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Abstract. Given a finite set {M0, . . . ,Md−1} of nonnegative 2× 2 matrices and a non-
negative column-vector V , we associate to each (ωn) ∈ {0, . . . , d− 1}N the sequence of the

column-vectors
Mω1

. . .Mωn
V

‖Mω1
. . .Mωn

V ‖ . We give the necessary and sufficient condition on the

matrices Mk and the vector V for this sequence to converge for all (ωn) ∈ {0, . . . , d− 1}N

such that ∀n, Mω1
. . .Mωn

V 6=
(

0
0

)

.

2000 Mathematics Subject Classification: 15A48.

Introduction

LetM = {M0, . . . ,Md−1} be a finite set of nonnegative 2×2 matrices and V =

(

v1
v2

)

a non-

negative column-vector. We use the notation Yn = Y ω
n := Mω1

. . .Mωn
and give the neces-

sary and sufficient condition for the pointwise convergence of
YnV

‖YnV ‖ , (ωn) ∈ {0, . . . , d− 1}N

such that YnV 6=
(

0
0

)

for any n, where ‖ · ‖ is the norm-sum. The idea of the proof is

that, if the conditions are satisfied, either both columns of Yn tends to the same limit, or

they tend to different limits with different orders of growth, so in case V is positive the

limit points of
YnV

‖YnV ‖ only depend on the limit of the dominant column. This problem is

obviously very different from the one of the convergence of
Yn

‖Yn‖
, or the convegence of the

Yn itselves, see the intoduction of [5] for some counterexamples and [8, Proposition 1.2] for

the infinite products of 2× 2 stochastic matrices.

The conditions for the pointwise convergence of
YnV

‖YnV ‖ also differ from the conditions for

its uniform convergence, see [2]. The uniform convergence can be used for the multifractal

analysis of some continuous singular measures called Bernoulli convolutions (see [6] for the

Key words and phrases. Infinite products of nonnegative matrices.
1

ha
l-0

04
93

73
9,

 v
er

si
on

 1
 - 

21
 J

un
 2

01
0

http://hal.archives-ouvertes.fr/hal-00493739/fr/
http://hal.archives-ouvertes.fr


2 A. THOMAS

Bernoulli convolutions and [1] for their multifractal analysis). We study such measures in

[2], [3] and [4]. The Birkhoff’s contraction coefficient [7, Chapter 3] that we use in [3] and

[5] but not here, is really not of great help to solve the main difficulties. Moreover the

theorem that gives the value of this coefficient is difficult to prove (see [7, §3.4]) even in

the case of 2× 2 matrices. In [2] we use some other contraction coefficient quite more easy

to compute ([2, Proposition 1.3]).

1. Condition for the pointwise convergence of
YnV

‖YnV ‖

Proposition 1.1. The sequence
YnV

‖YnV ‖ converges for any ω ∈ {0, . . . , d − 1}N such that

∀n, YnV 6=
(

0
0

)

, if and only if at least one of the following conditions holds:

(i) V has positive entries and it is an eigenvector of any invertible matrix of the form
(

a 0
0 d

)

or

(

0 b
c 0

)

that belongs to M.

(ii) Any invertible matrix

(

a b
c d

)

∈ M satisfies a > 0 and, if b = c = 0, a ≥ d.

(iii) Any invertible matrix

(

a b
c d

)

∈ M satisfies d > 0 and, if b = c = 0, d ≥ a.

(iv) V has a null entry and all the invertible matrices

(

a b
c d

)

∈ M satisfy ad > 0.

Proof. Let ω ∈ {0, . . . , d−1}N. If there exists N such that detMωN
= 0, the column-vectors

YNV, YN+1V, . . . are collinear and
YnV

‖YnV ‖ is constant for n ≥ N . So we look only at the

ω ∈ {0, . . . , d−1}N such that ∀n, detMωn
6= 0. In order to use only matrices with positive

determinant we set ∆ :=

(

0 1
1 0

)

and

An = Aω
n :=



















Mωn
if det Yn−1 > 0 (or n = 1) and detMωn

> 0

Mωn
∆ if det Yn−1 > 0 (or n = 1) and detMωn

< 0

∆Mωn
if det Yn−1 < 0 and detMωn

< 0

∆Mωn
∆ if det Yn−1 < 0 and detMωn

> 0.

We set also
(

an bn
cn dn

)

:= An and

(

pn qn
rn sn

)

:= A1 . . . An =

{

Yn if det Yn > 0

Yn∆ if det Yn < 0.

