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Abstract 
 

This paper addresses the dynamic control of multi-

joint systems based on learning of sensory-motor 

transformations. To avoid the dependency of the 

controllers to the analytical knowledge of the multi-

joint system, a non parametric learning approach is 

developed which identifies non linear mappings 

between sensory signals and motor commands involved 

in control motor systems. The learning phase is 

handled through a General Regression Neural 

Network (GRNN) that implements a non parametric 

Nadarayan-Watson regression scheme and a set of 

local PIDs. The resulting dynamic sensory-motor 

controller (DSMC) is intensively tested within the 

scope of hand-arm reaching and tracking movements 

in a dynamical simulation environment. (DSMC) 

proves to be very effective and robust. Moreover, it 

reproduces kinematics behaviors close to captured 

hand-arm movements. 

 

1. Introduction 
 

For humans, moving skillfully and dynamically 

requires a long learning phase, acquired during infancy. 

After exploring the physical capabilities of the hand-

arm system, both dynamically and kinematically for 

pointing, grasping or tracking tasks, in interaction with 

the environment, the performance exploits previous 

experiences and becomes more accurate, smooth and 

rapid for new tasks. Our approach is inspired by such a 

sensory-motor learning process. We propose a 

plausible biological model, which uses examples of 

previous performances, and is able to continuously 

select control variables, based on information coming 

from the sensorial receptors, given a specific task. 

In our approach, the muscular-skeleton motion 

system, controlled through sensory feedback (visual or 

proprioceptive) involves nonlinear transformations that 

mix motor commands with sensory information. These 

transformations play a central role in the control of 

multi-articulated chain systems, whether they are 

biological or artificial. To cope with the need for 

plasticity (adaptation to changes), generic control 

performance (similar control principles for various 

kinds of mappings, various kinds of articulated chains 

or neuro-anatomical variability among individuals) and 

anticipation (predictive capability and optimization of 

movements), it is more or less accepted in the 

neuroscience community that these mappings are 

learned by biological organisms rather than pre-

programmed. For the design of artificial control 

system, the biological plausibility of the control 

mechanisms involved is not really considered as an 

issue. Nevertheless, adaptive, predictive and generic 

capabilities of controlling components are indeed key 

characteristics that have been carefully addressed for a 

long time, in particular within the optimal control field. 

In the scope of complex artificial system design, 

analytical equations that drive the dynamics and the 

kinematics of the motion system can be difficult to 

extract, and the corresponding solution to the set of 

differential equations fastidious to estimate. In 

particular, computational implementations of sensory-

motor controllers require the complete or partial 

knowledge of transformations that are directly 

dependent on the multi-joint structure to control. 

Setting up control strategies for complex system 

control is consequently not a simple task. In this 

context, learning or identifying part of the control 

strategy from the observation of the system behavior is 

an appealing and efficient approach. The aim of this 

paper is to present a generic learning approach for the 

dynamical control of mechanical articulated systems, 

and more precisely hand-arm systems. 

 

2. Related work 
 

Previous work in learning motion control can be 

divided in two main classes, depending on the 

motivations: the first class concerns works which 

provide new insights into motor control. This kind of 

work may improve the understanding via simulation of 

hypothetical strategies that the Central Nervous 

System uses to control limb movements. The second 



class concerns the design of artificial systems that 

mimic biological behaviors. 

Within the first class of work, numerous 

approaches integrating learning mechanisms have 

been developed to control sensory-motor systems. 

Among them, several significant contributions 

highlight two main approaches: those which are 

looking for an a priori analogy with biological 

systems (identification of functions of the cerebellum) 

[1-3], and the others which are looking for an a 

posteriori analogy with biological systems [4-5]. 

In the second class of work, the problem of learning 

motion control is encompassed by the highly developed 

field of neural network control [6]. A typical 

“intelligent” motion controller tends to output the 

control signals directly from a neural network, or a 

similar device. Two distinct and competing approaches 

are available when facing the problem of learning non 

linear transformations (NLT) and in particular non 

linear mappings involved in multi-joint control 

systems: parametric learning (PL) and non parametric 

learning (NPL) (see [7] and [8] for a review of PL and 

NPL models with biological relevance arguments 

regarding internal sensory-motor maps). The 

fundamental difference between PL and NPL is that PL 

addresses the learning essentially globally while NPL 

addresses it much more locally. In other words, PL 

methods try to learn non linear transforms over their 

whole domain of validity. This means that if a change 

in the environment occurs locally, it will potentially 

affect the learning process everywhere in the definition 

domain of the transform. Conversely, NPL learns the 

properties of the transform in the neighborhood of each 

point of interest within the definition domain of the 

transform. Thus, a local update in the learning process 

does not affect the rest of the learned definition 

domain. Multi layer Perceptron [9-10] are instances of 

the PL class with synaptic weights as parameters, while 

Probabilistic Networks or General regression Neural 

networks [11-12] are instances of the NPL class.  

