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Abstract. Model typing brings the benefit associated with well-defined type sys-
tems to model-driven development (MDD) through the assignment of specific
types to models. In particular, model type systems enable reuse of model ma-
nipulation operations (e.g., model transformations), where manipulations defined
for models typed by a supertype can be used to manipulate models typed by sub-
types. Existing model typing approaches are limited to structural typing defined
in terms of object-oriented metamodels (e.g., MOF), in which the only structural
(well-formedness) constraints are those that can be expressed directly in meta-
modeling notations (e.g., multiplicity and element containment constraints). In
this paper we describe an extension to model typing that takes into consideration
structural invariants, other than those that can be expressed directly in a metamod-
eling notation, and specifications of behaviors associated with model types. The
approach supports contract-aware substitutability, where contracts are defined in
terms of invariants and pre-/post-conditions expressed using OCL. Support for
behavioral typing paves the way for behavioral substitutability. We also describe
a technique to rigorously reason about model type substitutability as supported
by contracts, and apply the technique in a usage scenario from the optimizing
compiler community.
Key words:SLE, Modeling Languages, Model Typing, Contract Matching, Model
Substitutability

1 Introduction

In Model Driven Engineering (MDE), developers of complex software systems create
and transform models using model authoring and transformation technologies. The rise
in the number of new modeling languages, however, presents a challenge because it
requires software engineers to create complex transformations that manipulate models
expressed in the new languages. Building these transformations from scratch requires
significant effort. To address this problem, various approaches [1][2][3][4][5] have re-
cently been proposed to facilitate the reuse of model transformation across different
languages.

Model substitutability rules that are based on model typing [1] can be used to sup-
port model transformation reuse. For example, a subtyping relation that supports model
substitutability allows a model typed by A to be safely used where a model typed by B
is expected, where B is the supertype of A. The transformation used for models typed
by B can thus be reused on models typed by A.
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Current approaches to model type definition and implementation, however, only
consider MOF-based metamodels as model types. In MOF, contracts (e.g., pre-conditio-
ns, post-conditions and invariants) are externally defined, that is, they are defined in
another language, for example, the Object Constraint Language (OCL) [6]. Neither the
original paper on model typing [1] nor the follow-up paper [7] considers externally
defined contracts in subtyping relations. This limits the utility of model subtyping in
model-based software development approaches that are contract based (e.g., design by
contract [8]). There is thus a need for model typing that provides support for typing
models with contracts.

In this paper we propose a form of model typing that supports contract-aware sub-
stitutability, where contracts are defined in terms of invariants and pre-/post-conditions
expressed using OCL. We add invariants to model types that specify additional struc-
tural properties, and use operation pre-/post-conditions to specify the transformation
rules on model types. We also describe a technique for rigorously reasoning about the
substitutability of models with contracts.

The rest of the paper is organized as follows. Section 2 illustrates the need for
contract-aware substitutability using motivating examples from the high-performance
embedded system design domain. Section 3 presents background material needed to
understand the work described in this paper. Section 4 presents a formal definition of
the subtyping relation between two model types that include contracts, and describes
tool support for reasoning about substitutability on model types. Section 5 describes
limitations of the approach. Section 6 discusses related work, and Section 7 concludes
the paper with a discussion of planned future work.

2 Motivating Examples

In this section we describe two motivating examples from the high-performance em-
bedded system design domain. Modern heterogeneous embedded hardware platforms
are notoriously difficult to design and to program. In this context, tool-supported model
based approaches (e.g., Simulink, Ptolemy) are now widely acknowledged as some of
the most effective approaches to designing embedded systems.

Typically, these model-based approaches use tool chains that manipulate many dif-
ferent types of models. For example, structural platform description models range from
system level models that abstract over processing and storage resource with their inter-
connections, to very low level Register-to-Logic level circuit models that are used to
describe the structure of hardware accelerators within the platforms.

Similarly, behavioral description models range from application level modeling of
the application using Models of Computation such as Synchronous Data Flow Graphs
or Kahn Process Networks, to fine grain scalar operation level representations such
as the basic-block level instruction dependence graph used in an optimizing compiler
back-end.

Most of these tool chains share a common goal: They aim to produce highly opti-
mized implementations. This requires the use of advanced algorithms that implement
very complex model manipulations. It is also the case that these manipulations often
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have similar algorithmic patterns. These patterns can be used as the basis for develop-
ing reusable model transformations.