The matrices An belong to the set

M+ := {M ; ∃i, j, k, M = ∆iMk∆
j and detM > 0}.
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INFINITE PRODUCTS OF NONNEGATIVE 2× 2 MATRICES BY NONNEGATIVE VECTORS 3

Since detAn > 0 we have andnpnsn 6= 0. If {n; An not diagonal} is infinite we index this

set by an increasing sequence n1 < n2 < . . . . We have bn1
6= 0 or cn1

6= 0; both cases are

equivalent because, using the set of matrices M′ = ∆M∆ and defining similarly Y ′
n and

A′
n =

(

a′n b′n
c′n d′n

)

from this set, we have Y ′
n = ∆Yn∆, A′

n = ∆An∆ and b′n1
= cn1

.

So we can suppose bn1
6= 0; we deduce qn 6= 0 by induction on n ≥ n1. The sequences

defined for any n ≥ n1 by

un =
rn
pn

, vn =
sn
qn

, wn =
qn
pn

, xn =

{

v2/v1 if det Yn > 0

v1/v2 if not
and λn = (1 + wnxn)

−1

satisfy 0 ≤ un < vn < ∞, 0 < wn < ∞ and

if the entries of V are positive, 0 < xn < ∞ and 0 < λn < 1
if not, xn ∈ {0,∞} and λn ∈ {0, 1} according to the sign of det Yn.

Since we have assumed that YnV 6=
(

0
0

)

, the ratio
(YnV )2
(YnV )1

exists in [0,∞] and we have to

prove that it has a finite or infinite limit when n → ∞. If An is not eventually diagonal

we have for n ≥ n1

(1)
(YnV )2
(YnV )1

= λnun + (1− λn)vn ∈ In := [un, vn] and In ⊇ In+1.

An immediate consequence is the following lemma:

Lemma 1.1. Suppose An is not eventually diagonal, then

(i) the sequences (un) and (vn) converge in R and the sequence

(

(YnV )2
(YnV )1

)

is bounded;

(ii)

(

(YnV )2
(YnV )1

)

converges if lim
n→∞

|In| = 0;

(iii) if V has positive entries,

(

(YnV )2
(YnV )1

)

converges if wn has limit 0 or ∞;

(iv) if V has a null entry, the necessary and sufficient condition for the convergence of
(

(YnV )2
(YnV )1

)

is that lim
n→∞

|In| = 0 or the sign of det Yn is eventually constant.

We also define for n > n1

αn =

(

1 +
cn
an

wn−1

)−1

, βn =

(

1 +
bn
dn

(wn−1)
−1

)−1

, γn = 1− cn
an

bn
dn

that belong to ]0, 1] and satisfy

(2)
|In| = αnβnγn|In−1|
wn =

dn
an

αn

βn

wn−1
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4 A. THOMAS

so
∏

n>n1

αnβnγn = lim
n→∞

|In|
|In1

| is positive if and only if lim
n→∞

|In| > 0. Using the equivalents of

logαn, log βn and log γn,

(3) lim
n→∞

|In| > 0 ⇔
∑ cn

an
wn−1 < ∞,

∑ bn
dn

(wn−1)
−1 < ∞ and

∑ cn
an

bn
dn

< ∞.

The set of indexes {n; An not diagonal} is the union of

Lω = {n; cn 6= 0} and Uω = {n; bn 6= 0}.

Moreover, since An belongs to the finite set M+ there exists K > 0 such that

Lω =

{

n;
1

K
≤ cn

an
≤ K

}

and Uω =

{

n;
1

K
≤ bn

dn
≤ K

}

.

We deduce a simpler formulation of (3):

(4) lim
n→∞

|In| > 0 ⇔
∑

n∈Lω

wn−1 < ∞,
∑

n∈Uω

(wn−1)
−1 < ∞ and Lω ∩ Uω is finite.

In view of Lemma 1.1 we may suppose from now that lim
n→∞

|In| > 0. Since Lω ∩ Uω =

{n ; An positive} is finite, for n large enough the matrix An is lower triangular if n ∈ Lω,

upper triangular if n ∈ Uω, diagonal if n 6∈ Lω ∪ Uω. When An is diagonal the second

relation in (2) becomes wn =
dn
an

wn−1; consequently any integer n in an interval ]ni, ni+1[

with i large enough satisfies

(5)
wn

wni

=
∏

ni<j≤n

dj
aj
.

Moreover if Lω is infinite, (4) implies that wn−1 has limit to 0 when Lω ∋ n → ∞, and

wn also has limit 0 because wn =
dnwn−1

an + cnwn−1

for any n ∈ Lω \ Uω. We have a similar

property if Uω is infinite, so

(6)
if Lω is infinite, wn−1 → 0 and wn → 0 for Lω ∋ n → ∞;
if Uω is infinite, wn−1 → ∞ and wn → ∞ for Uω ∋ n → ∞.

