
Handwritten Digit Recognition using Edit Distance-Based KNN

Marc Bernard marc.bernard@univ-st-etienne.fr

Elisa Fromont elisa.fromont@univ-st-etienne.fr

Amaury Habard amaury.habrard@univ-st-etienne.fr

Marc Sebban marc.sebban@univ-st-etienne.fr

Laboratoire Hubert Curien, UMR CNRS 5516,
18 Rue du Professeur Benôıt Lauras, 42000 Saint-Etienne, France

Abstract

We discuss the project given for the last 5
years to the 1st year Master students who
follow the Machine Learning lecture (60h)
at the University Jean Monnet in Saint Eti-
enne, France. The goal of this project is
to develop a GUI that can recognize digits
and/or letters drawn manually. The system
is based on a string representation of the dig-
its using Freeman codes and on the use of
an edit-distance-based K-Nearest Neighbors
classifier. In addition to the machine learning
knowledge about the KNN classifier (and its
optimizations to make it efficient) and about
the edit distance, some programming skills
on how to develop such a GUI are required.

1. Introduction

The Machine Learning (ML) course is given to the 1st
year Master students at the University Jean Monnet
in Saint Etienne. The course’s duration is 60 hours
for which 45 hours are dedicated to theory and desk
exercises and 15 hours are dedicated to lab sessions on
WEKA1 or R2 and on starting (∼ 8 hours) the student
project on handwritten digit/letters recognition which
also requires about 12 hours of personal work at home.

These students already have a bachelor in computer
science and thus have reasonable programming skills
(for example they know how to use Java SWING3 to
create a nice GUI) and some experience in working

1http://www.cs.waikato.ac.nz/ml/weka/
2http://www.r-project.org/
3http://docs.oracle.com/javase/tutorial/uiswing/

Teaching Machine Learning Workshop

in small (4-8 persons) groups. They had a few hours
of mathematics and in particular of statistics (∼ 60h)
since high school but they cannot be considered as
having a very strong mathematical and, in general,
theoretical background.

The ML course covers topics related to supervised clas-
sification. The introductory part of this course (∼
15h) covers the general definition of supervised clas-
sification, the error estimations, the non-parametric
Bayesian methods and their link to the class estima-
tions using Parzen windows and K-nearest neighbors
(KNN). When focusing on the KNN part, a couple
of hours are spent on the possible distances used to
compare two instances and, in particular for string-
based data, on the edit distance. The other parts
of the course cover different symbolic and numeri-
cal algorithms and models from Inductive Logic Pro-
gramming to Hidden Markov Models through Decision
Trees, Neural Networks etc. Given their background,
this course is usually perceived as theoretical and the
project is usually very well welcomed by the students.

The project is proposed to groups of up to 5 stu-
dents. The goal of the project is to make students
work on data acquisition and data storage, the im-
plementation and optimization of a machine learning
algorithm (here KNN and its cleaned and condensed
versions), the evaluation of the parameters (e.g. the
weights of the edit distance, the number of nearest
neighbors, etc.) and of the system (cross validation,
test set, etc.). A nice Graphical User Interface (GUI)
is required to be able to give a live demo of the system
at the end of the project.

Section 2 gives an overview of the project and of the
theoretical prerequisites. Section 3 gives more details
and a description of the steps the students go through
when working on the project. We conclude in Sect. 4.

ha
l-0

07
14

50
9,

 v
er

si
on

 1
 -

4
Ju

l 2
01

2
Author manuscript, published in "Teaching Machine Learning Workshop, Edinburgh, Scotland : United Kingdom (2012)"

http://hal.archives-ouvertes.fr/hal-00714509
http://hal.archives-ouvertes.fr

TML 2012

2. Project Description

In the following, everything which concerns a digit can
also be applied to a letter.

2.1. Overview

The goal of the project is to design a handwritten digit
recognition system based on a KNN classifier. At the
end of the project, each group of students should be
able to present a GUI on which a user can draw (for
example with a mouse) a black and white digit on a
screen. This drawing could be either, saved as an im-
age (or directly as a Freeman code in a text file) to pop-
ulate a database or, could be recognized online (and
efficiently) by the system.