2.1 Example 1: Using Model Types to Support Structural Substitutability

In the optimizing compiler domain, a variety of models describing different aspects of
languages are manipulated (i.e., analyzed and transformed) at different stages of the
compilation process. While the analyses and transformations are different, they also
share many common characteristics. For example, consider algorithms for schedule
optimization. Obtaining an optimized implementation of an application on a target plat-
form involves performing several static scheduling optimizations. Many of these algo-
rithms have common characteristics, for example, they are often expressed as an acyclic
graph resource constrained scheduling problem, for which many techniques (heuristics
or MILP-Mixed Integer Linear Programming-solver based) have been proposed. Be-
cause these scheduling algorithms involve very sophisticated algorithms, reusable algo-
rithms that can be tailored to the different types of representations (models) are highly
desirable. For example, it would be useful to have a reusable scheduling algorithm that
can be used to derive a schedule for an Application level Synchronous Data-flow graph
on a multi-processor based implementation, as well as for generating efficient code for
a customized VLIW (Very Long Instruction Word) embedded processor.

However in this case, structural substitutability based only on constraints that can
be expressed directly in a metamodel (e.g., multiplicity or element containment con-
straint) is not sufficient; other structural constraints need to be specified. For example,
a classical static scheduling toolset can only operate on acyclic dependence graphs and
the acyclicity property cannot be expressed directly in a metamodel. A language such
as the Object Constraint Language (OCL) is needed to specify properties of acyclic
graphs. In this case, model substitutability requires that a substitute model enforces the
acyclicity constraint expressed in OCL. Model typing based on metamodels with OCL
constraints can be used to enable such structural substitutability.

2.2 Example 2: Using Model Types to Support Contract-based Behavioral
Substitutability

Behavioral substitutability for model transformations: A consistent scheduling tran-
sformation must ensure that every node in the dependence graph is scheduled at least
once. This property can be expressed as a post-condition on the scheduling transfor-
mation and thus any scheduler implementation should enforce this post-condition. The
effective post-condition could even be stricter; in our case we could consider a post-
condition that restricts a node to be scheduled exactly once.

The same holds for the pre-condition. For example, most schedulers operate on
acyclic graphs and this can be translated as a pre-condition for the transformation. How-
ever, there also exists a class of pipelined schedulers that operate on cyclic graphs, in
which cycles implement delays to preserve causality. For such pipelined schedulers, the
pre-condition would not forbid cycles in the dependence graph. That would, however,
prevent a pipelined scheduler from being used to schedule acyclic graphs in a design
flow.
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Fig. 1. A Model based compiler tool chain for embedded multiprocessors.

Contract based tool chain validation: An optimizing compiler custom tool chain con-
sists of a sequence of analyses and transformations (called compiler passes) executed in
a very carefully chosen order. They can hence be seen as a model transformation chain.
Compiler passes cannot be combined arbitrarily, as each pass usually assumes that the
program representation at hand has very specific properties.

For example, consider a compiler tool chain for generating software code from Syn-
chronous Data Flow Graph (SDF) model specifications on an embedded platform. Such
a tool chain is illustrated in Figure 1. Before any code can be produced, the SDF first
needs to be scheduled on this platform. Depending on whether the target system con-
sists of a single or several processors, it is likely that different scheduling algorithms
will be used. Similarly, different code generators (i.e. pretty printers) will have to be
used depending on whether we target a mono-processor or multiprocessor. Two back-
end code generators are shown in Figure 1. The mono-processor code generator can
only be used after a mono-processor scheduling stage, whereas the second back-end is
more general and can be used for both types of scheduling.

These constraints – that is targeting one or several processing resources – apply to
the result of the scheduling stage and to the input on the code generation stage. They can
hence be modeled as pre-conditions (resp. post-conditions) expressed using OCL. When
chaining a given scheduling and code generation pass, we can ensure the consistency
of the flow by checking if the pre-/post-conditions of two chained transformation are
satisfiable.

ha
l-0

08
08

77
0,

 v
er

si
on

 1
 - 

8 
Au

g 
20

13



3 Background

In this section, we describe the concepts underlying our use of model types to support
model substitutability. We first present the MOF (Meta-Object Facility) meta-language,
the basis for metamodels, and thus model manipulation operators. We then give an
overview of model types as currently defined and implemented [1,7], and describe the
limitations addressed by the approach presented in this paper.

