+···+lm = k

li≥1

l1 l2 · · · lm−1 lm
(l1 + 1) (k − l1) (l2 + 1) (k − l1 − l2) · · · (lm−1 + 1) (k − l1 − l2 − · · · − lm−1) (lm + 1)

.

When η 6= 0, there is an alternative way of writing the previous expression:

P (T ) =
ηT

(T + 1)(T + 2)
+

T
∑

k=1

ηT+1

(T − k + 1)(T − k + 2)

∞
∑

l=1

(1 − η)l b(l, k) ,

where b(l, k) is defined by

14
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b(l, k) =
∑

i1+i2+···+il = k

ij≥0

1

(i1 + 1) (i2 + 1) · · · (il−1 + 1) (il + 1)
.

In Figure 3, we have plotted the distribution of quiescent times Pη(T ) for the intermediate

values η = 0.5, η = 0.7, η = 0.9, together with the analytical result (15).

Notice that in Figures 1 and 3 (where η 6= 1), we only plot distributions P (T ) up to relatively

short quiescent times (T = 16, T = 25), since these times are already bigger than the crossover

time Tc(η) ∼ 1/ ln(s0) to the exponential decay exp (− ln(s0)T ) (s0 defined by equation (12)).

For much longer times, very few survivals are observed, and the statistics gets worse. Of course,

Tc(η) grows as the parameter η tends to 1, so that we have good statistics for longer and longer

times (in Figure 2, for η = 1, the plot is for quiescent times 20 ≤ T ≤ 2000).

5 Discussion and Conclusion

In this paper, we have presented a model for a system at a threshold of instability. We

assumed that the system loses stability when the parameter characterizing its state becomes

larger than a threshold value. We have treated both the state parameter x and the value

of threshold y as random variables distributed over the unit interval with respect to different

distribution laws F and G respectively. The natural control parameter in our model is the

probability η, which represents a relative frequency of threshold changes such that if η = 1, the

threshold value y does not change during a laminar phase. In the opposite case, if η = 0, at each

time step, a new threshold value is taken with respect to the probability distribution function G.
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Varying η ∈ [0, 1], provided the distributions F and G are given, one can control the statistics

of switching events (i.e. when the state parameter passes through the stability threshold).

For many distributions F and G, the model can be solved analytically. In particular, we

exhibit a class of threshold pdf’s that allow to obtain any possible (normalizable) power law

decay of the distribution of laminar phases, when η = 1. Furthermore, we show that for any

choice of the distributions F and G the distribution of laminar phases P (T ) decays exponen-

tially at η = 0, and that P (T ) is bounded above by a decresing exponential function of rate

[

η + (1 − η)
∫ 1
0 dG(y)F (y)

]

for any 0 < η < 1.

We have then studied the model for the special case of uniform densities dF (u) = dG(u) = du.

In this case the distribution of laminar phases decays as T−2 at η = 1 . For the intermediate

values of η, the decay is mixed: even if the asymptotic behavior is exponential, when η is close

to 1 the exponential regime is reached only for very large time lengths of order (1− η)−1, while

for intermediate but large times, the decay is polynomial.

A natural question arising in this context is the relationship between the ergodic invariants

that quantify the dynamics of deterministic systems, for example the Lyapunov exponents,

and the scaling laws studied in our paper. The corresponding question for models of self-

organised criticality is certainly also pertinent since in that case a relation is known between

the Lyapunov spectrum and the transport properties [22]. In our case, however, because of the

dynamical character not only of the state variable but also of the threshold, some extension of

the definition of the invariants would be needed, which is beyond the scope of the present paper.
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7 Appendix A

Here we present the general formula for P (T ), for T ≥ 3. Let Sl
c(u) denote the occurrence of

l consecutive ”correlated” (”uncorrelated”) survivals.

P (T ) =
∑

n = 0, 1, . . . ,
[

T−2
2

]

l1 + l2 + . . . + l2n+1 = T − 1, li ≥ 1

∑

j=c,u

P [SSl1
c Sl2

u . . . Sl2n
u Sl2n+1

c Dj ]

+
∑

n = 1, . . . ,
[

T−1
2

]

l1 + l2 + . . . + l2n = T − 1, li ≥ 1

∑

j=c,u

P [SSl1
c Sl2

u . . . Sl2n−1

c Sl2n
u Dj ]

+
∑

n = 0, 1, . . . ,
[

T−2
2

]

l1 + l2 + . . . + l2n+1 = T − 1, li ≥ 1

∑

j=c,u

P [SSl1
u Sl2

c . . . Sl2n
c Sl2n+1

u Dj ] (16)
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+
∑

n = 1, . . . ,
[

T−1
2

]

l1 + l2 + . . . + l2n = T − 1, li ≥ 1

∑

j=c,u

P [SSl1
u Sl2

c . . . Sl2n−1

u Sl2n
c Dj ]

= PI(T ) + PII(T ) + PIII(T ) + PIV (T ),

in which

∑

j=c,u

P [SSl1
c Sl2

u . . . Sl2n
u Sl2n+1

c Dj ] = ηl1+l3+l5+...+l2n+1(1 − η)l2+l4+...+l2n (17)

×A(l1 + 1)Al2−1(1)A(l3 + 1)Al4−1(1) . . . A(l2n−1 + 1)Al2n−1(1)

