
Learning for the Control of Dynamical Motion Systems

Pierre-François Marteau, Sylvie Gibet

VALORIA, University of Bretagne Sud, France
{pierre-francois.marteau, sylvie.gibet}@univ-ubs.fr

Abstract

This paper addresses the dynamic control of multi-

joint systems based on learning of sensory-motor

transformations. To avoid the dependency of the

controllers to the analytical knowledge of the multi-

joint system, a non parametric learning approach is

developed which identifies non linear mappings

between sensory signals and motor commands involved

in control motor systems. The learning phase is

handled through a General Regression Neural

Network (GRNN) that implements a non parametric

Nadarayan-Watson regression scheme and a set of

local PIDs. The resulting dynamic sensory-motor

controller (DSMC) is intensively tested within the

scope of hand-arm reaching and tracking movements

in a dynamical simulation environment. (DSMC)

proves to be very effective and robust. Moreover, it

reproduces kinematics behaviors close to captured

hand-arm movements.

1. Introduction

For humans, moving skillfully and dynamically

requires a long learning phase, acquired during infancy.

After exploring the physical capabilities of the hand-

arm system, both dynamically and kinematically for

pointing, grasping or tracking tasks, in interaction with

the environment, the performance exploits previous

experiences and becomes more accurate, smooth and

rapid for new tasks. Our approach is inspired by such a

sensory-motor learning process. We propose a

plausible biological model, which uses examples of

previous performances, and is able to continuously

select control variables, based on information coming

from the sensorial receptors, given a specific task.

In our approach, the muscular-skeleton motion

system, controlled through sensory feedback (visual or

proprioceptive) involves nonlinear transformations that

mix motor commands with sensory information. These

transformations play a central role in the control of

multi-articulated chain systems, whether they are

biological or artificial. To cope with the need for

plasticity (adaptation to changes), generic control

performance (similar control principles for various

kinds of mappings, various kinds of articulated chains

or neuro-anatomical variability among individuals) and

anticipation (predictive capability and optimization of

movements), it is more or less accepted in the

neuroscience community that these mappings are

learned by biological organisms rather than pre-

programmed. For the design of artificial control

system, the biological plausibility of the control

mechanisms involved is not really considered as an

issue. Nevertheless, adaptive, predictive and generic

capabilities of controlling components are indeed key

characteristics that have been carefully addressed for a

long time, in particular within the optimal control field.

In the scope of complex artificial system design,

analytical equations that drive the dynamics and the

kinematics of the motion system can be difficult to

extract, and the corresponding solution to the set of

differential equations fastidious to estimate. In

particular, computational implementations of sensory-

motor controllers require the complete or partial

knowledge of transformations that are directly

dependent on the multi-joint structure to control.

Setting up control strategies for complex system

control is consequently not a simple task. In this

context, learning or identifying part of the control

strategy from the observation of the system behavior is

an appealing and efficient approach. The aim of this

paper is to present a generic learning approach for the

dynamical control of mechanical articulated systems,

and more precisely hand-arm systems.

2. Related work

Previous work in learning motion control can be

divided in two main classes, depending on the

motivations: the first class concerns works which

provide new insights into motor control. This kind of

work may improve the understanding via simulation of

hypothetical strategies that the Central Nervous

System uses to control limb movements. The second

class concerns the design of artificial systems that

mimic biological behaviors.

Within the first class of work, numerous

approaches integrating learning mechanisms have

been developed to control sensory-motor systems.

Among them, several significant contributions

highlight two main approaches: those which are

looking for an a priori analogy with biological

systems (identification of functions of the cerebellum)

[1-3], and the others which are looking for an a

posteriori analogy with biological systems [4-5].