3.1 Metamodeling

The Meta-Object Facility (MOF) [9] is the OMG’s standardized meta-language, i.e.,
a language to define metamodels. As such, it is a common basis for a vast majority
of modeling languages and tools. A metamodel defines a set of models on which it is
possible to apply common operators. The model substitutability approach presented in
this paper is applicable to models expressed in languages with MOF metamodels.

MOF supports the definition of metamodels using Classes and Properties.
Classes can be abstract (i.e., they cannot be instantiated) and have Properties and
Operations, which respectively declare attributes and references, and the signatures
of methods available to the modeled concept. A Property can be composite (an object
can only be referenced through one composite Property at a given instant), derived
(i.e., calculated from other Properties) and read-only (i.e., cannot be modified). A
Property can also have an opposite Property with which it forms a bidirectional
association.

Metamodels can be viewed as class diagrams in which each metamodel element
can be instantiated to obtain objects representing model elements. However, metamodel
elements are themeslves instances of MOF elements and thus a metamodel can be drawn
as an object diagram where each concept is an instance of one of the MOF elements
(e.g., Class or Property classes).

3.2 Model Typing

Model Types were introduced by Steel et al. [1], as an extension of object typing to
provide abstractions about the object type level and enable the reuse of model manipu-
lation operators. Informally, a model type is a substructure (referred to as a type group)
of the metamodel’s class diagram. It is important to distinguish the usage of the term
metamodel from model type. We use the term metamodel to refer to the class diagram
used to define a language, and when the same class diagram is used to define the type
of a model it is called an exact type. It is also important to note that a model has one
and only one metamodel to which it must conform, but the same model can have sev-
eral model types, where each model type is a substructure of the metamodel. Because
model types and metamodels share the same structure, it is possible to extract the exact
type of a model from its metamodel. Figure 2 represents a model m1 that conforms to
a metamodel MM1 and is typed by model types MTA and MTB, where MTB is the exact
type of m1 that is extracted from MM1. Both metamodels and model types conform to
MOF. Given the above, a model type can be defined as follows:

ha
l-0

08
08

77
0,

 v
er

si
on

 1
 - 

8 
Au

g 
20

13



Model subtyping 

Metamodel and
corresponding
exact model type

MOF

M3

M2

M1

MTB
MTC

MM1

m1

<<conformsTo>> <<typedBy>>

MTA

<<conformsTo>>

MM
MT

Fig. 2. Conformance, model typing and model subtyping relations

Definition 1. (Model type) A model type is a substructure of a metamodel’s class
structure. A model does not have to include instantiations of each class in an asso-
ciated model type, that is, the set of classes of elements in a model can be smaller than
the classes in its model type.

Substitutability is the ability to safely use an object of type A where an object of
type B is expected. Substitutability is supported through subtyping in object-oriented
languages. However, object subtyping does not handle specializations of model sub-
structures (or type groups)1. One way to safely reuse a model manipulation operation
created for a model typed by MTA on a model typed by MTB is to ensure that MTA con-
tains elements that can be substituted by elements defined by MTB. However, it is not
possible to achieve model type substitutability through object subtyping. Thus, model
typing uses an extended definition of object type matching introduced by Bruce et al.
[11], namely MOF Class Matching.

Definition 2. (MOF class matching) MOF class T ′ matches T (written T ′ <# T ) iff
their names are equal, and for each property (respectively method) in T there is a
corresponding property (respectively method) in T ′.

The MOF class matching relation can be seen as a kind of object type matching
relation that is tailored to MOF concepts. Based on the MOF class matching relation,
we can achieve model type substitutability by defining a subtyping relation as follows:

Definition 3. (Subtyping relationship for model types) The model type subtyping
relation is a binary relation v on ModelType, the set of all model types, such that
(MTB,MTA) ∈v (also written MTB vMTA) iff ∀ TA ∈ MTA, ∃ TB ∈ MTB such that TB
<# TA.

We recently introduced four extended subtyping relations between model types that
take into account two additional criteria: The presence of heterogeneities between two
model types (using adaptation) and the considered subset of the model types (using
model type pruning) [7].

