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Abstract. Behavioral reflection is crucial to support for example func-
tional upgrades, on-the-fly debugging, or monitoring critical applications.
However the use of reflective features can lead to severe problems due
to infinite meta-call recursion even in simple cases. This is especially a
problem when reflecting on core language features since there is a high
chance that such features are used to implement the reflective behav-
ior itself. In this paper we analyze the problem of infinite meta-object
call recursion and solve it by providing a first class representation of
meta-level execution: at any point in the execution of a system it can be
determined if we are operating on a meta-level or base level so that we
can prevent infinite recursion. We present how meta-level execution can
be represented by a meta-context and how reflection becomes context-
aware. Our solution makes it possible to freely apply behavioral reflection
even on system classes: the meta-context brings stability to behavioral
reflection. We validate the concept with a robust implementation and we
present benchmarks.

1 Introduction

Reflection, a feature common to many modern programming languages, is the
ability to query and change a system at runtime [20]. Reflection is a very desirable
feature, particularly suited for the long-living and highly dynamic systems of
today.

The original model of reflection as defined by Smith [25] is based on meta-level
interpretation. The program is interpreted by an interpreter, such interpreter is
interpreted by a metainterpreter leading to a tower of interpreters each defining
the semantics of the program (the interpreter) it interprets.

However, a tower of interpreters is too slow in practice. To enable reflection
in mainstream languages such as CLOS [20], Smalltalk [13, 23, 24] or Java [30],
the tower of interpreters is replaced with a reflective architecture [22] where
meta-objects control the different aspects of reflection offered by the language.
Meta-objects define the new or modified behavior and describe where this new
behavior is active. For example, in systems that use metaclasses like CLOS [20],
Neoclasstalk [5], or MetaClassTalk [4], the metaclass of a class defines both the
new behavior and which classes are affected by the new behavior. Recently,
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2 M. Denker, M. Suen, S. Ducasse

more elaborated schemes have been proposed (e.g., partial behavioral reflection
[24, 30]) that provide a more flexible and fine-grained way to specify both the
location been reflected and the meta-object invoked.

In general, meta-objects provide the implementation of new behavior which
is called at certain defined places from the base system. It is important to note
that meta-objects are not special objects, the execution of code as part of a meta-
object is not different to any execution occuring in the base level application. As
both base and metacomputation are handled the same, we are free to call any
part of the base-system in the meta-level code.

As a matter of fact, this means that meta-level code can actually trigger again
the execution of meta-level functionality. There is nothing to prevent the meta-
level code to request the same code to be executed again, leading to an endless
loop resulting in a system crash. This is especially a problem when reflecting on
core language features (e.g., the implementation of Arrays or Numbers) since
the chances are high that such features are used to implement reflective features
themselves. These cases of spurious endless recursion of meta-object calls have
been noted in the past in the context of CLOS [7].

The ability to reflect on system classes is especially important when using
reflection for dynamic analysis. A tracing tool that is realized with reflection
should be able to trace a complete run of the system, not only the application
code. In addition to the problem of recursion, such a tracer has the problem of
recording the execution of trace code itself.

If we go back to the infinite tower (the origin of meta-level architectures) we
can see that here these problems do not exist by construction: going meta means
jumping up to another interpreter. A reflective function is always specific to one
interpreter. As a function that is reflective at a meta-level In is not necessarily
reflective in In+1, the problem of infinite recursion does not happen.

An important question then is the difference between the meta-object and
interpreter/infinite tower approach. The metaness in the case of the tower is de-
fined by the interpreter used. The interpreter forms a context that defines if we
are executing at the base level or at the meta-level. Calling reflective function-
ality (so called reification) is always specific to one interpreter. The meta-object
approach now in contrast is lacking any mechanism to specify this contextual
information: when executing a meta-level program, in a meta-object based re-
flective system, we lack the information that this program is executing at the
meta-level. In addition, all reifications are globally active: we can not define to
only trigger meta-object activation when executing base level code. The research
question is then how can we incorporate the infinite tower property of explicitly
representing the execution context into meta-object based architectures.

Our solution to this problem is to extend meta-object based reflective systems
with a first class notion of meta-level execution and the possibility to query at
any point in the execution whether we are executing at the meta-level or not.
To model meta-level execution we propose the notion of a first class context and
context-aware reifications.
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The Meta in Meta-object Architectures 3

This paper is organized as follows. First we present a simple example to
illustrate our problem and elaborate on the system used for evaluating the so-
lution. Section 3 discusses the problem in detail, the next section then provides
an overview of context and contextual reflection which can solve the presented
problem (Section 4). We present an implementation in Section 5 followed by an
evaluation (Section 6). After an overview of related work (Section 7) we conclude
with a discussion of future work in Section 8

2 Context and Example

For the rest of the paper, we discuss the problem of meta-object call recursion in
the context of Reflectivity, a reflective library implemented in Squeak [19].
We use Reflectivity to validate our solution. The ideas we discuss in this
paper are the outcome of a larger project whose goal is to provide better control
of reflection. Thus we started with a model of behavioral reflection that already
allows for fine-grained spatial and temporal control of reification [24,30]. Never-
theless it should be noted that the problem presented in this paper represents a
universal problem: we are not just fixing a bug in our Reflectivity framework.