First case: Suppose that (i) holds. Then the diagonal matrices of M are collinear to

the unit matrix. If at least one matrix of M has the form Mk =

(

0 b
c 0

)

with bc 6= 0,

its nonnegative eigenvalue – namely

(√
b√
c

)

– is collinear to V =

(

v1
v2

)

hence there exists

λ ∈ R such that Mk = λ

(

0 v21
v22 0

)

.
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INFINITE PRODUCTS OF NONNEGATIVE 2× 2 MATRICES BY NONNEGATIVE VECTORS 5

Notice that if An is diagonal from a rank N , the matrix Mωn
has the form

(

a 0
0 d

)

or
(

0 b
c 0

)

hence it has V as eigenvector; consequently

(

(YnV )2
(YnV )1

)

converges because it is

(YNV )2
(YNV )1

for any n ≥ N .

Suppose now An is non-diagonal for infinitely many n. We apply (5) on each interval

]ni, ni+1[ (if non empty), for i large enough. Among the integers n ∈]ni, ni+1[ we consider

the ones for which detMωn
< 0. For such n the matrix An is alternately Mωn

∆ and ∆Mωn
,

hence alternately proportional to

(

v21 0
0 v22

)

and to

(

v22 0
0 v21

)

and, according to (5),

(7) ni ≤ n < ni+1 ⇒
wn

wni

∈
{v21
v22

,
v22
v21

, 1
}

.

In particular this relation holds for n = ni+1 − 1. One deduce – according to (6) – that

there do not exist infinitely many i such that ni ∈ Lω and ni+1 ∈ Uω. Thus ni ∈ Lω for i

large enough (resp. ni ∈ Uω for i large enough) and, according to (6) and (7), lim
n→∞

wn = 0

(resp. lim
n→∞

wn = ∞). In view of Lemma 1.1(iii),

(

(YnV )2
(YnV )1

)

converges.

Second case: Suppose that (ii) holds (if (iii) holds the proof is similar).

Suppose first the Mωn
are diagonal from a rank N . From the hypothesis (ii) there exists

δn, δ
′
n such thatMωN

. . .Mωn
V =

(

δnv1
δ′nv2

)

and δn ≥ δ′n. Since theMωi
belong to a finite set

we have lim
n→∞

δn
δ′n

= ∞, or
δn
δ′n

is eventually constant in caseMωn
is eventually the unit matrix,

or δ′n = 0 6= δn for n large enough. Denoting by

(

p q
r s

)

the matrix Mω1
. . .MωN−1

, we

have
(YnV )2
(YnV )1

=
rδnv1 + sδ′nv2
pδnv1 + qδ′nv2

hence

(

(YnV )2
(YnV )1

)

converges in all the cases.

Suppose now Mωn
is non-diagonal for infinitely many n. There exists from (6) an integer

κ such that

(8) i ≥ κ ⇒
{

wni−1 < 1 and wni
< 1 if ni ∈ Lω

wni−1 > 1 and wni
> 1 if ni ∈ Uω

and such that the An are diagonal for n ∈]ni, ni+1[, i ≥ κ. According to (ii), for such

values of n the matrix Mωn
is diagonal and An = Mωn

with an ≥ dn, or An = ∆Mωn
∆

with an ≤ dn.
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6 A. THOMAS

If there exists i ≥ κ such that ni ∈ Lω and ni+1 ∈ Uω, det Yni
is necessarily negative:

otherwise An should be equal to Mωn
for n ∈]ni, ni+1[,

dn
an

≤ 1 and, by (5), wni+1−1 ≤
wni

< 1 in contradiction with (8).

Now Mωni+1
has positive determinant, otherwise it should have the form

(

a b
c 0

)

and

Ani+1
= ∆Mωni+1

=

(

c 0
a b

)

in contradiction with ni+1 ∈ Uω .

We have again
dn
an

≥ 1 for n ∈]ni+1, ni+2[ and consequently wni+2−1 ≥ wni+1
> 1; so, by

induction, nj ∈ Uω and det Ynj
< 0 for any j ≥ i + 1. From (5) wn lies between wnj

and

wnj+1−1 for any n ∈]nj , nj+1[ and j large enough, and from (6) its limit is infinite. Distin-

guishing the cases where V has positive entries or V has a null entry,
(YnV )2
(YnV )1

converges by

Lemma 1.1.

The conclusion is the same if there do not exist i ≥ κ such that ni ∈ Lω and ni+1 ∈ Uω,

because in this case ni ∈ Lω for i large enough, or ni ∈ Uω for any i ≥ κ.