In the second class of work, the problem of learning

motion control is encompassed by the highly developed

field of neural network control [6]. A typical

“intelligent” motion controller tends to output the

control signals directly from a neural network, or a

similar device. Two distinct and competing approaches

are available when facing the problem of learning non

linear transformations (NLT) and in particular non

linear mappings involved in multi-joint control

systems: parametric learning (PL) and non parametric

learning (NPL) (see [7] and [8] for a review of PL and

NPL models with biological relevance arguments

regarding internal sensory-motor maps). The

fundamental difference between PL and NPL is that PL

addresses the learning essentially globally while NPL

addresses it much more locally. In other words, PL

methods try to learn non linear transforms over their

whole domain of validity. This means that if a change

in the environment occurs locally, it will potentially

affect the learning process everywhere in the definition

domain of the transform. Conversely, NPL learns the

properties of the transform in the neighborhood of each

point of interest within the definition domain of the

transform. Thus, a local update in the learning process

does not affect the rest of the learned definition

domain. Multi layer Perceptron [9-10] are instances of

the PL class with synaptic weights as parameters, while

Probabilistic Networks or General regression Neural

networks [11-12] are instances of the NPL class.

Biological relevance can be found for the two kinds

of approaches. Nevertheless, local characteristics of

NPL is undoubtedly a great advantage when addressing

incremental learning in variable environments, since

the local modification resulting from any change does

not affect the overall structure of the non linear

transform already learned.

Our paper proposes a new learning scheme for the

dynamical control of muscular-skeleton systems, based

on the learning of inverse sensory-motor

transformations. Our learning algorithm is applied to

the control of an anthropomorphic hand-arm system.

3. Inverse sensory-motor control

The controller system refers to the process of

defining a sensory-motor control policy for a muscular-

skeleton system and a particular task goal. In our

model, we assume that the system to move is composed

of a skeleton dynamics part, labeled (D), and a skeleton

kinematics part, labeled (K) (Fig. 1).

Figure 1. Inverse sensory-motor control

At each time, the muscular skeleton system can be

characterized by its state vector)(ty
r

, represented by

the joint coordinates and their derivatives (), qq
r
&

r
 (q

r

being Euler angles or quaternion coordinates).

Moreover, the sensory data are used in a feedback loop

to iteratively compute the motor command: given the

task goal)(tsT

r
 or)(tyT

r
, the dynamic sensory-motor

controller (DSMC) generates from the error between

the current values of)(ty
r

and)(ts
r

and the task goal a

torque input)(tτ
r

applied to the direct (DK) system.

Figure 2. Dynamic sensory-motor controller

The controller itself is composed of two inverse

transformations, as shown in figure 2, where)(tyT

r
is

part of the command specified in the state space

and)(tsT

r
 part of the command specified in the output

(K)
-1

(D)
-1

)(

)(

ty

ty

T

r

r

)(

)(

ts

ts

T

r

r

)(ˆ tys

r

δ

)(ˆ ty
r

δ

)(tτ
r

Σ

)(),(tyts TT

rr

Muscular skeleton system

Sensory

information:

visual,

proprioceptive

Task goal

)(tτ
r

Dynamic

Sensory-Motor

Controller

(DSMC)

Skeleton

Kinematics (K)

)(ty
r

)(ts
r

Skeleton

Dynamics (D)

Error

State

)(tτ
r

Output

space. The error signals measured between sensory

outputs and task inputs are generally used as corrective

information to update the torque command of the

articulated system. The excess of degrees of freedom

which characterizes the system (DK) makes the

inversion of (D) and (K) a redundant problem since the

same sensory outputs may be observed for numerous

different torque commands and states of the system.

We briefly present hereinafter our solutions that

implicitly inverse the (D) and (K) models and show

how to assemble these solutions to build up a dynamic

sensory-motor controller (DSMC).

3.1 Inversion of the skeleton dynamics D

When controlling mechanical articulated systems,

we have to design control laws which compute torque

commands for each joints. This control problem is

inherently non linear, which means that much of linear

control theory is not directly applicable. Nonetheless,

one solution, classically used in robotics and computer

animation, called Proportional Integrative Derivative

law (PID), is issued from linear control theory. For

each internal joint, each PID controller takes as inputs

angular position of the joint and its derivative as well

as the desired angular position, and computes the

torque output required to produce the desired

displacement of the joint as expressed by equation 1.