We first provide a short overview of partial behavioral reflection and discuss
how to implement a simple example, which we use in the rest of the paper.

2.1 Partial Behavioral Reflection

With Reflex, Tanter introduced partial behavioral reflection [30] in the context
of Java, the model was later applied to dynamic languages [24]. Here meta-
objects are associated not per object (as in 3-KRS [22]) or per metaclass (as in
CLOS [20]), but per instruction. The core idea of the Reflex model is to bind
meta-objects to operations using a link (see Figure 1). One can think about the
link as the jump to the meta-level reified as an object. A link thus conceptually
invokes messages on a meta-object at occurrences of selected operations.

Link attributes enable further control of the exact message sent to the meta-
object. For example, we can control if the meta-object is supposed to be invoked
before, after or instead of the original operation, an activation condition link
attribute controls if the link is really invoked.

For our experiment, we use an implementation of partial behavioral reflection
for Smalltalk that uses an abstract syntax tree for selecting which instructions
to reflected on. Before execution, the AST is compiled on demand to a low-level
representation that is executable, in our case to byte-codes executable by the
Squeak virtual machine. More in-depth information about this system and its
implementation can be found in the paper on sub-method reflection [10].

Annotating a node of the AST with a link thus results in code that when
executed will call the specified meta-object.
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4 M. Denker, M. Suen, S. Ducasse

source code 
(AST)

meta-object

activation
condition

links

Fig. 1. Partial Behavioral Reflection

2.2 A Simple Example

The problem of meta-object call recursion is a known problem [7]. To show that
it is relevant in practice, we have decided to keep our example as simple as
possible. In Section 6.2 we discuss as more complex scenario how our solution is
useful for dynamic analysis in general.

Imagine that we want to trace system activity: we want the system to beep
when it executes a certain method. This audio based debugging is an interesting
technique to determine if a certain piece of code is executed or not. In Squeak,
there is a class Beeper that provides all the beeping functionality. When calling
beep, the beep sound is played via the audio subsystem. The following example
shows how to create a link that will invoke the message beep on the Beeper class.

beepLink := Link new metaObject: Beeper.
beepLink selector: #beep

Now we can install this beepLink on a method that is part of the system
libraries. We take on purpose the method add: in OrderedCollection, a central
class part of the collection libraries that is heavily used by the system. To set
the link, we invoke the method link: on the AST-Node that stands for the whole
method:

(OrderedCollection>>#add:) methodNode link: beepLink.

As result, a sound should be emited each time the method OrderedCollec-
tion»#add: is called. But as soon as we install this link, the system freezes. This
clearly was not the intended outcome.

3 Infinite Meta-object Call Recursion

Let’s analyze the cause for the problem presented above. After a discussion of
some ad-hoc solutions, we show that the problem is caused by a missing model
for the concept of the meta-level execution.
The Problem. To ensure that the problem is not caused by our framework, we
modify the example to call a different method at the meta-object, the method
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The Meta in Meta-object Architectures 5

beepPrimitive which directly executes functionality defined in the virtual ma-
chine.

beepLink := Link new metaObject: Beeper.
beepLink selector: #beepPrimitive.

When installing this link, we can see that it works as expected: we can hear
a beep for all calls to the add: method, for example when typing characters in
the Squeak IDE.

The problem thus lies in the code executed by the meta-object. The Squeak
sound subsystem uses the method add: of OrderedCollection at some place to emit
the beep sound. Thus, we call the same method add: from the meta-object that
triggered the call to the meta in the first place. Therefore we end up calling the
meta again and again as shown in Figure 2. This is clearly not a suitable seman-
tics for behavioral reflection: it should be possible to use behavioral reflection
even on system libraries that are used to implement the meta object functionality
themselves.

Base Level Meta Object Meta Object

Infinite recursion

#beep send
#add: send

#add: send

#beep send
#add: send

Fig. 2. Infinite recursive meta-object call

We present now two ad-hoc solutions.

Code Duplication. As the problem is caused by calling base level code from
the meta-object, one solution would be to never call base level code from
the meta-object, but instead provide a renamed copy for all classes and use
these from the meta-level. Duplicating the complete system has, of course,
all the standard problems of code duplication: space is wasted. In addition,
the copy can easily become out of sync with the original. The problems
could be minimized by just copying those methods that are really needed.
In practice, it is not easy to identify these methods, especially in dynamic
languages. In addition this would cause changes in the reflective layer to
become fragile because any change would require the programmer to update
the copied version of the base level. This is clearly not a good solution.

Adding Special Tests. Another solution could be to add special code to check
if a recursion happens. The problem with this solution is that it is ad-hoc, the
codebase becomes cluttered with checking instructions. It thus just patches
the symptoms, the recursive call, and does not address the real problem.
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6 M. Denker, M. Suen, S. Ducasse

The Real Problem: Modeling Meta-level Execution. The ad-hoc solutions
are not satisfactory. The real problem exemplified by a recursive meta-call is that
when going from infinite towers to meta-objects, the awareness that an execution
occurs at the meta-level has been lost. Normally activation of a meta-object
means a jump to the meta-level. The problem now is that this meta-level does
not really exist in meta-object-based architectures: there is no way to query the
system to know whether we are at the meta-level or not.

