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Lemâıtre, bâtiment Euler, B-1348 Louvain-la-neuve, Belgium.

celine.casenave@uclouvain.be
∗∗ Department of Automatic Control, Gipsa-lab, 961 rue de la Houille

Blanche, BP 46, 38402 Grenoble Cedex, France.
christophe.prieur@gipsa-lab.grenoble-inp.fr

Abstract: The problem under consideration is the controllability of a wide class of convolution
Volterra systems, namely the class of “diffusive” systems, for which there exists an input-output
state realization whose state evolves in the so-called diffusive representation space. We first
show that this universal state variable is approximately controllable, and then deduce that such
Volterra systems always possess suitable controllability properties, stated and proved. Then, we
show how to solve the optimal null control problem in an LQ sense. A numerical example finally
highlights these results.
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1. INTRODUCTION

There exists a large literature considering the control
problem of infinite dimensional systems, and now differ-
ent techniques are available to compute suitable control
laws for linear or nonlinear partial differential equations.
See e.g. Tucsnak and Weiss (2009) for a recent textbook
on the control of linear operators, or Coron (2007) for
techniques adapted to nonlinear dynamical equations. The
class of systems under consideration here are described
by a pseudo-differential operator of diffusive type. These
models appear in various applications such as in acoustics
(see e.g., Fellah et al. (2001); Polack (1991)), in combustion
(see e.g. Rouzaud (2003)), in electrical engineering (see e.g.
Bidan et al. (2001)), in biology (see e.g. Topaz and Bertozzi
(2004)), etc. The operators under consideration in this pa-
per belong more precisely to the general class of “diffusive
operators” introduced in Montseny (2005). Such operators
can be realized by means of input-output dissipative in-
finite dimensional equations, as very early considered for
example in Kirkwood and Fuoss (1941); Rouse Jr (1953);
Macdonald and Brachman (1956), or more recently in
Montseny et al. (1993); Staffans (1994); Montseny (1998),
etc. Various aspects have been studied in the literature
for this class of systems. A lot of results can be found
in Montseny (2005); we can also mention other works
about the identification (Casenave and Montseny (2009)),
the numerical simulation (Montseny (2004)), the inversion
(Casenave (2009)), or the dissipativity (Matignon and
Prieur (2005)) of such systems.
The aim of this paper is to prove the controllability or
more precisely the approximate controllability of diffusive
operators. In the sequel, we consider the Volterra input-
output model of the form:

x(t) =

∫ t

0

h(t− s)u(s) ds, ∀t > 0, (1)

with h ∈ L1
loc(R

+
t ), x ∈ C0(R+). Note that in this case,

we necessarily have: x(0) =
∫ 0

0
h(t− s)u(s) ds = 0. Model

(1) can be rewritten under the symbolic form:

x = H(∂t)u, (2)

where H(p) is the symbol (or transfer function, non
necessarily rational) of the operator H(∂t).
Note that model (2) can represent a wide variety of
dynamical systems. Let us give the following examples:

• models of the form K(∂t)x = λx + u, λ ∈ R, are a
particular case of (2) with H(∂t) = (K(∂t) − λI)−1.
If K(∂t) = ∂t, we get a classical differential model of
the form ∂tx = λx+ u, x(0) = 0.

• SISO models of the form:{
Ẋ = AX +Bu, X(0) = 0
x = CX

(3)

with X(t) ∈ Rn, can also be rewritten under the form
(2), with H(p) = C(pI −A)−1B.

In this paper, we study the controllability of systems of
the form (2) with H(p) non rational. Such systems do not
admit any state representation in Rn. So the notion of con-
trollability, well-defined in the case of systems with finite
dimensional state representations, has to be reformulated.
For that aim, we use the so-called diffusive representation
(Montseny (2005)), which enables to realize the operator
H(∂t) by means of a suitable (infinite-dimensional) diffu-
sive state equation with input u, from which we define an
approximate controllability in a state space well adapted
to the state realization. We then establish that all systems
of the form (1), admitting such a diffusive realization, are
approximately controllable.