Third case: Suppose (iv) holds. As we have seen, from (4) An is eventually triangular

or diagonal, and Mωn
also is because – by (iv) – M do not contain invertible matrices of

the form

(

0 b
c d

)

or

(

a b
c 0

)

. We deduce that the sign of det Yn is eventually constant. If

An is not eventually diagonal the sequence

(

(YnV )2
(YnV )1

)

converges by Lemma 1.1(iv) and, if

An is, the sequence

(

(YnV )2
(YnV )1

)

is eventually constant.

Fourth case: Suppose that the set M do not satisfy (i), (ii), (iii) nor (iv), and that

at least one matrix of this set, let Mk, has the form Mk =

(

0 b
c 0

)

with bc 6= 0; let us prove

that

(

(YnV )2
(YnV )1

)

diverges.

Suppose first there exists a matrix Mk of this form that do not have V as eigenvector;

we chose as counterexample the constant sequence defined by ωn = k for any n: Y2n is

collinear to the unit matrix, hence Y2nV is collinear to V and Y2n+1V toMkV , so

(

(YnV )2
(YnV )1

)

diverges.

Suppose now that all the matrices of M of the form

(

0 b
c 0

)

with bc 6= 0 have V as

eigenvector that is, V is collinear to

(√
b√
c

)

for all such matrix. Since (i) do not hold,

at least one matrix Mh of M is diagonal with nonnull and distinct diagonal entries. In
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INFINITE PRODUCTS OF NONNEGATIVE 2× 2 MATRICES BY NONNEGATIVE VECTORS 7

this case MhMk has the form

(

0 b
c 0

)

but do not have V as eigenvector. We recover the

previous case; more precisely the counterexample is defined by ω2n−1 = h and ω2n = k for

any n ∈ N.

Fifth case: Suppose that M do not satisfy (i), (ii), (iii) nor (iv), and that no matrix of

the form

(

0 b
c 0

)

with bc 6= 0 belongs to M. Since (i) do not hold, at least one matrix of

this set has the form Mk =

(

a 0
0 d

)

with ad 6= 0 and a 6= d. We suppose that a > d and

we use the negation of (ii) (in case a < d we use similarly the negation of (iii)). According

to the negation of (ii) there exists in M at least one matrix of the form Mh =

(

0 β
γ δ

)

with βγδ 6= 0, or one of the form Mℓ =

(

α 0
0 δ

)

with 0 < α < δ.

Consider first the case where M contains some matrices Mk and Mh as above. Let (ni)i∈N

be an increasing sequence of positive integers with n1 = 1, and ω the sequence defined by

ωn = h for n ∈ {n1, n2, . . . } and ωn = k otherwise.

For i odd, Ani
is lower-triangular and ∀n ∈]ni, ni+1[, An =

(

d 0
0 a

)

, an = d and dn = a.

For i even, Ani
is upper-triangular and ∀n ∈]ni, ni+1[, An =

(

a 0
0 d

)

, an = a and dn = d.

Using (5) for n = ni+1 − 1 and choosing ni+1 − ni large enough one has wni+1−1 ≥ 2i if i is

odd, wni+1−1 ≤ 2−i if i is even, so the three conditions in (4) are satisfied and the interval

∩In is not reduced to one point. If the entries of V are positive, the first relation in (1)

and the definition of λn imply that lim inf
n→∞

(

(YnV )2
(YnV )1

)

is the lower bound of this interval

and lim sup
n→∞

(

(YnV )2
(YnV )1

)

its upper bound, so the sequence

(

(YnV )2
(YnV )1

)

diverges. If V has a

null entry, the divergence of

(

(YnV )2
(YnV )1

)

results from Lemma 1.1(iv).

In case M contains some matrices Mk and Mℓ as above, one defines ω from a sequence

i1 = 1 < i2 < i3 < . . . by setting, for j ≥ 1 and ij ≤ n < ij+1,

ωn =

{

k if j even
ℓ if j odd.

The diagonal matrix Yn can be easily computed, and

(

(YnV )2
(YnV )1

)

obviously diverges if one

choose the ij+1 − ij large enough.
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8 A. THOMAS

If V has a null entry, since (iv) do not hold M contains at least one matrix of the form

Mh =

(

0 β
γ δ

)

, βγδ 6= 0 or Mh′ =

(

α β
γ 0

)

, αβγ 6= 0, or Mh′′ =

(

0 β
γ 0

)

, βγ 6= 0. We

already know that

(

(YnV )2
(YnV )1

)

diverges if M contains Mk and Mh. Similarly it diverges if

M contains Mℓ and Mh′. If M contains Mk and Mh′′ the counterexample is given – from

a sequence i1 = 1 < i2 < i3 < . . . – by ωij = h′′ and ωn = k for n ∈]ij , ij+1[, j ∈ N:
(YnV )2
(YnV )1

is alternately 0 and ∞ because Yij has the form

(

0 q
r 0

)

for j odd and

(

p 0
0 s

)

for j even. �
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