It should be noted again that the problem we have seen is not specific to a par-
ticular behavioral reflection framework. We observe the same problem when ap-
plying MethodWrappers [6] to system classes. Method wrappers wrap a method
with before/after behavior. MethodWrappers are reflectively implemented in
Smalltalk and thus use lots of system library code during the execution of the
wrapped methods. The same problem was identified for CLOS [7] and is thus
present in other meta-class based systems like for example MetaClassTalk [4].

4 Solution: A Metacontext

We have seen that the real cause for the problem of endless recursion lies in the
absence of a model for meta-level execution: the fact that the system is executing
meta-level code does not have a representation.

4.1 Modeling Context

At any point in the execution of some piece of code we should be able to query
whether we are executing at the meta or at the base level. Such a property can
be nicely modeled with the concept of context : the meta-level is a context that
is active or inactive.

Such a context thus provides control-flow information: we want to know if
we are in the control-flow of a call to a meta-object. But in addition, the context
actually provides a reification: we have an object representing a specific control-
flow, which in our case represents meta-level execution.

With a way to model meta-level execution, it is possible to solve the problem
of recursive meta-object calls. A call to the meta-object can be scoped towards
the base level: a meta-call should only occur when we are executing at the base
level. If we are already at the meta-level, the calls should be ignored. This way,
meta-object calls are only triggered by the base level computation, not the meta-
level computation itself, thereby eliminating the recursion.

We will first describe a simplified model that only provides two levels of exe-
cution (base and meta) and does not allow any metameta-objects to be defined
that are activated only from a meta-object execution. We describe later how to
extend our model to support calls to these metameta-objects.
The Metacontext. To model the meta-level, we introduce a special context,
the MetaContext. This context is inactive for a normal execution of a program.
MetaContext will be activated when we enter in the meta-level computation and
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The Meta in Meta-object Architectures 7

deactivate when we leave it (Figure 3). The meta-context thus models meta-level
execution.

Base Level Meta Level

MetaContext activation

MetaContext deactivation

Fig. 3. The MetaContext activation

A simple model with just one meta-context is enough to distinguish the meta
from the base level. We will see later that it makes sense to extend the meta-
context to a possibly infinite tower of meta-contexts in Section 4.3.
Controlling meta-object activation. Just having a way to model meta-level
execution via the meta-context is not enough to solve the problem of recursion,
it is just the prerequisite to be able to detect it. We need to make sure that
a call to the meta-object does not occur again if we are already executing at
the meta-level. Thus, the call to the meta-level needs to be guarded so it is not
executed if the execution is already occurring at the meta-level. In the context of
behavioral partial reflection (i.e., in the link-meta-object model that we used to
show the problem), this means that the links are parameterized by the contexts
in which they are active or not-active.

4.2 The Problem Revisited

With both the meta-context and the contextual controlled meta-object calls, we
now can return to our example and see how our technique solves the problem of
recursion. In our example, we defined the Beeper as a meta-object to be called
when executing the add: method of OrderedCollection. The following steps occur
(see Figure 4):

1. The add: method is executed from a base level program.
2. A call to the meta-object Beeper is requested:

– We first check if we are at the meta-level. As we are not, we continue with
the call.

– We enable the MetaContext.
– We call the meta-object.
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8 M. Denker, M. Suen, S. Ducasse

Base Level Meta Level

Stop meta-level call

Fig. 4. Stopping infinite meta-call recursion

3. Meta-object executes the beep method.
4. Meta-object calls the method add: method again
5. A Call to the meta-object is requested

– We first check if we are at the meta-level. As we are executing meta-level
code, the call is aborted.

6. Meta-object execution continues until it is finished.
7. On return to the base level, we deactivate the MetaContext.

Thus the recursive meta-call is aborted and the danger of recursion is elim-
inated. The model we described up to now with just one MetaContext is thus
enough to solve the problem, but it not complete: it does not, for example, allow
any calls to metameta-objects while already executing at the meta-level, which
would make it impossible to observe or reason about metabehavior. In the next
section, we therefore extend the model.

4.3 The Contextual Tower

As with the tower of interpreters, we can generalize the meta-context to form an
infinite tower of meta-contexts. With the infinite tower of reflective interpreters,
a reification is always bound to a specific interpreter. Normally, a jump from the
base to the meta level means executing a reflective function that is defined as
part of the interpreter I1. But it is possible to define a reflective function one
level up: this then is only triggered by the interpreter I2 that interprets I1, thus
allowing to reflect on the interpreter I1 itself. Figure 5 shows the reflective tower
as visualized in the work of Smith [25].