Biological relevance can be found for the two kinds 

of approaches. Nevertheless, local characteristics of 

NPL is undoubtedly a great advantage when addressing 

incremental learning in variable environments, since 

the local modification resulting from any change does 

not affect the overall structure of the non linear 

transform already learned. 

Our paper proposes a new learning scheme for the 

dynamical control of muscular-skeleton systems, based 

on the learning of inverse sensory-motor 

transformations. Our learning algorithm is applied to 

the control of an anthropomorphic hand-arm system. 

 

3. Inverse sensory-motor control 
 

The controller system refers to the process of 

defining a sensory-motor control policy for a muscular-

skeleton system and a particular task goal. In our 

model, we assume that the system to move is composed 

of a skeleton dynamics part, labeled (D), and a skeleton 

kinematics part, labeled (K) (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Inverse sensory-motor control 
 

At each time, the muscular skeleton system can be 

characterized by its state vector )(ty
r

, represented by 

the joint coordinates and their derivatives ( ), qq
r
&

r
 ( q

r
 

being Euler angles or quaternion coordinates). 

Moreover, the sensory data are used in a feedback loop 

to iteratively compute the motor command: given the 

task goal )(tsT

r
 or )(tyT

r
, the dynamic sensory-motor 

controller (DSMC) generates from the error between 

the current values of )(ty
r

and )(ts
r

and the task goal a 

torque input )(tτ
r

applied to the direct (DK) system.  

      

 

 

 

 

   

 

 

 

Figure 2. Dynamic sensory-motor controller 

 

The controller itself is composed of two inverse 

transformations, as shown in figure 2, where )(tyT

r
is 

part of the command specified in the state space 

and )(tsT

r
 part of the command specified in the output 
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space. The error signals measured between sensory 

outputs and task inputs are generally used as corrective 

information to update the torque command of the 

articulated system. The excess of degrees of freedom 

which characterizes the system (DK) makes the 

inversion of (D) and (K) a redundant problem since the 

same sensory outputs may be observed for numerous 

different torque commands and states of the system. 

We briefly present hereinafter our solutions that 

implicitly inverse the (D) and (K) models and show 

how to assemble these solutions to build up a dynamic 

sensory-motor controller (DSMC). 

 

3.1 Inversion of the skeleton dynamics D 
 

When controlling mechanical articulated systems, 

we have to design control laws which compute torque 

commands for each joints. This control problem is 

inherently non linear, which means that much of linear 

control theory is not directly applicable. Nonetheless, 

one solution, classically used in robotics and computer 

animation, called Proportional Integrative Derivative 

law (PID), is issued from linear control theory. For 

each internal joint, each PID controller takes as inputs 

angular position of the joint and its derivative as well 

as the desired angular position, and computes the 

torque output required to produce the desired 

displacement of the joint as expressed by equation 1. 
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where q
r

 is the angle of the joint, 
Tq
r

is the desired 

angle, Kp, Kd and Ki are the respective proportional, 

derivative and integral gains. The effect of the PID 

controller is to eliminate large step changes in the 

errors, thus smoothing the simulated motion. 

 

3.2. Inversion of the skeleton kinematics K 
 

Numerous solutions exist to control sensory-motor 

systems (see references [1-5] for some approaches that 

exploit learning mechanisms).  

Numerical approaches have been used in computer 

graphics as numerical iterative approaches to solve 

Inverse Kinematics (IK). (IK) can be regarded as a 

nonlinear optimization problem based on the 

minimization of a scalar potential function defined by: 

 

( ) ( ) )2()()()( T

T

T syMsyMyE
rrrrr

−−=    

where )( yM
r denotes the forward kinematics mapping 

from the state space to the observation space 

and
Ts
r

denotes the desired  sensory output expressed in 

the output task space.  

In previous works we developed a gradient-based 

controller in a sensory-motor closed-loop 

transformation which integrates neurophysiologic 

elements. This model has proved to control articulated 

chains and produce motion that globally respects 

human motion laws [15]. To implement such a model, 

all coefficients of the Jacobian matrix J(t) have to be 

known for all values of the state vector. These 

coefficients directly depend on the structure of the 

articulated chain to control. Furthermore, for any 

articulated chain, a specific Jacobian matrix has to be 

calculated. One solution to overcome such limitation is 

to introduce a learning scheme, a functionality that 

most of biological systems have ingenuously 

implemented.  

A first learning scheme of the inverse kinematics 

transformation was proposed in [16] and [17]. We 

extend here the learning to the inverse dynamics, by 

adding a set of distributed inverse dynamics modules 

associated to inverse kinematics modules in which the 

mappings are learned. 