1 For further information on type groups see Ernst’s paper [10].
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The subtyping relation as currently defined has shortcomings. In particular, the cur-
rent model typing definition and implementation only considers MOF-based metamod-
els as model types (through the MOF class matching relation). Unfortunately, MOF del-
egates the definitions of contracts (e.g., pre and post-conditions or invariants) to other
languages (e.g., OCL, the Object Constraint Language [6]). This limits the applicabil-
ity of model typing for safely reusing model manipulations where OCL contracts are
needed to precisely specify the applicability of the model transformation or the structure
on which the model transformation can be applied (see motivating examples in Section
2). The approach described in this paper addresses this limitation.

4 Contribution

In this paper we extend the subtyping relation described in [7] by taking into account
OCL contracts for a safe substitutability of models conforming to metamodels including
contracts. This provides a safe reuse of model transformations expressed on metamodels
that include contracts. Specifically, we extend the MOF class matching (cf. Def. 2 of
Section 3) by considering contracts matching (Section 4.1) and provide a technique for
analyzing the matching of OCL contracts associated with two classes with different
model types (Section 4.2). In this section we describe the contract matching technique
we developed to support contract-aware model substitutability. We also describe an
Alloy-based prototype tool that supports contract matching (Section 4.3), and illustrate
the use of contract-aware substitutability using the motivating examples (Section 4.4).

4.1 Contract-aware MOF Class Matching

We consider the use of OCL invariants added to MOF classes to specify additional struc-
tural properties, and OCL pre-/post-conditions defined in the context of MOF class op-
erations to specify the model manipulation rules (e.g., transformation) associated with
model types. The MOF class matching relation is thus determined by two aspects: the
structural features specified using MOF (e.g., classes, properties, operation signatures,
etc.) and the contracts expressed using OCL (e.g., invariants and pre-/post-conditions).

The substitutability through model subtyping is a specialization of the Liskov Sub-
stitution Principle [12] on the model type system. Specifically the contract matching
relation that enables contract-aware model substitutability must abide by the following
rules: (1) invariants of the supermodel type cannot be weakened in a sub model type,
(2) pre-conditions cannot be strengthened in a sub model type, and (3) post-conditions
cannot be weakened in a sub model type. The extended MOF class matching relation is
formalized as follows:

Definition 4 (Contract-aware MOF Class Matching). Class T ′ matches T (written
T ′ <# T) iff their structures match (cf. Def. 3 of [7]), their invariants match and their
operation pre-/post-conditions match, where

1 Invariants Match is defined as follows:
let T.ownedInvariant = {invT 1, invT 2, ..., invT k } be the invariants defined for T ;
let resultT = invT 1 ∧ invT 2 ∧ ... ∧ invT k;
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let SuperClass(T) = {cls1, cls2, ..., clsn} where clsi is a superclass of T;
let clsi.ownedInvariant = { invi1, invi2, ..., invik } be the invariants defined for clsi,
for i = 1, .., n;
let resulti = invi1 ∧ invi2 ∧ ... ∧ invik, for i = 1, .., n;
let invs = result1 ∧ result2 ∧ ... ∧ resultn ∧ resultT ;

let T′.ownedInvariant = {inv′T 1, inv′T 2, ..., inv′T k } be the invariants defined for T ′;
let result ′T = inv′T 1 ∧ inv′T 2 ∧ ... ∧ inv′T k;
let SuperClass(T′) = {cls′1, cls′2, ..., cls′n} where cls′i is a superclass of T′;
let cls′i.ownedInvariant = { inv′i1, inv′i2, ... , inv′ik } be the invariants defined for cls′i,
for i = 1, .., n;
let result ′i = inv′i1 ∧ inv′i2 ∧ ... ∧ inv′ik, for i = 1, .., n;
let invs′ = result ′1 ∧ result ′2 ∧ ... ∧ result ′n ∧ result ′T ;

The invariants of T and T′ match if Models(invs)⊇Models(invs′), where Models(invs)
returns all models that satisfy invs and Models(invs′) returns all models that satisfy
invs′.