Transposed to our contextual model, it follows that having just one context
(the meta-context) is not enough. We need more contexts for meta-meta, meta-3
and so on. If we have this contextual tower, we can for example define a meta-
meta object that is only called when we are executing at meta-1. Meta-object
calls need thus not only be defined to be active for the base level, but they can

in
ria

-0
02

71
28

6,
 v

er
si

on
 1

 - 
15

 J
an

 2
01

1



The Meta in Meta-object Architectures 9

(define READ-NORHALISE-PRINT 
(lambda simple [env stream] 

(block (prompt&reply (normalise (prompt&road stream) env) 
stream) 

(road-normalise-prlnt one stream)))) 

(define NORMALISE 
(lambda simple [str'uc e.v]  

(rend [(normal struc) struc] 
[(atom sLruc) (binding sLruc env)] 
[ ( r a i l  struc) (normaltse-rai l  struc env)] 
[ (pa i r  struc) (reduce ( ca rs t ruc ) ( cd rs t ruc )  env) ] ) ) )  

define REOUCE 
(lambda slmple [proc args env] 

( le t  [ [proc! (normalise proc env)]]  
(selectq (procedure-type procl) 

[simple ( le t  [ [args! (eormaltse args env)] ]  
( i f  (pr imi t ive procl) 

(reduce-primit ive-simple 
proc! argsl env) 

(expand-closure procl a rgs l ) ) ) ]  
[ intensional ( i f  (pr imi t ive proc!) 

(reduce-primtttve-lntenslonal 
proc! targs any) 

(expand-closure procl targs)) ]  
[macro (normalise (expand-closure procl targs) 

env) ) ] ) ) ) )  

(define NORMALISE°RAIL 
(lambda simple [ r a i l  env] 

( I f  (empty r a i l )  
(rears) 
(prep (normalise ( l s t  r a i l )  env) 

(normaiise-rat l  ( rest  r a i l )  onv))) ) )  
define EXPAND-CLOSURE 
(lambda simple [proc! argsl ]  

(normalise (body, procl) 
(bind (pattern procl) 

argsi 
(environment p roc l ) ) ) )  

Figure 13:ANon-C(mtinuation-Passblg 2-LISPMCP 

given in the previous paragraph leads one to think of an infinite 
number of levels of reflective processors, each implementing the 

one below. 7 On such a view it is not coherent either to ask at  

which level the tower is running, or to ask how many retlective 

levels are running: in some sense they are all running at once. 

Exactly the same situation obtains when you use an editor 

implement, ed in APL. It is not as if the editor and the APL 

interpreter are both running together, either side-by-side or 

independently; rather,  the one, being interior to the other, 

SUl)plies the anima or agency of /.he outer one. To put  this 

another way, when you implement one process in another 

process, you might want  to say that  you have two different 

processes, but you don't have concurrency; it is more a 

part /whole kind of relation. It is just  this sense in which the 

higher levels in our rcllective hierarchy are always running: 

each of them is in some sense within the processor at the level 

below, so that it can thereby engender it. We will not take a 

principled view on which account - -  a single locus of agency 

stepping between levels, or an infinite hierarchy of 

simultaneous processors - -  is correct, since they turn  out to be 

behaviourally equivalent. (The simultaneous infinite tower of 

levels is often the better way to understand processes, whereas 

a shi|!,ing-level viewpoint is sometimes the better way to 
understand programs.) 

3-Lisp, as we said, is an infinite reflective tower based on 

2-Lisp. The cede at each level is like; the continuation-passing 2- 

Lisp MCP of Figure 14, but extended to provide a mechanism 

whereby the user's program can gain access to fully articulated 
descriptions of that  program's operations and structures (thus 

extended, and located in a reflective tower, we call this code the 

3-Lisp reflective processor). One gains this access by using what  

are called reflective prncedures ~ procedures that, when 
invoked, arc run not at  the level at  which the invocation 

occurred, but one level higher, at  the level of the reflective 
processor running the program, given as arguments  those 

structures being passed around in the reflective processor. 

define READ-NORNALISE-PRINT 
(lambda simple lone stream] 

(normailse (prompt&read stream) oily 
(lambda simple [ resu l t ]  

(block (prompt&reply result  stream) 
(read-normalise-print env stream)))))) 

(define NORHALISE 
(lambda simple [s t rc  one cent] 

(rend [(normal struc) (cent s t rc ) ]  
[(atom sire)  (cent (binding strc env))] 
[ ( r a i l  strc) (normaltse-rai l  strut  env cont)]  
[ (pa i r  strc)(reduce ( ca rs t r c ) ( cdcs t r c )envcon t ) ] ) }  

(define REDUCE 
(lambda simple [proc args env coat] 

(normalise proc env 
(lambda slmpte [proc! ]  

(selectq (procedure-type procl) 
[simple 

(normaltse args any 
(lambda simple [args! ]  

( i f  (pr imi t ive procl) 
(redece-primtttve-stmple 

pratt args! env cent) 
(expand-closure proc! args! cos t ) ) ) ) ]  

[ intensional 
( i f  (pr imi t ive procl) 

(reduce-primit ive- intenslonal 
proc! targs env cent) 

(expand-closure procl ~args cont)) ]  
[macro (expand-closure pros! targs 

(lambda simple [ resu l t ]  
(normallse resul t  any c o n t ) ) ) ] ) ) ) ) ) )  

(define NORMALISE-RAIL 
(lambda simple [ r a i l  env cent] 