)1()()()()(∫+−+−= dttqKqqKqqKt iTdTp

rr
&

r
&

rr
τ

where q
r

 is the angle of the joint,
Tq
r

is the desired

angle, Kp, Kd and Ki are the respective proportional,

derivative and integral gains. The effect of the PID

controller is to eliminate large step changes in the

errors, thus smoothing the simulated motion.

3.2. Inversion of the skeleton kinematics K

Numerous solutions exist to control sensory-motor

systems (see references [1-5] for some approaches that

exploit learning mechanisms).

Numerical approaches have been used in computer

graphics as numerical iterative approaches to solve

Inverse Kinematics (IK). (IK) can be regarded as a

nonlinear optimization problem based on the

minimization of a scalar potential function defined by:

() ())2()()()(T

T

T syMsyMyE
rrrrr

−−=

where)(yM
r denotes the forward kinematics mapping

from the state space to the observation space

and
Ts
r

denotes the desired sensory output expressed in

the output task space.

In previous works we developed a gradient-based

controller in a sensory-motor closed-loop

transformation which integrates neurophysiologic

elements. This model has proved to control articulated

chains and produce motion that globally respects

human motion laws [15]. To implement such a model,

all coefficients of the Jacobian matrix J(t) have to be

known for all values of the state vector. These

coefficients directly depend on the structure of the

articulated chain to control. Furthermore, for any

articulated chain, a specific Jacobian matrix has to be

calculated. One solution to overcome such limitation is

to introduce a learning scheme, a functionality that

most of biological systems have ingenuously

implemented.

A first learning scheme of the inverse kinematics

transformation was proposed in [16] and [17]. We

extend here the learning to the inverse dynamics, by

adding a set of distributed inverse dynamics modules

associated to inverse kinematics modules in which the

mappings are learned.

4. Learning kinematics using General

Regression Neural Networks(GRNN)

GRNN or “General Regression Neural Networks”

have been proposed by Donald Specht [11-12]. They

are relevant to Nadaraya-Watson kernel regression

method, or Parzen window methods [18-19].

Definitions and assumptions behind the derivation of

the Nadaraya-Watson estimate are detailed briefly

hereinafter.

Let X be an m-dimensional random variable in (R
m
,

Bm) and Y an n-dimensional dependent random variable

in (R
n
, Bn) such that Y = f(X), where Bm and Bn are the

borel σ-algebra over R
m
 and R

n
 respectively. Let ϕ(X,Y)

be the joint continuous density function. Assuming that

x
r

 and y
r

 are measured values for X and Y

respectively, the expected value of Y given x
r

 (the

regression of Y upon x
r

) is given as:

∫

∫
∞+

∞−

+∞

∞−=
dYxY

dYxYY
xYE

.),(

.),(.
)/(

r

r

r

ϕ

ϕ
 (3)

Let Km be a probability density function on R
m
. We

assume that Km satisfies the following conditions:

Km is continuous, symmetric, bounded.

Assuming that the underlying density is continuous

and smooth enough (first derivatives of ϕ evaluated at

any x
r

 are small), and based on a set of p observation

samples { } { }piii yx
,..,1

),(
∈

rr , the joint probability density

estimator),(ˆ yx
rr

ϕ using the non parametric Parzen’s

window method can be formulated as follows:

)4(
)(2

)()(

)(2

)()(1
),(ˆ

2
1

2

 −−−

 −−−
= ∑

= i

i

T

i
m

p

i i

ix

T

i
m

yyyy
K

xxWxx
Kyx

σσα
ϕ

rrrrrrrr
rr

where α is a normalizing factor, Wx a positive diagonal

matrix used as weighting coordinates of vector x
r

, and

σi the local “bandwidth” of the kernel Km centered on

sample),(ii yx
rr

. In general a Gaussian kernel is chosen

such that Km is identified to the exponential function.

Substituting equation (4) into equation (3) we get:

∑

∑

=

=

 −−−

 −−−

=
p

i i

ix

T

i
m

p

i i

ix

T

i
mi

xxWxx
K

xxWxx
Ky

xYE

1
2

1
2

)(2

)()(

)(2

)()(
.