2 Pre-/post-conditions Match is defined as follows:
∀ op∈ T.ownedOperation, ∃ S′ ∈ SuperClasses(T ′) such that ∃ op′ ∈ S′.ownedOperation
and:

2.1 let op.ownedPrecondition = {pre1, pre2, ..., prek } be the pre-conditions de-
fined for op;
let pres = pre1 ∧ pre2 ∧ ... ∧ prek;
let op′.ownedPrecondition = {pre′1, pre′2, ..., pre′k } be the pre-conditions de-
fined for op′;
let pres′ = pre′1 ∧ pre′2 ∧ ... ∧ pre′k;

2.2 let op.ownedPostcondition = {post1, post2, ..., postk } be the post-conditions
defined for op;
let posts = post1 ∧ post2 ∧ ... ∧ postk;
let op′.ownedPostcondition = {post ′1, post ′2, ..., post ′k } be the post-conditions
defined for op′;
let posts′ = post ′1 ∧ post ′2 ∧ ... ∧ post ′k;

The operation specifications of T and T′ match if Models(pres′)⊇Models(pres)
and Models(posts) ⊇Models(posts′)

4.2 Analyzing the Matching of Contracts

Definition 4 can be used to formally reason about the matching relation between two
MOF classes with contracts. The MOF class matching relation in Definition 4 includes
the matching of the contracts from classes of two model types. Consequently, analyzing
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such relations requires one to formally analyze the relation between contracts (e.g., to
check if the models satisfying one contract includes the models satisfying the other).
To do this, a query function Models(MT , C) is used to compute all models that both
conform to a model type MT and satisfy an OCL contract C defined in MT . Thus given
contract C1 in a candidate supermodel type MT1 and contract C2 in a candidate sub
model type MT2, C1 matches C2 iff (1) C1, C2 are invariants, and Models(MT1, C1) ⊇
Models(MT2, C2), (2) C1, C2 are pre-conditions, and Models(MT2, C2)⊇Models(MT1,
C1), and (3) C1, C2 are post-conditions, and Models(MT1, C1) ⊇Models(MT2, C2).

Checking the contract matching requires a tool to implement the functionality of the
query function Models(MT , C). We use the Alloy Analyzer [13] for this purpose. The
Alloy Analyzer is used to analyze Alloy specifications. It is supported by a SAT-based
model finder. The Alloy Analyzer can generate models that conform to a model type
expressed in Alloy in terms of signatures and fields that specify the model type structure
and a predicate that expresses the contracts. In this paper we use the Alloy Analyzer at
the back-end to check whether two contracts match.

For example, given a candidate supermodel type MT1 and a candidate sub model
type MT2, with two OCL invariants respectively, C1 and C2, the procedure below can be
used to check if C1 matches C2.

1. (preprocess) Since model subtyping requires each element in the supermodel type
to be matched by an element in the sub model type (see Definition 4), the contract
defined in the supermodel type refers to elements that also exist in the sub model
type. Thus we can move C1 to MT2, and use only the sub model type (i.e., MT2) to
check whether C1 and C2 match.

2. Transform MT2 to an Alloy model using the technique described in [14]. Convert
C1 and C2 into two Alloy predicates, P1 and P2, respectively.

3. Run an empty predicate in the Alloy Analyzer to search for a model conforming to
the model type MT2. If the Analyzer returns no model satisfying the empty predi-
cate (i.e., Models(MT2, /0) = /0), Models(MT2, C1) = /0 and Models(MT2, C2) = /0.
In this case C1 matches C2 since /0 is a subset of /0; otherwise, continue to the next
step.

4. Run P1 and P2 respectively. If the Alloy Analyzer returns no model for each predi-
cate (i.e., Models(MT2, C1) = /0 and Models(MT2, C2) = /0), then C1 matches C2; if
the Alloy Analyzer returns a model (or models) for only P1, then C1 matches C2; if
the Alloy Analyzer returns a model (or models) for only P2, then C1 does not match
C2; otherwise, continue to the next step.

5. Run a predicate to search for a model satisfying both P1 and P2. If the Alloy Ana-
lyzer returns a model satisfying the predicate, continue to the next step; otherwise,
C1 does not match C2.

6. Run a predicate P3 to search for a model satisfying both P1 and ¬P2 (i.e., the nega-
tion of P2), and another predicate P4 to search for a model satisfying both P2 and
¬P1. If the Alloy Analyzer returns no model for both P3 and P4 (i.e., Models(MT2,
C1) = Models(MT2, C2)), C1 matches C2; if the Alloy Analyzer returns a model (or
models) satisfying only P3, Models(MT2, C1) ⊃ Models(MT2, C2) and C1 matches
C2; otherwise, C1 does not match C2.
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Fig. 3. Contract Matching Checking Tool Overview

The approach uses the Alloy Analyzer at the back-end to analyze the relation be-
tween two contracts, and it thus requires a translation from OCL expressions to Alloy
specifications. The OCL to Alloy translation used in the prototype tool we developed is
based on translation rules described in work by Bordbar et al. [15].