( i f  (empty r a i l )  
(cent (rcons)) 
(normalise ( l s t  r a i l )  env 

(lambda simple [ f t r s t l ]  
(normal ise-ral l  ( rest  rat1) env 

(iambda simple [ r es t ! ]  
(cent (prep f i r s t !  r e s t ! ) ) ) ) ) ) ) ) )  

define EXPAND-CLOSURE 
(lambda simple [proc! ergs! cent] 

(normalise (body procl) 
(bind (pattern proc!) args! (one procI))  
cent)))  

Figure 14: A Continaation-Passing 2-LISP MCP 

Reflective procedures are essentially analogues of subroutines b 

be run "in tile implementation", except that  they are in the 

same dialect as that  being implemented, and can use all the 

power o(' the implemented language in carrying out their 

function (e.g., reflective procedures can themselves use reflective 

procedures, without limit). There is not a tower of different 

languages - -  there is a single dialect (3-Lisp) all the way up. 

 L ve,,co .  l''l J 
Figure 15: The 3-LISP Reflective Tower 

31 
Fig. 5. The 3-Lisp reflective tower from [25]

optionally defined to be active for any of the meta-levels. This allows us to define
meta*objects that reason about the system executing at any level, similar to the
endless tower of interpreters.

As with all infinite structures, the most important question is how to realize
it in practice. For the case of the infinite meta-context tower, there is an easy
solution: contexts are objects, they can have state. We can parameterize the
meta-context object with a number describing the meta-level that it encodes.
Shifting to the meta-level means shifting from a context n to a context n + 1.

operation

meta-object

links 
level 0

metameta-
object

link 
level 1

base

meta

meta-2

Fig. 6. The Contextual Tower up to the second level

Figure 6 shows an example. We have three contexts: the base level, the meta-
level and meta-2. We see two links that are active at the base level. When called,

in
ria

-0
02

71
28

6,
 v

er
si

on
 1

 - 
15

 J
an

 2
01

1



10 M. Denker, M. Suen, S. Ducasse

they activate the meta-context with level 1. Then in the code of the meta-object
(either the code of the meta-object itself or any library code executeted), we
have a third link. This link is defined to be active only on meta-level 1, thus it
will on execution enable meta-2. We show an example of such a level 1 link in
Section 6.2.

An interesting and very nice property of the parameterized context is that
the meta-contexts are only created on demand, they do not exist as an endless
tower. This means, we have a form of partial reflection for providing a potential
endless tower. If a meta-level is not needed, it does not cost anything.

4.4 The MetaContext Revised

The simple version of our idea with just one MetaContext is not enough to
allow us to encode the Contextual Tower. We need a slightly modified model
of MetaContext where the MetaContext is parameterized by the level. Such a
parameterized MetaContext is not simply active or inactive, it is active for the
level that it currently is set to. Thus when querying such a MetaContext, we
give as a parameter a number denoting a meta-level. We will in the next section
see how to realize such a context in practice.

5 Implementation

Now that we described the solution in general, we present an implementation of
that model for Reflectivity, our reflection framework. We first show how the
context is implemented and then discuss contextual links.

5.1 Implementation of MetaContext

The MetaContext is a class that has one instance per thread (a thread-specific
singleton). The instances are created on demand and are stored per thread. As
threads are objects in Squeak, we extended them to be able to store additional
state directly in an associated dictionary. This mechanism is then used to store
the MetaContext instance.
Querying context. The MetaContext needs to model the meta-level. For that,
it has one instance variable named level. We can increase the level by calling
shiftLevelUp or decrease by shiftLevelDown. To test if the MetaContext is active
for a certain level n we can call isActive: with a parameter denoting the level:

MetaLevel current isActive: 0

Sending current to the class MetaContext will retrieve the MetaContext sin-
gleton from the current process. If there is none yet, it will lazily create a Meta-
Context with the level set to 0. Thus for a normal base level execution of code
the expression above will return true.

in
ria

-0
02

71
28

6,
 v

er
si

on
 1

 - 
15

 J
an

 2
01

1



The Meta in Meta-object Architectures 11

Executing code in the MetaContext. To change the meta-level that code
is executed at, we provide a way to run a block (an anonymous higher order
function) one meta-level higher than the code outside the block. For example,
to execute at meta-1, evaluate:

[ ... code executing on meta-1 ... ] valueWithMetaContext

If code is already executing at meta-1, calling valueWithMetaContext again
will execute at meta-2:

[[ ... code executing on meta-2 ... ] valueWithMetaContext] valueWithMetaContext

The method valueWithMetaContext is implemented on the BlockClosure ob-
ject, it will first shift the level of the current MetaContext up, then the block
is executed. At the end the level of the context is shifted down to the previous
value. We make sure that the downshift happens even in case of abnormal ter-
mination by evaluating the block using the exception handling mechanisms of
Smalltalk:

valueWithMetaContext
MetaContext current shiftLevelUp.
ˆ self ctxtEnsure: [MetaContext current shiftLevelDown]