)/(ˆ

σ

σ
rrrr

rrrr
r

r (5)

or:

()

() ∑

∑

∑

∑

=

=

=

= ==
p

i

i

p

i

ii

p

i

im

p

i

imi

w

wy

xxK

xxKy

xYE

1

1

1

1

.

,

,.

)/(ˆ

r

rr

rrr

r (6)

with

 −−−
=

2)(2

)()(

i

ix

T

i
mi

xxWxx
Kw

σ

rrrr

 (7)

Assumptions:

(A1) The),(ii yx
rr

 are i.i.d. (This assumption will

change later)

(A2) Km is a symmetric function around zero with

the following properties.

() 1=∫ ψψ dK m

() 02

2 ≠=∫ µψψψ dK m

() ∞<∫ ψψ dK m

2

(A3)

kx

yx
2

2),(

∂

∂
∧

ϕ exists for all k, is continuous, and

is bounded in a neighborhood around x (and thus we

can evaluate the bias and variance of
∧

ϕ)

(A4) for all i, ∞→→ pasi 0σ

(A5) for all i, ∞→∞→ pasp iσ.

Under assumptions (A1) to (A5), the consistency of

the kernel estimator is established, as the estimator

)/(ˆ xYE
r

tends in probability towards)/(xYE
r

.

4.1. GRNN and the Nadaraya-Watson estimate

GRNN is a normalized Radial Basis Function (RBF)

network for which a hidden unit is centered at every

training sample. The RBF units of GRNN architecture

are usually characterized by Gaussian kernels. The

hidden-to-output weights are identified to the target

values, so that the output is a weighted average of the

target values of the training samples close to the given

input case. The only parameters of the networks are the

widths of the kernels associated to the RBF units.

These widths (often a single width is used) are called

“smoothing parameters” or “bandwidths” [18] [19].

They are usually chosen by cross-validation or by ad-

hoc methods not well-described. GRNN is a universal

approximator for smooth functions, so it should be able

to solve any smooth function-approximation problem

provided enough data is given. The main drawback of

GRNN is that, like kernel methods in general, it suffers

badly from the lack of learning data.

4.2. Learning SMC maps using GRNN

To estimate the normalized gradient of the error, the

following map f is defined:

),(ˆ syfys

rrr

δδ = (8)

Where s
r

δ is the 3D directional vector towards the

task
Ts
r

 specified in the sensory space, y
r

 the vector of

the state variable.
sy
r
ˆδ is the estimated normalized

modification vector within the state space that

minimizes the error between the current output s
r

and

the task specification
Ts
r

. Following GRNN memory

based approach, the calculation of the map f is

approximated through a variable Gaussian kernel

density estimator as explained below.

Given a set p of learning samples,{(yi, δyi, δsi)}i=1…p,

the state update
sy
r
ˆδ that minimizes the error signal

calculated from a current state y
r

 and a 3D normalized

directional vector s
r

δ is estimated as the conditional

expectation of y
r

δ given ξ
r

:

C

Ky

yEy

p

i

ii

s

∑
=== 1

),(.

)/(ˆˆ

ξξδ

ξδδ

rrr

rr
 (9)

where
T

iii

T
sysy],[,],[
rrrrrr

δξδξ == , C is a

normalizing factor, and K a variable Gaussian kernel:

() ()
)10(exp),(

 −−
−≈

σ

ξξξξ
ξξ

T

ii
i

W
K

rrrr
rr

W is a weighting diagonal matrix used to balance the

weighting of sensory information s
r

δ with state

information y
r

, σ is a parameter that scales the local

density, both in the state space and in the sensory

space: if the density is low, σ is increased and

conversely, if the density is high, σ is lowered.

4.3. Naive GRNN learning algorithm

σ is selected empirically, since an optimum value

cannot be determined from a set of observations.

- Initialisation: select a small value ε, an integer value p

and set i to 0 (ε can be a function of p).

- Select randomly a state vector y
r

, position the multi-

joint system according to y
r

, and observe the

corresponding sensory outputs s
r

.

- Select a small normalized change y
r

δ , position the

multi-joint system according to ()yy
rr

δ+ , and observe

the change in sensory outputs s
r

δ .