4.3 Contract Matching Checking Tool

The contract matching approach described in the previous subsection has been imple-
mented in a prototype tool. Figure 3 shows an overview of the prototype tool. It consists
of an OCL parser, an Ecore2/OCL transformer and the use of the Alloy Analyzer. The
Ecore/OCL transformer is developed using Kermeta [17], an aspect-oriented metamod-
eling tool. The inputs of the prototype are (1) an Ecore file that specifies two model
types, and (2) a textual OCL file that specifies the contracts from each model type. The
model types and contracts are automatically transformed to an Alloy model consisting
of signatures and predicates.

The prototype provides several interfaces to check contract matching. For example,
matchInv(inv1: Constraint, inv2: Constraint) is used to check whether inv1 matches
inv2. In addition, matchInvs(cls1: Class, cls2: Class) can be used to check whether the
invariants defined in cls1 and the invariants defined in cls2 match.

4.4 Case Study

In this section we illustrate how to use our approach to define model types and subtyping
relations between them to ensure a safe reuse of model transformations.

A Simple Case Study of Structural Substitutability Let us reconsider the scheduling
example described in Section 2.1. A model transformation performs a static schedul-
ing on an acyclic dependence graph. The model transformation needs a metamodel for
“Acyclic Graph” (due to space limitation, the metamodel is not shown in the paper).
The model type AcyclicGraph (see Figure 4) shows a simple example of model type
definition for the dependency graph used in the example. Its definition consists of meta-
classes that specify a graph structure, an invariant that specifies the acyclicity property,
and a model transformation that takes as input an acyclic graph.

2 Ecore is an implementation aligned with MOF included in the Eclipse Modeling Framework
[16].
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Fig. 4. A Simple Example of Structural Substitutability in Kermeta

Suppose that in another context a colored graph is used as an intermediate repre-
sentation and it extends the concept of nodes by introducing additional information. To
reuse the transformation defined in AcyclicGraph, a colored graph must be a subtype of
AcyclicGraph. The model type ColoredAcyclicGraph ensues the subtyping relation by
adding an acyclicity invariant in its definition. However, the model type ColoredGraph
does not specify any invariants. A compilation error will thus show that the trans f o
operation cannot take as input an instance of ColoredGraph because ColoredGraph is
not a subtype of AcyclicGraph.

A Simple Case Study of Behavioral Substitutability In the optimizing compiler com-
munity, the daily task for software engineers is to design compilation chains in the right
partial order, that is, scheduling the various passes (i.e., optimization, translation, code
generation, analysis, etc.). Designing compilation chains would benefit from behavioral
substitutability by opening the way to describe “abstract” compilation chains, capital-
izing a given knowledge in terms of constraints (pre-/post-conditions) to schedule a set
of passes for a given purpose, where each pass would be then implemented in various
ways, but conforming to the pre-/post-conditions defined in the abstract compilation
chain.

Figure 5 shows a simple example of model types used for the compilation chain.
Suppose that the abstract model transformation transfo defined in MT is used for opti-
mization purpose and define a post condition stating that the model must conform to the
Static Single Assignment (SSA) form. MT also contains transfo2 as the next pass of the
compilation chain and states as precondition that the model must conform to the SSA
form. The two model types subMT 1 and subMT 2 implement the model transformation
transfo but only subMT 1 ensures as postcondition the SSA form. While subMT 2 is not
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Fig. 5. A Simple Example of Behavioral Substitutability in Kermeta

in this case a sub model type to MT , a compilation error for m2.transfo().transfo2()
will be returned. This shows that the model returned by transfo in subMT 2 (typed by
subMT 2) is not of type MT , and can not reuse transfo2.

5 Discussion

In this section we discuss limitations of our work, and its scope of application. We first
discuss the supported contracts in the subtyping relation of model typing (Section 5.1),
and the corresponding model substitutability provided by our approach (Section 5.2).