This paper is organized as follows. Some preliminaries and
the problem statement are given in Section 2. The main
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results are given in Section 3. The numerical simulation
and the effective computation of the control are considered
in Section 4. In particular an example is introduced and
considered in this section. Section 5 contains some con-
cluding remarks and point out some further research lines.
Finally, the Appendix A collects the proofs of the main
results. It necessitates to develop precisely the framework
associated with the diffusive representation.

2. PRELIMINARIES

2.1 Problem statement

Let us consider the following Cauchy problem, on which
will be based the state realization of (1):{

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), t > 0, ξ ∈ R,
ψ(0, ξ) = ψ0(ξ),

(4)

where γ ∈ W 1,∞
loc (R;C) defines an infinite simple arc in

C− + a, a ∈ R, closed at ∞. The problem is supposed
to be well posed in the space C0(0, T ; Ψ) of measurable
functions with values in a suitable topological state space
Ψ. For all ψ0 ∈ Ψ and u ∈ L2(0, T ), (4) admits a unique
solution, given by:

ψ(t, ξ) = eγ(ξ)tψ0(ξ)+

∫ t

0

eγ(ξ)s u(t−s) ds, t ∈ [0, T ]. (5)

This solution will be denoted ψ(t;ψ0, u) in the sequel.
Let ST : L2(0, T ) −→ Ψ be the operator defined by:

ST (u) =

∫ T

0

eγ(ξ) s u(T − s) ds. (6)

We introduce the set:

RT =
{
ψ(T ;ψ0, u); u ∈ L2(0, T )

}
;

RT is called the reachable set of system (4) at time T .
We now consider the following definitions:

Definition 1. System (4) is said to be:

• controllable (in Ψ) on [0;T ], if RT is equal to Ψ;
• approximately controllable (in Ψ) on [0;T ], if RT is

densely embedded in Ψ, that is: RT
Ψ
= Ψ;

• approximately controllable (in Ψ) if it is approxi-
mately controllable on [0, T ] for any T > 0.

For all ψ0 ∈ Ψ, note that RT = ST (L
2(0, T )) + eγ(.)Tψ0.

Thus the set RT is dense in Ψ if and only if ST (L
2(0, T ))

is dense in Ψ. More precisely, we have (see e.g. Tucsnak
and Weiss (2009)):

Proposition 2. Consider a topological vector space Ψ such
that ψ0, e

γ(.)Tψ0 ∈ Ψ. The system (4) is approximately
controllable in Ψ if and only if ST (L

2(0, T )) is dense in Ψ
for any T > 0.

The problem under consideration in this paper is the
approximate controllability of (4) and then of (2).

2.2 Notation and introduction of the control space

Let us first introduce the space:

D∞ =
{
φ ∈ C∞(R), ∀n ∈ N,

√
1+(.)2 ∂nξ φ ∈ L∞(R)

}
;

it is classically a Fréchet space with topology defined by
the countable set of norms: ‖φ‖n = ‖

√
1 + (.)2 ∂nξ φ‖L∞ .

By denoting L2
c(R+) the space of functions of L2(R+) with

compact support and Lγ the operator:

Lγ : u ∈ L2(R+) −→ Lγu :=

∫ +∞

0

eγ s u(s) ds, (7)

thanks to the property u ∈ L2(0, T ) ⇔ u(T− .) ∈ L2(0, T ),
we have: ⋃

T>0

ST (L
2(0, T )) = Lγ(L

2
c(R+)). (8)

Let us introduce the following space:

Definition 3. ∆γ is the completion of Lγ(L
2
c(R+)) in D∞.