- Calculate y
r
ˆδ using

Tsy],[
rrr

δξ = according to

equations (9) and (10).

If εδδ >− yy
rr

ˆ , save the association ()ysy
rrr

δδ],,[

as a new learning sample ()ii y
rr

δξ , , create a

corresponding neuron and increment i.

- If i<p, loop in 1), stop otherwise

4.4. Implementation issues

When estimating the expectation of the state update

y
r

δ given ξ
r

, the computations of distances in the d-

dimensional ξ
r

 space are required (d = dimension of

the state space + dimension of the sensory space).

When summing Gaussian kernels (eq. (9) and (10)),

only the
iξ
r

 vectors belonging to the neighborhood of

ξ
r

 are retained. To speed up the computation process, a

kd-tree [14] for identifying neighborhoods in

logarithmic time with p can be advantageously used.

(The kd-tree representation of the stored data leads to

reconsider the architecture of GRNN to implement

similar neighborhood search).

5. Results

The learning approach is applied on a simulated

mechanical system composed of two arms and two

hands, submitted to successive reaching tasks. The

mechanical systems are modeled with ODE (Open

Dynamic Engine) [20], with a 3D custom rendering

(see Fig. 4.b for the visualization of the 3D character).

Each arm is composed of three joints with six degrees

of freedom, and each finger is composed of three joints

with four degrees of freedom.

The arms are controlled by (DSMC) controllers,

where the mapping between y
r

 and s
r

 is learned on the

basis of a gradient descent strategy. The learning

processes are carried out for increasing values of the

number of learning samples p. For each process, a

thousand of 3D spatial target positions and initial

conditions have been selected randomly to test the

correctness of the learning process. For these 1000

conditions, the error rate (number of cases where the

arm is not able to reach the target) is calculated.

The experimental settings for this test are the

following. A target is considered to be reached when

the residual distance between the arm end-point and the

target is below 1% of the total length of the extended

hand-arm chain. The size of σ is selected such that at

least 40 neighbors can be provided to evaluate y
r

δ .

The results of this test are reported in Figure 3. For

about 60000 learning samples, the map f is apparently

well modeled, since the residual error rate is low (about

0.5%) and very few improvements are gained when

increasing p.

Figure 3. Error rate as a function of the

number of learning samples p.

The fact that p can be chosen very low while

maintaining good performances is a major result.

Generally, for estimating a multivariate function with 9

variables (e.g. 6 degrees of freedom and 3D

coordinates), a kernel density estimator requires above

500,000 samples adequately selected. In our case,

p=80,000 seems to be sufficient for the considered

task. One reasonable explanation is that the sensory-

motor loop performs a time average over successive

gradient estimate values which compensates small

errors due to the coarse estimation. A rough gradient

mapping estimation is consequently quite accurate for

the reaching task considered in our experiments.

0

5

10

15

20

25

30

35

40

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81

Error rate (%)

After the learning phase, a simulation process was

carried out, for a tracking task which consisted in

following discrete targets extracted from a motion

capture hand trajectory, according to an adaptive sub-

sampling algorithm [21] (see figure 4 a). Furthermore,

the simulation of (DSMC) is linked to this tracking

task, and applied to a virtual character (see figure 4 b).

100 150 200 250 300 350
−250

−200

−150

−100

−50

0
End effector 3D trajectory (x,y,z)

x

y

a) b)

Figure 4. a) Trajectory of the human wrist in

the Cartesian space with the localization of the

targets; b) Simulation by a virtual character for

a tracking task

For this hand-tracking task, the resulting hand

trajectories obtained through dynamical simulation can

be superimposed with the captured trajectories, as

illustrated in figure 4 a).

6. Conclusion

In this paper, we proposed a Dynamical Sensory-

motor controller (DSMC) for controlling a dynamical

hand-arm system. The controller combines both the

inversion of the kinematics model, from the learning of

sensory-motor mappings, and the inversion of the

dynamical system using classical PID controllers. The

learning of sensory-motor mappings was performed

with non parametric learning approaches (GRNN),

based on a variable kernel density estimator and the use

of a kd-tree architecture to simulate neuron activation

according to a near neighbor search. Despite the

apparent high memory requirement needed by this kind

of estimator, the proposed learning scheme behaves

properly when used to control articulated systems with

six degrees of freedom simulated in a dynamical

environment. This result is obtained even if the number

of learning samples is reasonably low.