To make sure that the execution of the context handling code itself does not
result in endless loops, we do not call any code from the sytem libraries in this
method. Instead, we carefully copy all methods executed by the context setup
code. The copied methods reside in the classes of the system library, but they
are prefixed with ctxt and edited to call only prefixed methods. One example is
the call to ctxtEnsure: seen in the method above.
Concurrent meta-objects. As the MetaContext is represented by a thread-
specific singleton, forking a new thread from the meta-level would mean that
this thread has its own MetaContext object associated which is initialized to
be at level 0. We have solved this problem by changing the implementation of
threads to actually copy the meta-level information to the newly created thread.
A thread created at the meta-level thus continues to run at the meta-level:

[ [ self assert: (MetaContext current isActive: 1) ] fork ] valueWithMetaContext

As the context information is not shared with the parent thread, the meta-
level of the new thread is independed, it can continue to run at the meta-level
even when the parent thread already returned to the base level.

5.2 Realizing Contextual Links

Now that we have a suitable way to represent the meta context, we need to make
the links and the code that is generated to call them context-aware. For that, we
need to solve three problems:

1. the link needs to be defined to be specific to a certain meta level.
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12 M. Denker, M. Suen, S. Ducasse

2. link activation should occur only when code is executing on the right meta-
level.

3. link activation should increase the meta-level.

The first problem is solved by a simple extension of the Link class, whereas
the other two are concerned with the code that our system generates for link
activation. We will now show the required changes in detail.
Meta-level Specific Links. To allow the programmer to specify that a link
is specific to a certain meta-level, we extend the link with a parameter called
level. If level is not set, the link is globally active over all links (the standard
behavior). The level can be set to any integer to define a link to only be active
on that specific meta level. For our example, a link that is active only when
executing base level code looks like this:

beepLink := Link new metaObject: Beeper.
beepLink selector: #beep;
beepLink level: 0.

Context-Aware Link Activation. To jump up one meta-level on link activa-
tion, we make sure that the code generated for a link is wrapped in a call to
valueWithMetaContext. The resulting code will look like this:

[ ... code of the link ... ] valueWithMetaContext

In addition to that, we need to make sure that the link is only called when we
are on the correct meta level. This is done by checking if the current MetaContext
is executing on the same level as the level that the link is defined to be active.
Only if this is true, we activate the link and call the meta-object. The code we
need to generate looks like this:

(MetaLevel current isActive: link level) ifTrue: [
[ ... code of the link ... ] valueWithMetaContext

].

We will not go into the detail of how exactly the code is generated. The code
can be found in the class GPTransformer of the Reflectivity distribution2.

6 Evaluation and Benchmarks

We first show that our solution solves the recursion problem, then we discuss
how meta-context is useful for dynamic analysis. We describe dynamic meta-level
analysis and realize an example. We present benchmarks to show the practica-
bility of our approach.
2 http://www.iam.unibe.ch/~scg/Research/Reflectivity
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The Meta in Meta-object Architectures 13

6.1 The Problem is Solved

We show that we can really solve the practical problem. For that, we define the
link that activates the Beeper to be specific to level 0:

beepLink := Link new metaObject: Beeper.
beepLink selector: #beep;
beepLink level: 0.

Now we can install the link:

(OrderedCollection>>#add:) methodNode link: beepLink.

As soon as the link is installed, the next call to the add: method will trigger
code-generation for that method. The code-generator will take the link into
account and generate code as described earlier. Thus the recursive call to the
add: method will not occur. We will thus hear a beep for every call to the add:
method from the base level only.

6.2 Benefits for Dynamic Analysis

Our initial reason for modeling meta-level execution was to solve the problem
of meta-object call recursion, and thus making reflection easier to use. But the
solution we presented, modeling meta-level execution with the help of a meta-
context, is useful far beyond just solving the problem of recursion. In this section,
we will discuss what it means for dynamic analysis. We show how it allows the
programmer to analyze the code executed by meta-objects by enabling dynamic
meta-level analysis.
Dynamic Analysis. One of the applications for behavioral reflection is dynamic
analysis. For example, with reflection, it is fairly easy to introduce tracers or
profilers into a running program [12] that normally require changes at the level
of the virtual machine. One problem, though, with using reflection to introduce
analysis code is that it is not clear which of the recorded events are resulting from
the base level program execution and which from the code of the tracer itself. As
long as we only trace application code, we can easily restrict the reflective tracer
to the code of the application. But as soon as we want a complete system trace,
we start to get into problems: recursion can occur easily (the problem we solved
earlier), but even after working around recursion, we face another problem: how
do we distinguish events that originated from the application from those that
only occur due to the code executed by the tracer itself?

With our meta-level execution context, the problem described does not occur
at all. The tracer (or any other tool performing dynamic analysis) is actually
a meta-level program. A simple tracer would be the meta-object itself. More
complex analysis tools would be called from a meta-object reifying the runtime
event we are interested in. Thus, the code that performs the dynamic analysis is
executing at the meta-level, while the links that trigger it are only active when
executing a base level computation. This way we make sure that the infrastruc-
ture performing our analysis never affects the trace itself.
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14 M. Denker, M. Suen, S. Ducasse

Dynamic Meta-level Analysis. An interesting challenge for dynamic analysis
is that of analyzing the meta-level execution itself. Meta-level code should be
lean and fast to not slow down the base computation more then really necessary.
We thus are very interested in both tracing and profiling meta-level execution.