We denote Ω−
γ and Ω+

γ the two open domains delimited

by γ such that Ω+
γ ⊃ (a,+∞). Assume there exists

αγ ∈ (π2 , π) such that:

ei[−αγ , αγ ]R+ + a ⊂ Ω+
γ . (9)

Given γn a sequence of regular functions such that

γn(R) ⊂ Ω+
γn+1

and γn
W 1,∞

loc→ γ, the topological vector
space ∆γ is defined as the inductive limit associated with
an inductive system (∆γn , φn) where φn are topological
isomorphisms such that φn(∆γn) ↪→ φn+1(∆γn+1). The
topological vector space ∆γ := lim−→φn(∆γn) is complete

and locally convex, with φn(∆γn) ↪→ ∆γ continuous and
dense. It can be shown (see Montseny (2005)) that for any
u ∈ C0(0, T ), (4) is well-posed in C0(0, T ;∆γ).

3. CONTROLLABILITY RESULTS

3.1 Approximate controllability results

We are now in position to state the main results about
the controllability of (4), the proofs of which are given in
Appendix A.3:

Theorem 4. System (4) is approximately controllable in ∆γ .

Corollary 5. System (4) is approximately controllable in
any topological space Ψ such that ∆γ ↪→ Ψ with dense
embedding.

In particular, from the dense embedding: ∆γ ↪→ L2
γ := ∆γ

L2(R)
,

(4) is approximately controllable in the Hilbert sub-
space L2

γ .
Remark 6. The sector condition (9) appears as the cor-
nerstone in the proof of Theorem 4: it is indeed at the
origin of the analyticity of L∗

γµ on which the result is
based; it also expresses the diffusive nature of system
(4). Due to Lγ(L

2
c(R)) ( ∆γ , system (4) is not exactly

controllable; this is a consequence of the analyticity in C
of p 7→

∫ +∞
0

ep s u(s) ds when the support, supp u, of the
function u is compact.

3.2 Controllability of the Volterra problem (2)

Consider an operator H(∂t) admitting a so-called γ-
symbol 1 µ ∈ ∆′

γ , that is, such that model (2) admits
the input-output state representation (see Appendix A):{

∂tψ = γ ψ + u, ψ(0, ξ) = 0
x = 〈µ, ψ〉∆′

γ ,∆γ
. (10)

1 As usual, ∆′
γ designates the topological dual of ∆γ .
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Definition 7. The system u 7→ H(∂t)u is said (approxi-
mately) controllable if there exists µ ∈ ∆′

γ such that for

any u ∈ L2
loc(R+):

• (10) is approximately controllable,
• for any (ψ, x) solution of (10), we have: H(∂t)u = x.

Then, from Theorem 4, we get:

Corollary 8. If H(∂t) admits a γ-symbol, then the system
(2) is approximately controllable.

Example 9. The“fractional”differential model of the form:

∂αt x = λx+ u, x(0+) = 0, with 0 < α < 1, (11)

is approximately controllable. Indeed, (11) is equivalently
written: x = (∂αt −λ)−1u and (∂αt −λ)−1 admits a γ-symbol

as soon as λ ∈ Ω−
γ (see Appendix A). More generally, for

any α > 0, the system x =∂−α
t (λx + u) is approximately

controllable.

Remark 10. As in the finite dimensional case, it is in-
teresting to introduce, for the controllability of (2), the
notion of minimal state realization. Indeed, in the state
realization (10), which is of the same type as (3) but in
infinite dimension, we note that only the ξ ∈ suppµ are
involved in the synthesis of x. Assuming that suppµ is a
Lebesgue non-negligible set, we then introduce the semi-
norm in L2 defined by:

pµ(ψ) =

√∫
suppµ

|ψ|2 dξ,

and consider the quotient Hilbert space ∆γ,µ := ∆γ/ ker pµ.
From the above, we deduce that system (2) is (a fortiori)
approximately controllable in ∆γ,µ. Moreover, if µ ∼ f ∈
L1
loc(R), the following (γ-)realization is minimal:

∂tψ = γ ψ + u, ψ(0, ξ) = 0, ξ ∈ suppµ

x = 〈µ, ψ〉∆′
γ,µ,∆γ,µ

=

∫
suppµ

f ψ dξ. (12)

3.3 About null control of (2)

We now state some results relating to approximative
controllability to zero of (2). We suppose that the operator
H(∂t) admits a γ-symbol µ ∈ ∆′

γ . First we state an
approximate controllability result in finite time.