 

4. Learning kinematics using General 

Regression Neural Networks(GRNN)  
 

GRNN or “General Regression Neural Networks” 

have been proposed by Donald Specht [11-12]. They 

are relevant to Nadaraya-Watson kernel regression 

method, or Parzen window methods [18-19]. 

Definitions and assumptions behind the derivation of 

the Nadaraya-Watson estimate are detailed briefly 

hereinafter. 

Let X be an m-dimensional random variable in (R
m
, 

Bm) and Y an n-dimensional dependent random variable 

in (R
n
, Bn) such that Y = f(X), where Bm and Bn are the 

borel σ-algebra over R
m
 and R

n
 respectively. Let ϕ(X,Y) 

be the joint continuous density function. Assuming that 

x
r

 and y
r

 are measured values for X and Y 

respectively, the expected value of Y given x
r

 (the 

regression of Y upon x
r

) is given as: 
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Let Km be a probability density function on R
m
. We 

assume that Km satisfies the following conditions: 

Km is continuous, symmetric, bounded. 



Assuming that the underlying density is continuous 

and smooth enough (first derivatives of ϕ evaluated at 

any x
r

 are small), and based on a set of p observation 

samples { } { }piii yx
,..,1

),(
∈

rr , the joint probability density 

estimator ),(ˆ yx
rr

ϕ using the non parametric Parzen’s 

window method can be formulated as follows: 
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where α is a normalizing factor, Wx  a positive diagonal 

matrix used as weighting coordinates of vector x
r

, and 

σi the local “bandwidth” of the kernel Km centered on 

sample ),( ii yx
rr

. In general a Gaussian kernel is chosen 

such that Km is identified to the exponential function.   

Substituting equation (4) into equation (3) we get: 
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Assumptions: 

(A1) The ),( ii yx
rr

 are i.i.d. (This assumption will 

change later) 

(A2) Km is a symmetric function around zero with 

the following properties. 

( ) 1=∫ ψψ dK m
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ϕ  exists for all k, is continuous, and 

is bounded in a neighborhood around x (and thus we 

can evaluate the bias and variance of 
∧

ϕ ) 

(A4) for all i, ∞→→ pasi 0σ  

(A5) for all i, ∞→∞→ pasp iσ.  

Under assumptions (A1) to (A5), the consistency of 

the kernel estimator is established, as the estimator 

)/(ˆ xYE
r

tends in probability towards )/( xYE
r

.   

4.1. GRNN and the Nadaraya-Watson estimate  
 

GRNN is a normalized Radial Basis Function (RBF) 

network for which a hidden unit is centered at every 

training sample. The RBF units of GRNN architecture 

are usually characterized by Gaussian kernels. The 

hidden-to-output weights are identified to the target 

values, so that the output is a weighted average of the 

target values of the training samples close to the given 

input case. The only parameters of the networks are the 

widths of the kernels associated to the RBF units. 

These widths (often a single width is used) are called 

“smoothing parameters” or “bandwidths” [18] [19]. 

They are usually chosen by cross-validation or by ad-

hoc methods not well-described. GRNN is a universal 

approximator for smooth functions, so it should be able 

to solve any smooth function-approximation problem 

provided enough data is given. The main drawback of 

GRNN is that, like kernel methods in general, it suffers 

badly from the lack of learning data.  

 

4.2. Learning SMC maps using GRNN 
 

To estimate the normalized gradient of the error, the 

following map f is defined: 

),(ˆ syfys

rrr

δδ =  (8) 

Where s
r

δ  is the 3D directional vector towards the 

task 
Ts
r

 specified in the sensory space, y
r

 the vector of 

the state variable. 
sy
r
ˆδ  is the estimated normalized 

modification vector within the state space that 

minimizes the error between the current output s
r

and 

the task specification 
Ts
r

. Following GRNN memory 

based approach, the calculation of the map f is 

approximated through a variable Gaussian kernel 

density estimator as explained below. 

Given a set p of learning samples,{(yi, δyi, δsi)}i=1…p, 

the state update 
sy
r
ˆδ  that minimizes the error signal 

calculated from a current state y
r

 and a 3D normalized 

directional vector s
r

δ is estimated as the conditional 

expectation of y
r

δ  given ξ
r

: 
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where 
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δξδξ == , C is a 

normalizing factor, and K a variable Gaussian kernel: 
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W is a weighting diagonal matrix used to balance the 

weighting of sensory information s
r

δ with state 

information y
r

, σ is a parameter that scales the local 

density, both in the state space and in the sensory 

space: if the density is low, σ is increased and 

conversely, if the density is high, σ  is lowered.  

 

4.3. Naive GRNN learning algorithm 
 

σ is selected empirically, since an optimum value 

cannot be determined from a set of observations.  

- Initialisation: select a small value ε, an integer value p 

and set i to 0 (ε can be a function of p). 