Our explicitly modeled meta-level execution makes this easy: we can define a
link to be only active when executing at the meta-level. Therefore, we can install
for example a trace-tool that exactly provides a trace of only those methods
executed by a meta-object, even though the same methods are are called by the
base level at the same time. We can thus as easily restrict the tracer towards
meta-level execution as we restrict it to trace base level programs.

For our example, this means that we can use dynamic meta-level analysis
to find the place in the sound-subsystem where the recursion problem happens
when not using contextual links. In Section 3 we discuss that recursion happens,
but we do not know where exactly the recursive call happens.

We define a link that is only active when we are executing code at level 1:

loggerLink := GPLink new metaObject: logger;
selector: #log:;
arguments: #(context);
level: 1.

This link sends the message log: to the logger. The logger is an instance of
class MyLogger:

logger := MyLogger new.

The method log: records the stack-frame that called the method where the
link is installed on:

MyLogger>>log: aContext
contexts add: aContext home sender copy

We install both a link calling the Beeper that is specific to level 0 and our
link that is specific to level 1 on the method add:.

beepLink := Link new metaObject: Beeper.
beepLink selector: #beep;
beepLink level: 0.

(OrderedCollection>>#add:) methodNode link: beepLink.
(OrderedCollection>>#add:) reflectiveMethod methodNode link: loggerLink.

We can now inspect the logger object and see that it is recording the execution
of SoundPlayer class»startPlayingImmediately: for every beep. Looking at this
method, we find the code ActiveSounds add: aSound., which is the one spot
in the sound system that calls the method add: of OrderedCollection. Thus we
found with the help of dynamic meta-level analysis the exact call that causes
the recursion problem as shown in Section 3.
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The Meta in Meta-object Architectures 15

6.3 Benchmarks

To assess if the system as presented is practically usable, we have carried out
some benchmarks. Without the additional code for context activation, there
is no overhead at all for calling a meta-object besides the call itself. The link
specifies the meta-object and which method to call. The system generates from
that information code that just calls the meta as specified. The problem now
for analyzing the new context-enabled system is that the context code will,
compared to the standard link activation, take a lot of time. In practice, though,
meta-objects are usually there to do something: there is always code executed at
the meta-level. So to make a practical comparison of the additional percentage
of slowdown introduced by the context code, we need to compare the context-
setup code not only to the link activation of an empty meta-object, but to a
meta-object that actually executes code.

We will benchmark the slowdown of the context handling for the execution
of different meta-objects. The variation between the meta-objects is the number
of sends done at the meta-level. For the benchmark, we create a class Base with
just one empty method bench. To play the role of a meta-object, we create a
class Meta with one method in which we call an empty method in a loop. This
method thus simulates a meta-object doing some work. We can easily change the
amount of work done by changing the loop. To know how this simple benchmark
compares to real code executed, we added a meta-object calling the Beeper and
one converting a float to a string.

We install a link on the method in Base to call the method in Meta. We call
the base method now in a loop and measure the time:

[100000 timesRepeat: [Base new bench ]] timeToRun

Table 1 shows the result when comparing both the original Geppetto and the
context-enabled Geppetto for different meta-objects3:

As expected, the slowdown in the case of an empty meta-object is substantial.
But as soon as the meta-object itself executes code, the overhead starts to be
acceptable. For calling the Beeper (from our running example), we have found an
overhead of 63%. We are down to 17% on when executing 500 empty methods,
and at 6.4% on 1000 methods.

It should be noted that this does not mean that the overhead observed for
meta-object calls translate directly into a slowdown of a program using reflection.
In a real program, the overall slowdown depends on how often meta-objects are
called and how much time the program spends at the base level and meta-level
compared to switching meta-levels.
3 The benchmark was run on an Apple MacBook Pro, 2.4Ghz Intel Core 2 Duo with

2GB RAM on Squeak Version 3.9
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16 M. Denker, M. Suen, S. Ducasse

meta-object context (msecs) standard (msecs) slowdown
0 message sends 614 34 1’705.88%
10 message sends 723 165 338.18%
50 message sends 1040 470 121.28%
Beeper 1543 942 63.80%
100 message sends 1406 856 64.25%
200 message sends 2236 1621 37.94%
1234.345 printString 2534 1920 31.98%
500 message sends 4580 3907 17.23%
1000 message sends 8543 8029 6.40%

Table 1. Slowdown of meta-object calls with context

7 Related Work

Meta-object Architectures. There are many examples for meta-object based
reflective systems. Examples are 3-KRS [22], the CLOS MOP [20] and other
metaclass based systems like Neoclasstalk [5], or MetaClassTalk [4]. A more
recent example is partial behavioral reflection for Java [30] and Smalltalk [24].
None of these systems provide a representation for meta-level execution.