Lemma 11. Let (x, u) be a solution of (2) on [0, t0]; then,
∀ε > 0, ∀T > t0, ∃ũ ∈ L2(0, T ) such that ũ|[0,t0] = u and,
with (ũ, x̃) solution of (2) on [0, T ], |x̃(T )| 6 ε.

A stronger result of approximate controllability can in fact
be stated, which ensures that the value of x after the
control time T can also be controlled. This is the second
main result (Lemma 11 and Theorem 12 are both proved
in Appendix A.3).

Theorem 12. Let (x, u) be a solution of (2) on [0, t0]; then
∀ε > 0, ∀T > t0, ∀T ′ > T , ∃ũ ∈ L2(0, T ′) such that
ũ|[0,t0] = u and, with (ũ, x̃) solution of (2) on [0, T ′]:

|x̃(t)| ≤ ε ∀t ∈ [T, T ′].

4. OPTIMAL CONTROL

4.1 Problem formulation and analysis

Consider the system (2) and its γ-realization (10). Suppose
that a control u ∈ L2(0, t0) has been applied to the system:

the state ψ reached at time t0 is denoted ψ0. By change of
time variable t := t− t0, the state equation now becomes:

∂tψ = γ ψ + u, ψ(0, .) = ψ0. (13)

Here we consider the problem of approximate null control-
lability, that is the approximate controllability to zero as
considered e.g. in Crépeau and Prieur (2008). It consists
in finding a control u ∈ L2(0, T ) such that:

ψ(T, .) = eγ Tψ0 + STu ' 0 ⇔ STu ' −eγ Tψ0. (14)

From Theorem 11, we would then have: ψ(t, .) ' 0 on
[T, T ′] (and so, thanks to the continuity of ψ 7→ 〈µ, ψ〉:
x(t) ' 0 on [T, T ′]).

Because ST (L
2(0, T )) is only densely embedded in ∆γ ,

the null control problem in L2(0, T ) is ill posed: it has
in general no solution (i.e. eγtψ0 is not in ST (L

2(0, T ))).
For the same reason, the set ST (L

2(0, T )) is in general
not closed in usual Hilbert spaces containing ∆γ and
orthogonal projection on ST (L

2(0, T )) cannot be defined.
This leads to consider the following weakened null control
problem in the Hilbert space L2

γ , with ε > 0:

min
u∈L2(0,T )

{
‖eγ Tψ0 + STu‖2L2 + ε‖u‖2L2(0,T )

}
. (15)

This problem is compatible with the property of approx-
imate controllability; it can indeed be shown that this
problem is well posed 2 , that is there exists a unique
solution u, given by:

uoptε = −(S∗
TST + εI)−1S∗

T (eγ Tψ0).

4.2 Discrete formulation

Consider a mesh {tk}k=0:K of the time variable t, such
that tK = T . The control u is computed as:

u =
K−1∑
k=0

uk 1(tk,tk+1]. (16)

We have: (STu)(ξl) =
∑

k

∫ tk+1

tk
eγ(ξl) (T−s) ds uk =

∑
k S

k
l uk,

with:

Sk
l =

∫ tk+1

tk

eγ(ξl) (T−s) ds =
eγ(ξl) (T−tk+1) − eγ(ξl) (T−tk)

−γ(ξl)
.