- Select randomly a state vector y
r

, position the multi-

joint system according to y
r

, and observe the 

corresponding sensory outputs s
r

. 

- Select a small normalized change y
r

δ , position the 

multi-joint system according to ( )yy
rr

δ+ , and observe 

the change in sensory outputs s
r

δ .  

- Calculate y
r
ˆδ  using 

Tsy ],[
rrr

δξ = according to 

equations (9) and (10).  

If εδδ >− yy
rr

ˆ , save the association ( )ysy
rrr

δδ ],,[  

as a new learning sample ( )ii y
rr

δξ , , create a 

corresponding neuron  and increment i. 

-  If i<p, loop in 1), stop otherwise  

 

4.4. Implementation issues 
 

When estimating the expectation of the state update 

y
r

δ  given ξ
r

, the computations of distances in the d-

dimensional ξ
r

 space are required (d = dimension of 

the state space + dimension of the sensory space). 

When summing Gaussian kernels (eq. (9) and (10)), 

only the 
iξ
r

 vectors belonging to the neighborhood of 

ξ
r

 are retained. To speed up the computation process, a 

kd-tree [14] for identifying neighborhoods in 

logarithmic time with p can be advantageously used. 

(The kd-tree representation of the stored data leads to 

reconsider the architecture of GRNN to implement 

similar neighborhood search). 

 

5. Results 
 

The learning approach is applied on a simulated 

mechanical system composed of two arms and two 

hands, submitted to successive reaching tasks. The 

mechanical systems are modeled with ODE (Open 

Dynamic Engine) [20], with a 3D custom rendering 

(see Fig. 4.b for the visualization of the 3D character). 

Each arm is composed of three joints with six degrees 

of freedom, and each finger is composed of three joints 

with four degrees of freedom.  

The arms are controlled by (DSMC) controllers, 

where the mapping between y
r

 and s
r

 is learned on the 

basis of a gradient descent strategy. The learning 

processes are carried out for increasing values of the 

number of learning samples p. For each process, a 

thousand of 3D spatial target positions and initial 

conditions have been selected randomly to test the 

correctness of the learning process. For these 1000 

conditions, the error rate (number of cases where the 

arm is not able to reach the target) is calculated.  

The experimental settings for this test are the 

following. A target is considered to be reached when 

the residual distance between the arm end-point and the 

target is below 1% of the total length of the extended 

hand-arm chain. The size of σ is selected such that at 

least 40 neighbors can be provided to evaluate y
r

δ .  

The results of this test are reported in Figure 3. For 

about 60000 learning samples, the map f is apparently 

well modeled, since the residual error rate is low (about 

0.5%) and very few improvements are gained when 

increasing p. 

Figure 3. Error rate as a function of the 

number of learning samples p. 
 

The fact that p can be chosen very low while 

maintaining good performances is a major result. 

Generally, for estimating a multivariate function with 9 

variables (e.g. 6 degrees of freedom and 3D 

coordinates), a kernel density estimator requires above 

500,000 samples adequately selected. In our case, 

p=80,000 seems to be sufficient for the considered 

task. One reasonable explanation is that the sensory-

motor loop performs a time average over successive 

gradient estimate values which compensates small 

errors due to the coarse estimation. A rough gradient 

mapping estimation is consequently quite accurate for 

the reaching task considered in our experiments. 
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After the learning phase, a simulation process was 

carried out, for a tracking task which consisted in  

following discrete targets extracted from a motion 

capture hand trajectory, according to an adaptive sub-

sampling algorithm [21] (see figure 4 a). Furthermore, 

the simulation of (DSMC) is linked to this tracking 

task, and applied to a virtual character (see figure 4 b). 
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Figure 4. a) Trajectory of the human wrist in 

the Cartesian space with the localization of the 

targets; b) Simulation by a virtual character for 

a tracking task 

 

For this hand-tracking task, the resulting hand 

trajectories obtained through dynamical simulation can 

be superimposed with the captured trajectories, as 

illustrated in figure 4 a). 
 

6. Conclusion 
 

In this paper, we proposed a Dynamical Sensory-

motor controller (DSMC) for controlling a dynamical 

hand-arm system. The controller combines both the 

inversion of the kinematics model, from the learning of 

sensory-motor mappings, and the inversion of the 

dynamical system using classical PID controllers. The 

learning of sensory-motor mappings was performed 

with non parametric learning approaches (GRNN), 

based on a variable kernel density estimator and the use 

of a kd-tree architecture to simulate neuron activation 

according to a near neighbor search. Despite the 

apparent high memory requirement needed by this kind 

of estimator, the proposed learning scheme behaves 

properly when used to control articulated systems with 

six degrees of freedom simulated in a dynamical 

environment. This result is obtained even if the number 

of learning samples is reasonably low. 
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