One could even argue that all these systems are not really reflective (as they
can not be used to reflect on the system itself) and it is debatable if the meta-
objects in these systems are really meta. It has already noted by Ferber [14] that
metaclasses are not meta in the computational sense, even though they are meta
in the structural sense. For any computationally reflective system, we need to be
able to decide if a computation is executing at the meta-level or not. Without
this, there is no reason to talk about meta-objects at all.
Aspect Oriented Programming. There is an ongoing debate about the rela-
tionship of aspect oriented rogramming (AOP) [21] and reflection. Proponents
of reflection claim that AOP is just a use-case for behavioral reflection, a pat-
tern that can be easily implemented. The AOP community, though, would claim
that reflection in turn is just the case of an aspect system where the domain is
the language model itself, with the core-concepts (e.g. message sending) factored
nicely into aspects and thus easily modifiable.

The ideas from this paper can contribute to this discussion. In AOP, a point-
cut is globally visible: it matches even in the advice code itself by default. Con-
versely, we can say that the problem we noted in this paper is made an explicit
and well known property in AOP, whereas it is a bug to be fixed in meta-object
based reflection.

We claim that exactly here lies the difference between reflection and AOP:
reflection needs the distinction between the base and the meta. Aspects, how-
ever, are a pure base level abstraction. Invoking an advice does not constitute a
metacomputation, a level shift does not occur.
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The Meta in Meta-object Architectures 17

Contrary the notion that aspects are pure base level constructs, Stratified
Aspects [3] define an extension that identify spurious recursion to be a problem
and present the concept of metaadvice and metaaspects as a solution. This idea
has some similarities to contextual reifications discussed in this paper, with the
exception that meta-level execution is not modeled explicitly.
Context-Oriented Programming. ContextL [8, 18] is a language to support
Context-Oriented Programming (COP). The language provides a notion of lay-
ers, which package context-dependent behavioral variations. In practice, the vari-
ations consist of method definitions, mixins and before and after specifications.
COP has no first-class notion of context, it is implicitly defined by the layers
that are activated. The topic of reflection has been discussed for COP [9]. But
the paper looks at reflective layer activation, not a reflective model of context
nor the use of context to structure or control reflection itself.
Context-aware Aspects. The concept of context has seen some use in AOP [29].
As context specific behavior tends to crosscut base programs, it can advanta-
geously be implemented as aspects. This leads to the notion of context-aware
aspects, i.e., aspects whose behavior depends on context. The work has been con-
tinued in the direction of supporting reasoning on contexts and context history
on the level of the pointcuts [16,17].

Deployment strategies [28] provide full control over dynamic aspect deploy-
ment both related to the call stack and to created objects and functions. As-
pectBoxes [2] are another example where aspects are controlled via a form of a
context, in this case defined by the classbox model [1]. A good overview and dis-
cussion on the many mechanisms for dynamically scoping crosscutting in general
is described in the work of Tanter [27].
The MetaHelix. The problem of unwanted meta-level call recursion has been
mentioned by Chiba and Kiczales [7]. The problem discussed is first the struc-
tural problem that e.g., fields added by reflection to implement changed behavior
show through to any user of introspection. The other problem mentioned is recur-
sion, as any use of changed behavior can trigger a reification again. As a solution,
the authors present the MetaHelix. All meta-objects have a field implemented-by
that points to a version of the code that is not reflectively changed.

This approach is both more general and restrictive than our context based
solution. It is more general, as it tries to solve the problem of the visibility of
structural change. And it is more restrictive, as it does not model meta-level
execution. The programmer has to call the right code explicitly, thus it can
be seen as a controlled way to support the code copying solution presented in
Section 3. The problem of structural changes is a very interesting one, as future
work we plan to apply the ideas of the meta-context to structural reflection.
Subjective Programming. Us [26] is a system based on Self that supports
subject-oriented programming [15]. Message lookup depends not only on the
receiver of a message, but also on a second object, called the perspective. The
perspective allows for layer activation similar to ContexL. The paper discusses
the usefulness of subjectivity for controlling the access to reflection APIs, it does
not go as far as using subjectivity for controlling behavioral reflection.
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18 M. Denker, M. Suen, S. Ducasse

8 Conclusion and Future Work

In this paper we have analyzed the problem of the missing representation of meta-
level execution in meta-object architectures. We have shown that the problem of
infinite meta-object call recursion can be solved by introducing a representation
for meta-level execution. We proposed to model the execution at the meta-level
as a first class context and presented an implementation. Benchmarks show that
the implementation can be realized in a practical manner.

For now, we have used the concept of context just to make the meta computa-
tion distinguishable from the base computation. We plan to extend the notion of
contextual control of reification to other kinds of contexts then the meta-context.

We have experimented in the past with the idea of a first class model of
change for programming languages [11]. We will explore the idea of context for
structural reflection to model change. Virtual machine support for meta-contexts
is interesting for two reasons. First, we hope to be able to improve performance by
realizing all context setup code in the virtual machine. Second, as we explained
in Section 5, the setup code executed when dealing with contexts has to be
managed specially: we provide copies of all that code. We plan to move all this
special code into the virtual machine.

An interesting question is how a context-aware reflective language kernel
would look like and what the consequences for the language runtime and espe-
cially the reflective model would be. We plan to explore such a new reflective
language kernel in the future.
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