Under numerical approximation, problem (15) is then
written:

min
uK∈RK

{
‖eγ Tψ0 + SuK‖2RL + ε‖uK‖2RK

}
, (17)

with uK := [uk]k=1:K , eγTψ0 =
[
eγ(ξl)Tψ0(ξl)

]
l=1:L

and S

the matrix of elements Sk
l . The solution is given by:

uoptK,ε = −(S∗S+ εI)−1S∗ (eγ Tψ0). (18)

4.3 Numerical example

Let H(∂t) be the non rational operator with symbol:

H(p) =
ln(p)

p+ 200
. (19)

H is holomorphic in C\R− and H(p) → 0 when p→ ∞ in
C\R−; thenH(∂t) admits a diffusive state realization with
γ defined by γ(ξ) = −|ξ|. The γ-symbol of H(∂t) identifies
with the distribution µ given by:

µ = pv
1R+

|ξ| − 200
+ ln(200) δ200.

2 The image of the operator: u ∈ L2(0, T ) 7→ (u,STu) ∈ L2(0, T )×
L2(Rξ) is closed for the graph norm.
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For the finite dimensional approximate state realization 3

of H(∂t), we consider a mesh {ξl}l=1:L of L = 70 dis-
cretization points geometrically spaced between ξ1 = 10−3

and ξ70 = 104. From t = 0 to t = t0 = 5, we apply the
control u = sin(π2 (

t
t0
)2); we get:

ψ0(ξ) =

(
(∂t − γ(ξ))−1 sin(

π

2
(
.

t0
)2)

)
|t=t0

. (20)

Then, from t = t0 to t = T ′ = 25, we apply the control:

u = uoptK,ε1[t0,T ], (21)

where T = 15 and uoptK,ε is obtained by (18) with ε = 10−4

and K = 104 + 1 (i.e. ∆t = 10−3).
Figure 1 gives the time-evolution of the control u, of the
output x and of the state ψ. It can be checked that the
input u succeeds to control the state from its initial value
to the final value 0 within time T and that the evolution
after T confirms the result of Theorem 12.

5. CONCLUSION

In this paper, the controllability problem for a wide class of
Volterra (scalar) systems has been studied. By considering
the diffusive representation approach, the result is that
any diffusive Volterra system x = H(∂t)u is approximately
controllable. This result can be trivially extended to gen-
eral diffusive non linear and/or non t-invariant Volterra
systems of the form x = H(t, ∂t)f(t, x, v) with f an
invertible function 4 , simply by replacing µ(ξ) by µ(t, ξ).
In that sense, this controllability result can be viewed as a
consistent extension of controllability of scalar differential
systems ∂tx = f(t, x, v), x(0) = 0. It seems now to be
interesting to tackle the controllability problem for vec-
tor systems of the form x = H(t, ∂t)u with x(t) ∈ Rn,
u(t) ∈ Rm.

Appendix A. DIFFUSIVE REPRESENTATION AND
PROOF OF THE MAIN RESULTS

A complete statement of diffusive representation can be
found in Montseny (2005); a shortened one is presented in
Casenave and Montseny (2010).

A.1 Basic principle of diffusive representation

We consider a causal convolution operator defined, on any
continuous function u : R+ → R, by:

u 7→
(
t 7→

∫ t

0

h(t− s)u(s) ds

)
. (A.1)

We denote H the Laplace transform of h and H(∂t) the
convolution operator defined by (A.1).

Let ut(s) = 1(−∞,t](s)u(s) be the restriction of u to its
past and ut(s) = ut(t − s) the so-called “history” of u.
From causality of K(∂t), we deduce:

[H(∂t)(u− ut)](t) = 0 for all t; (A.2)

then, we have for any continuous function u:

[H(∂t)u](t)=
[
L−1 (H Lu)

]
(t)=

[
L−1

(
H Lut

)]
(t), (A.3)

3 Details about the numerical approximation of µ and ψ can be
found in Montseny (2005); Casenave and Montseny (2010).
4 in the sense that there exists g such that v := g(t, x, u) with
u := f(t, x, v).
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Fig. 1. Numerical results. Time-evolution of the control u
(top), of the output x (middle) and of the state ψ
(down) for t in [0, 25]

where L and L−1 are the Laplace and the inverse Laplace
transforms defined by (Lf) (p) =

∫∞
0
e−ptf(t)dt and by(

L−1F
)
(t) = 1

2iπ

∫ b+i∞
b−i∞ eptF (p)dp.