5.1 On the Support of Contracts in Model Typing

In this paper we consider contracts in addition to the object oriented structure described
in a metamodel. The object-oriented structure is usually defined using Ecore, an im-
plementation aligned with OMG MOF. Contracts can then be invariants expressed in
the context of the concepts (i.e., classes) defined in the MOF metamodel, and pre-/post-
conditions expressed in the context of operations specified in concepts. While invariants
restrict the structure of conforming models and their possible structural substitutability,
pre- and post-conditions specify the behavior of the conforming models (i.e. manipula-
tion by model operations) and their possible behavioral substitutability.

In our approach, we assume that the first order logic is used to express contracts in
metamodels, and we have chosen OCL to express them. We rely on the provided binding
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between MOF and OCL as defined by OMG to link OCL expressions to a given MOF
metamodel.

To test the feasibility of our approach, we implemented a prototype tool that is
integrated into the Kermeta workbench. The tool checks OCL-based contract-aware
subtyping relations between model types. While the substitutability related to the MOF
structure is computed directly using Kermeta, the one related to the contracts is com-
puted using Alloy through a translation from OCL expressions to Alloy specifications,
and then an analysis of the output provided by the Alloy Analyzer. The tool only pro-
vides support for translating a subset of OCL to Alloy.

Most of the OCL operators have corresponding Alloy constructs. For example,
OCL operator f orAll corresponds to Alloy construct all, exists corresponds to some,
includes corresponds to in, excludes corresponds to !in, sum corresponds to sum, and
closure corresponds to ∗. OCL contracts that involves such operators can be directly
transformed into Alloy specifications.

However, as pointed out by Anastasakis et al. [15], the translation from OCL to
Alloy is not seamless. There are some OCL operators that do not have corresponding
Alloy constructs, and thus OCL contracts including such operators cannot be easily
transformed into Alloy specifications. Some of them can be partially supported by the
tool using the Alloy libraries. For instance, OCL operators like select and collect are
translated by the tool described in the paper using Alloy functions that implement their
semantics. Consequently, the operator iterate is partially supported by the transforma-
tion tool. The tool provides support for OCL contracts including iterate expressions that
can be rewritten as f orall with select/collect operators. However, the tool cannot be
used to deal with iterate expressions that involve arithmetic accumulation since Alloy
is a purely declarative language that does not provide support for imperative accumu-
lators. Finally, the translation cannot deal with OCL casting operators like oclAsType
since Alloy has a very simple type system that has little support for type casting.

5.2 On the Support of Modeling Language Substitutability

The research work described in the paper builds upon our previous work in [7], and
paves the way for reasoning about the subtyping relation between two model types that
include contracts. Specifically it can be used to reason about the contract-aware subtyp-
ing relation that involves structural subtyping (including not only MOF-based Object-
Oriented structure but also OCL-based first order invariants) and behavioral subtyping
(including a behavioral semantics in an axiomatic way using pre-/post-conditions on
operations).

We implement our approach in a (Kermeta-based) tool included in the Kermeta
language workbench to check advanced (i.e., including contracts) subtyping relations
between modeling languages based on Ecore and OCL. These two meta-languages are
supported by the Kermeta language workbench and are used for describing the abstract
syntax and the static semantics respectively.

This approach and its corresponding implementation addresses the need illustrated
by the motivating examples from the high-performance embedded system commu-
nity used throughout the paper. The scope of the structural substitutability we offer
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is bounded by OCL and its translation to Alloy, and its applicability is well founded,
e.g., in model transformation reuse in model-driven development [7].

The actual scope of behavioral substitutability is more difficult to define. The dif-
ficulty is twofold: while we support the motivating examples described in the paper,
complex situations of OCL based typing could be considered, such as type propaga-
tion in model transformation chains. Such challenges will be addressed in future work.
Moreover, the scope itself of behavioral substitutability is more difficult to delimit.

6 Related Work

The technical contribution of this paper is the integration of contract matching in the
subtyping relation of model typing to enhance the substitutability supported between
modeling languages. As discuss in the previous section, we rely for that on the most
established translation to Alloy. Then, the work related to our contribution discussed
in this paper is the applicability of the substitutability as illustrated in the motivating
examples, namely on model transformation reuse.