7. References

 [1] Kawato M., Maeda Y., Uno Y., Suzuki R.. Trajectory

Formation of Arm Movement by Cascade Neural Network

Model Based on Minimum Torque Criterion. Biological

Cybernetics, vol. 62, 1990, pp. 275-288.

[2]Wolpert D.M., Miall R.C., Kawato M. Internal models in

the cerebellum. Trends in Cognitive Science, vol. 2, n°9,

1998, pp. 338-347.

[3] Spoelstra J., Schweighofer N., Arbib M.A. Cerebellar

learning of accurate predictive control for fast reaching

movements. Biological Cybernetics, 82, 2000, pp. 321-333.

[4] Bullock D., Grossberg S., Guenther F.H. A Self-

Organizing Neural Model of Motor Equivalent Reaching and

Tool Use by a Multijoint Arm. Journal of Cognitive

Neuroscience, vol. 54, 1993, pp. 408-435.

[5] Jordan M.I. Computational motor control. In M. S.

Gazzaniga (Eds.), The cognitive neurosciences. Cambridge,

MA: MIT Press, 1995 pp. 587-609.

[6] Werbos P.J. An overview of neural networks for control.

IEEE Control Systems Magazine, January 1991.

[7] Duda, R. O., & Hart, P. E. Pattern classification and

scene analysis. New York, NY: Wiley, 1973.

[8] Schaal, S. (in press). Nonparametric regression for

learning nonlinear transformations. In: Ritter et al. eds.

Prerational Intelligence in Strategies, High-Level Processes

and Collective Behavior. Kluwer Academic.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.

Learning Representation by Back-Propagating Errors. Nature

323:533-536, 1986.

[10] Bishop, C.M. Neural Networks for Pattern Recognition,

Oxford University Press, Oxford, UK, 1995.

[11] D.F. Specht, A General Regression Neural Network

IEEE Trans. Neural Networks, Vol.2, No.6, p568-576, 1991.

[12] D.F. Specht, Probabilistic Neural Networks, Neural

Networks, 3, 1990, 109-118.

[13] Churchland, P. S. and SeSejnowski, T. J, The

computational brain, MA:MIT Press, 1992.

[14] Friedman, J.H., Bentley J.L. and Finkel R.A., “An

algorithm for finding best matches in logarithmic expected

time”, ACM Trans. Math. Software, 3, 209-226, 1977.

[15] Gibet S. and Marteau P.F., A Self-Organized Model for

the Control, Planning and Learning of Nonlinear Multi-

Dimensional Systems Using a Sensory Feedback, Journal of

Applied Intelligence, Vol.4, 1994, pp. 337-349.

[16] Marteau P.F., Gibet S., Juliard F., Non Parametric

Learning of Sensori Motor Maps. 5th WSES/IEEE Int. Conf.

on Neural, Fuzzy and Evolutionary Computation,

Rethymnon, Crete, 2001.

[17] Gibet S., Marteau P.F. Expressive Gesture Animation

Based on Non Parametric Learning of Sensory-Motor

Models, CASA 2003, Computer Animation and Social

Agents, 7-9 mai 2003.

[18] Watson, G. S. Smooth regression analysis. Sankhya,

Series A, 26, 359-372, 1964

[19] Nadaraya, E. A. (1964). On estimating regression.

Theory Probab. Applic., 10, 186-190.

[20] Open Dynamics Engine, 2000-2003 Russell Smith.

http://opende.sourceforge.net/

[21] P.F. Marteau, S. Gibet. Adaptive Sampling of Motion

Trajectories for Discrete Task-Based Analysis and Synthesis

of Gesture. In Gesture in Human-Computer Interaction and

Simulation, 6th GW, Revised Selected Papers, LNCS,

Volume 3881, pp.168-171, 2006.