We define Ψu(t, p) := ep t (Lut) (p) = (Lut) (−p); by
computing ∂tLut, Laplace inversion and use of (A.3):

Lemma 13. Ψu is solution of the differential equation:

∂tΨ(t, p) = pΨ(t, p) + u, t > 0, Ψ(0, p) = 0, (A.4)

and:

[H(∂t)u] (t) =
1

2iπ

∫ b+i∞

b−i∞
H(p)Ψu(t, p) dp,∀b > 0. (A.5)
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Now, let’s consider γ, Ω+
γ , Ω

−
γ as defined in Section 2, with

γ regular. By use of standard techniques (Cauchy theorem,
Jordan lemma), it can be shown:

Lemma 14. For γ such that H is holomorphic in Ω+
γ , if

H(p) → 0 when p→ ∞ in Ω+
γ , then:

[H(∂t)u] (t) =
1

2iπ

∫
γ

H(p)Ψu(t, p) dp. (A.6)

Under assumptions of Lemma 14, we have (we use the
notation 〈µ, ψ〉 =

∫
µψ dξ):

Proposition 15. Denoting µ = γ′

2iπH ◦ γ and ψ(t, .) =
Ψu(t, .) ◦ γ, we have, for all t ≥ 0,

[H(∂t)u] (t) = 〈µ, ψ(t, .)〉 , (A.7)

where ψ is the solution on (t, ξ) ∈ R∗+×R of:

∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + u(t), ψ(0, ξ) = 0. (A.8)

Definition 16. The function µ defined in Proposition 15 is
called γ-symbol of operatorH(∂t). The function ψ solution
of (A.8) is called the γ-representation of u.

Proposition 17. The impulse response h = L−1H of oper-
ator H(∂t) is given by:

h(t) = 〈µ, eγ s〉 = L∗
γµ; (A.9)

furthermore, h is holomorphic in 5 R+∗.

Proof. (A.9) is obtained by setting u as the Dirac measure
in (A.8). Analyticity of h is a consequence of the sector
condition (9) (which makes equation (A.8) of diffusive
nature). 2

A.2 General topological framework

The results of Proposition 15 can be extended to a wide
class of operators, provided that the associated γ-symbols
are extended to suitable distribution spaces we will intro-
duce in the sequel (so, the expression 〈µ, ψ〉 will refer to a
topological duality product).

Let consider the spaces D∞ and ∆γ as defined in Section
2.2, and first note that we have the continuous and dense
embeddings:

D ↪→ D∞ ↪→ L2(R) ↪→ D′
∞ ↪→ D′. (A.10)

We can show:

Proposition 18. ST (L
2(0, T )) ⊂ D∞.

Proof. ∀u ∈ L2(0, T ), |ST u| 6
∫ T

0

∣∣eγ(ξ)(T−s) u(s)
∣∣ ds

6 ‖u‖L2

√∫ T

0

e2Re(γ(ξ))(T−s)ds = ‖u‖L2

√
e2Re(γ(ξ))T − 1

2Re(γ(ξ))
.

Under the hypotheses made on γ, we can show from simple
analysis that there exists c > 0 such that, for all ξ ≥ 0:√

e2Re(γ(ξ))T − 1

2Re(γ(ξ))
6 c√

1 + ξ2
.

The extension to ∂nξ (ST u) is then obtained by induction.
2

Proposition 19. ∆γ is a strict subspace of D∞ (Montseny
(2005)).

5 That is: there exists an open domain D ⊂ C such that R+∗ ⊂ D
and h admits an analytical continuation on D.

So, with L∗
γ the adjoint of 6 L∗

γ , we have ker(L∗
γ) 6= {0}

and the dual ∆′
γ is the quotient space:

∆′
γ = D′

∞/ ker(L∗
γ).