Substitutability is supported through subtyping in object-oriented languages, in-
cluding the support of contracts (e.g., Eiffel [18]). However, object subtyping does not
handle type group specialization (i.e., the possibility to specialize relations between
several objects and thus groups of types)3. Such type group specialization have been
explored by Kühne in the context of MDE [19]. Kühne defines three model specializa-
tion relations (specification import, conceptual containment and subtyping) implying
different level of compatibility. We are only interested here in the third one, subtyping,
which requires an uncompromised mutator forward-compatibility, e.g., substitutability,
between instances of model types.

Several approaches have been proposed during the last decade for model transfor-
mation reuse. Strict substitutability relation, such as the first version of model type
matching presented in [1], offers the possibility to reuse model transformation through
isomorphic metamodels, i.e., metamodels with MOF-based equivalent structures. Such
possibility was first proposed in [2] where the authors introduce variable entities in
patterns for declarative transformation rules. These entities express only the needed
concepts (e.g., types, attributes, etc.) to apply the rule, allowing any tokens with these
concepts to match the pattern and thus to be processed by the rule. Latter, Cuccuru et al.
introduced the notion of semantic variation points in metamodels [3]. Variation points
are specified through abstract classes, defining a template, and metamodels can fix these
variation points by binding them to classes extending the abstract classes. Patterns con-
taining variable entities and templates can be seen as kinds of model types where the
variability has to be explicitly expressed and thus anticipated. Sanchez Cuadrado et al.
propose in [4] a notion of substitutability based on model typing and model type match-
ing, but rather to use an automatic algorithm to check the matching between two model
types, they propose a DSL that allows users to declare the matching by hand. Finally,
De Lara et al. present in [5] the concept mechanism, along with model templates and
mixin layers leveraged from generic programming to MDE. Concepts are really close to

3 We refer the reader interested in the type group specialization problem to the Ernst’s paper [10].
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model types as they define the requirements that a metamodel must fulfill for its models
to be processed by a transformation, under the form of a set of classes. The authors
also propose a DSL to bind a metamodel to a concept and a mechanism to generate a
specific transformation from the binding and the generic transformation defined on the
concept.

In the context of model transformation chains, existing approaches deal with explicit
relationships between model transformations. Vanhooff et al. [20] proposed a domain
specific language to model and execute a transformation chain. Aranega et al. [21] used
feature models to classify model transformations involved a transformation chain and
specified the constraints between them. The user thus can design a new transforma-
tion chain by reusing the classified transformations. Yie et al. [22] advocated the use
of several independently developed model transformation chains to convert a high-level
model into a low-level model. The interoperability among model transformation chains
is achieved by deriving correspondence relationships between the final models gener-
ated by each model transformation chain.

Unlike the above approaches, contract-aware model subtyping offers a unified and
formal type theory to facilitate the safe reuse of model transformations involved in a
transformation chain. It follows a declarative fashion to specify a model transformation
chain in an abstract way using pre-/post-conditions on abstract model types. This pro-
motes then the reuse of various implementations that match the conditions for a safe
execution of the model transformation chain.

7 Conclusion and Perspective

We propose in this paper a model typing theory where model types include contracts.
This includes a formally defined subtyping relation between model types, and a tool-
supported approach supporting a safe contract-aware substitutability of models con-
forming to metamodels including contracts. This ensures a safe reuse of model trans-
formations expressed on metamodels including contracts.

Contracts are defined in terms of invariants and pre-/post-conditions expressed us-
ing OCL on MOF-based metamodels. The invariants are added on the classes of a
metamodel to specify additional structural properties of the metamodel, and pre-/post-
conditions are added on the operations of classes to specify model transformations.
Consequently, the support of invariants in the subtyping relation ensures a safe reuse
of model transformations where OCL contracts are needed to precisely specify the
structure on which the model transformation can be applied. The support of pre-/post-
conditions paves the way for behavioral substitutability to safely reuse model transfor-
mations where OCL contracts are needed to precisely specify the applicability of the
model transformation.

The subtyping relation is based on a matching relation between two MOF classes
that include OCL contracts, and is checked thanks to a technique based on Alloy. The
actual scope of the provided contract-aware substitutability is mainly determined by the
OCL-to-Alloy translation.

We are currently extending the prototype by providing support for model types and
contracts expressed using the Kermeta language workbench. We also explore how we
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can extend the approach by using SMT solvers at back-end to analyze the OCL contracts
that include more complex arithmetic calculation.
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