× [ηB(l2n+1 + 1) + (1 − η)A(l2n+1 + 1)B(0)] ,

∑

j=c,u

P [SSl1
c Sl2

u . . . Sl2n−1

c Sl2n
u Dj ] = ηl1+l3+l5+...+l2n−1(1 − η)l2+l4+...+l2n (18)

×A(l1 + 1)Al2−1(1)A(l3 + 1)Al4−1(1) . . . A(l2n−1 + 1)Al2n−1(1)

× [ηB(1) + (1 − η)A(1)B(0)] ,

∑

j=c,u

P [SSl1
u Sl2

c . . . Sl2n
c Sl2n+1

u Dj ] = ηl2+l4+...+l2n(1 − η)l1+l3+...+l2n+1 (19)

×A(1)Al1−1(1)A(l2 + 1)Al3−1(1) . . . Al2n−1−1(1)A(l2n + 1)Al2n+1−1(1)

× [ηB(1) + (1 − η)A(1)B(0)] ,

∑

j=c,u

P [SSl1
u Sl2

c . . . Sl2n−1

u Sl2n
c Dj ] = ηl2+l4+...+l2n(1 − η)l1+l3+...+l2n−1 (20)

×A(1)Al1−1(1)A(l2 + 1)Al3−1(1) . . . Al2n−3−1(1)A(l2n−2 + 1)Al2n−1−1(1)

× [ηB(l2n + 1) + (1 − η)A(l2n + 1)B(0)]
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where we have used the notations (1) and (2). Furthermore, using the convolution formula of n

functions h1, . . . , hn at a point M defined as

(h1 ∗ h2 ∗ . . . ∗ hn)(M) =
∑

l1 + l2 + . . . + ln = M,

li ≥ 0

h1(l1)h2(l2) . . . hn(ln)

and the definitions (4), one can rewrite P (T ) as a sum of convolutions. For T ≥ 3, the terms

PI,II,III,IV (T ) read:

PI(T ) =
∞

∑

n=0

(hI
1 ∗ hI

2 ∗ . . . ∗ hI
2n+1)(T − 1),

PII(T ) = ρ
∞

∑

n=1

(hII
1 ∗ hII

2 ∗ . . . ∗ hII
2n)(T − 1),

PIII(T ) = ρA(1)
∞

∑

n=0

(hIII
1 ∗ hIII

2 ∗ . . . ∗ hIII
2n+1)(T − 1),

PIV (T ) = A(1)
∞

∑

n=1

(hIV
1 ∗ hIV

2 ∗ . . . ∗ hIV
2n )(T − 1),

where we have introduced

hI,II
1 (l) = hI,II

3 (l) = . . . = hI,II
2n−1(l) = p(l),

hI,II
2 (l) = hI,II

4 (l) = . . . = hI,II
2n (l) = p(l),

hI
2n+1(l) = r(l), hIV

2n (l) = r(l),

hIII,IV
1 (l) = hIII,IV

3 (l) = . . . = hIII,IV
2n−1 (l) = q(l),

hIII,IV
2 (l) = hIII,IV

4 (l) = . . . = hIII,IV
2n−2 (l) = p(l),

hIII
2n (l) = p(l), hIII

2n+1(l) = q(l).
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Using the property of generating functions

∞
∑

M=0

sM (h1 ∗ h2 ∗ . . . ∗ hn)(M) = ĥ1(s)ĥ2(s) . . . ĥn(s),

we get expression (5).

8 Appendix B

The following relations hold:

dnγ(s)

dsn

∣

∣

∣

∣

s=0

= −
n!

n + 1
ηn ,

dn

dsn

1 + γ(s)

s

∣

∣

∣

∣

s=0

= −
n!

n + 2
ηn+1 ,

dn

dsn
f(s)g(s) =

n
∑

k=0









n

k









dkf(s)

dsk

dn−kg(s)

dsn−k
,

dn

dsn

1

1 − f(s)
=

f (n)(s)

[1 − f(s)]2
+ (n − 1)!

n
∑

m=2

m!

[1 − f(s)]m+1

∑

l1+l2+···+lm = n

li≥1

(21)

f (l1)(s) f (l2)(s) · · · f (lm−1)(s) f (lm)(s)

(l1 − 1)! (n − l1) (l2 − 1)! (n − l1 − l2) · · · (lm−1 − 1)! (n − l1 − l2 − · · · − lm−1) (lm − 1)!
,

where equation (21) is valid for all n ≥ 1.
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Figure 1: Distribution of quiescent times for the uniformly distributed variables x and y. Pη(T )

decays exponentially for η = 0, consistently with the analytical result P (T ) = 2−(T+1) (solid

line).
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Figure 2: Distribution of quiescent times for the uniformly distributed variables x and y. We

show the power-law decay of Pη=1(T ) plotted in log-log scale. The solid line is given by Eq.(14).
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Figure 3: Distribution of quiescent times for the uniformly distributed variables x, y at the

intermediate values η = 0.5, η = 0.7, η = 0.9 (circles). For comparison, the dotted line 2−T−1

presents the exponential decay for η = 0, and the dashed line corresponds to [(T + 1)(T + 2)]−1

for η = 1 (Eq.(14)). The solid lines are given by Eq.(15) for η = 0.5, η = 0.7, η = 0.9.
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