We have the following continuous and dense embeddings:

∆γ ↪→ L2
γ , L2′

γ ↪→ ∆′
γ .

Remark 20. Thanks to (A.7), if γ(0) = 0, then the Dirac

distribution δ is a γ-symbol of the operator u 7→
∫ t

0
u(s) ds,

denoted ∂−1
t .

Now suppose that γ ∈ W 1,∞
loc (so, γ can be non regular),

and consider the space ∆γ defined in Section 2.2. The so-
defined space ∆γ has the following properties (Montseny
(2005)):

• ∆γ =
⋃

n φn(∆γn
) and ∆γ is independent of the

choice of the sequence γn.
• Lγ(L

2
c(R)) ↪→ φn(∆γn) ∀n; so, ∀u ∈ L2

c(R), ψu =
Lγut ∈ φn(∆γn).

• The dual ∆′
γ of ∆γ is a complete, locally convex topo-

logical vector space; we have ∆′
γ =

⋂
n [φn(∆γn)]

′
.

• With ψu defined by (4) and µ ∈ ∆′
γ , the symbol H of

the convolution operator defined by u 7→ 〈µ, ψu〉∆′
γ ,∆γ

is holomorphic in Ω+
γ and H(p) → 0 when p → ∞

in Ω+
γ .

• The impulse response h of operator u 7→ 〈µ, ψu〉∆′
γ ,∆γ

is h(t)=〈µ, eγ t〉∆′
γ ,∆γ

=L∗
γµ; it is holomorphic in R+∗.

• When µ can be identified with a locally integrable
function (yet denoted µ), then 〈µ, ψ〉∆′

γ ,∆γ can be

expressed by the integral (in the Lebesgue sense):

〈µ, ψ〉∆′
γ ,∆γ =

∫
µψ dξ.

• If γ is regular, we have the following continuous and
dense embeddings: ∆γ ↪→ ∆γ ↪→ ∆′

γ ↪→ ∆′
γ .

• ∀µ ∈ ∆′
γ , ∀ψ ∈ Lγ(L

2
c(R)), ∀n ∈ N, ∃!(µn, ψn) ∈

∆′
γn

×∆γn with µn√
1+ξ2

∈ L1(R) such that:

〈µ, ψ〉∆′
γ ,∆γ = 〈µn, ψn〉∆′

γn
,∆γn

=

∫
µn ψn dξ.

A.3 Proof of the main results

Proof of Theorem 4. Thanks to Proposition 2, we have
to prove that ST (L

2(0, T )) is dense in ∆γ for any T > 0.
Let us consider the (continuous) extension of operator Lγ

to L2(R+); we have:

Lγ : L2(R+) → D∞ and ST : L2(0, T ) → D∞,

and then, by identifying L2 spaces with their duals:

L∗
γ : D′

∞ → L2(R+) and S∗
T : D′

∞ → L2(0, T ).

From Fubini theorem:

〈µ,STu〉 = 〈µ,
∫ T

0

eγ s u ds〉 =
∫ T

0

u 〈µ, eγ s〉 ds

=

∫ T

0

uS∗
Tµds⇒ S∗

Tµ = 〈µ, eγ s〉D′
∞,D∞ ∈ L2(0, T );

similarly: L∗
γµ = 〈µ, eγ s〉D′

∞,D∞ ∈ L2(R+).
We can deduce: ∀µ ∈ D′

∞, S∗
Tµ = L∗

γµ|[0,T ]. Then, due

6 Defined by 〈µ,Lγu〉D′
∞,D∞ =

∫ +∞
0

(L∗
γµ)u ds ∀µ ∈ D′

∞, ∀u ∈
L2(R+).
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to Proposition 17, L∗
γµ is holomorphic on R+∗. It follows

that:
L∗
γµ = 0L2(R+) ⇔ S∗

Tµ = 0L2(0,T )

and so, kerL∗
γ = kerS∗

T . Consequently, ImST
∆γ

=

ImLγ
∆γ

= ∆γ , i.e. ImST is dense in ∆γ . 2

Proof of Proposition 11. Let x be the trajectory defined
on [0, T ] by:

∀t ∈ [0, T ], x(t) = H(∂t)(u1[0,t0]) = 〈µ,ST (u1[0,t0])〉.
We obviously have: x|[0,t0] = x. Consider the open set
O1 = (−x(T ) − ε,−x(T ) + ε) of R. As the operator φ ∈
∆γ 7→ 〈µ, φ〉∆γ ,∆′

γ
∈ R is continuous, the inverse image

of O1 is an open set of ∆γ , denoted O2. As Im(ST−t0) is
dense in ∆γ , then, there exists v ∈ L2(0, T − t0) such that
ST−t0v ∈ O2, and we have

〈µ,ST−t0v〉 ∈ O1. (A.11)

By simple computations, we can show that ST−t0v =
ST

(
v(.− t0)1[t0,T ]

)
; so, with ũ defined by:

ũ = u1[0,t0] + v(.− t0)1[t0,T ],

we have:

x̃(T ) = 〈µ,ST ũ〉 = 〈µ,ST (u1[0,t0])〉+ 〈µ,ST (v(.− t0)1[t0,T ])〉
= x(T ) + 〈µ,ST−t0v〉.

From (A.11), we then deduce that x̃(T ) ∈ [−ε, ε]. 2

Proof of Theorem 12. From the definition of ∆γ , µ ∈
∆′

γ ⇒ µ ∈ φn(∆γn)
′ ∀n; furthermore, if ψ is solution of

(13), then ψ(t, .) ∈ φn(∆γn) ∀n, t (Montseny (2005)). We
then have: 〈µ, ψ〉∆′

γ ,∆γ = 〈µn, ψn〉∆′
γn

,∆γn
with µn and ψn

regular functions; hence, from properties of µn and ψn:

|x(t)| = |〈µ, ψ(t, .)〉∆′
γ ,∆γ | = |

∫
µn(ξ)ψn(t, ξ) dξ|

= |〈
√
1 + ξ2 ψn(t, .),

µn√
1+ξ2

〉L∞,L1 |

6 ‖
√
1 + ξ2 ψn(t, .)‖L∞ .‖ µn√

1+ξ2
‖L1

6 ‖
√
1 + ξ2 ψn(T, ξ) e

γn(ξ)(t−T )‖L∞ .‖ µn√
1+ξ2

‖L1

6 sup
ξ,t∈[0,T ]

|eγn(ξ)(t−T )|.‖ µn√
1+ξ2

‖L1 . sup
ξ

|
√
1 + ξ2 ψn(T, ξ)|

= K sup
ξ

|
√
1 + ξ2 ψn(T, ξ)|.

Consider now an open ball B(0, η) ⊂ L∞(R); then Vn =(
1√
1+ξ2

B(0, η)

)
∩∆γn is an open set in the Fréchet space

∆γn and V = φn(Vn) is an open set in 7 ∆γ . So, let
u ∈ L2(0, T ) such that ψ(T, .) = STu ∈ V ; it follows:

|x(t)| 6 K supξ |
√
1 + ξ2 ψn(T, ξ)| 6 K η 6 ε if η 6 ε

K
.

2
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Sabatier, Toulouse.

7 W is an open set in ∆γ iff ∃n s.t. W is an open set in φn(∆γn ).

Casenave, C. and Montseny, G. (2009). Optimal identifica-
tion of delay-diffusive operators and application to the
acoustic impedance of absorbent materials. In Topics in
Time Delay Systems: Analysis, Algorithms and Control,
volume 388, 315–328. Springer Verlag, Lecture Notes in
Control and Information Science (LNCIS).

Casenave, C. and Montseny, G. (2010). Introduction to
diffusive representation. In 4th IFAC Symposium on
System, Structure and Control. Ancona, Italy.

Coron, J.M. (2007). Control and nonlinearity, volume 136
of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI.
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