2.2. Freeman codes

There are multiple ways to encode a digit drawn on a
screen for further processing. One of them consists in
saving the digit and the frame in which it has been
drawn as an image. From this image, a successful
string representation has been proposed by Freeman
(Freeman, 1961) to encode the digit. The computa-
tion of the Freeman codes is presented to the students
during a lab session dedicated to the initiation of the
project.

To compute the Freeman code of an image, one needs
to move along a digital curve or a sequence of bor-
der pixels based on eight-connectivities. The direc-
tion of each movement is encoded by using a num-
bering scheme {i‖i = 0, 1, .., 7} denoting an angle of
45∗i (counter-clockwise) from the positive y-axis. The
chain codes can be viewed as a connected sequence of
straight-line segments with specified lengths and di-
rections as showed in Figure 1.

start

Primitives

2

3
4

5

6

7
0 1

"2"=222222432444446665656543222222246
6666666660000212121210076666546600210

Figure 1. Representation of the digit 2 drawn on the left
using a Freeman code.

2.3. KNN

We suggest the students to use the K-nearest neighbors
algorithm for the digit recognition. From experience,
we know that this is a simple yet effective method to
automatically identify the drawn digit independently
of the writing style or the scale (but the digit has to
be drawn in a bounded-size window).

The KNN algorithm is presented during the lecture.
Algorithm 1 explains how to classify an unknown ex-
ample x using a dataset S.

Algorithm 1 KNN algorithm

Input:x, S, d

Output: class of x
for (x′, l′) ∈ S do

Compute the distance d(x′,x)
end for

Sort the |S| distances by increasing order
Count the number of occurrences of each class lj
among the k nearest neighbors
Assign to x the most frequent class

To be able to identify the digit online (with a real time
constraint), the students have to optimize their origi-
nal algorithm (e.g. by reducing the size of the database
to reduce the computations). Two algorithms are pro-
posed to speed up the classification process: one (see
Algo. 2) which removes from the original dataset S

the outliers and the examples located in the Bayesian
error region, smoothing the decision boundaries, and
one (see Algo. 3) which deletes the irrelevant examples
(e.g. the centers of the homogeneous clusters).

Algorithm 2 Step1 : Remove from the original
dataset S the outliers and the examples of the Bayesian
error region

Input:S

Output:Scleaned

Split randomly S into two subsets S1 and S2

repeat

Classify S1 with S2 using the 1-NN rule
Remove from S1 the misclassified instances
Classify S2 with the new set S1 using the 1-NN
rule
Remove from S2 the misclassified instances

until stabilization of S1 and S2

Scleaned = S1 ∪ S2

Another optimization can be made to speed up the
original algorithm by speeding up the search for the
nearest neighbor using the triangle inequality property

ha
l-0

07
14

50
9,

 v
er

si
on

 1
 -

4
Ju

l 2
01

2

TML 2012

Algorithm 3 Step2 : Remove the irrelevant examples

Input:S

Output: STORAGE
STORAGE ← ∅ ; DUSTBIN ← ∅
Draw randomly a training example from S and put
it in STORAGE
repeat

for xi ∈ S do

if xi is correctly classified with STORAGE us-
ing the 1-NN rule then

STORAGE DUSTBIN ← xi

STORAGE ← xi

end if

end for

STORAGE ← STORAGE \ DUSTBIN
until stabilization of STORAGE
Return STORAGE

of the distance function (see (Vidal, 1994) for more
details on the techniques).

• Let x be the example to classify by the nearest-
neighbor (NN) rule. Let us consider that the cur-
rent NN of x is y which is at a distance δ from
x.

• Let z be the next training example. If d(x, z) ≤ δ

then update the current NN. Otherwise, remove
the following two categories of examples located:

1. in the sphere centered at z and of radius
d(x, z)− δ,

2. out of the sphere centered at z and of radius
d(x, z) + δ,

2.4. Distances

The distance used to compare two Freeman codes in
the database is the edit distance (explained below).
A variant of the project could consist in testing the
performance of other distances such as a L1, L2 or a
Mahalanobis distance on other types of image repre-
sentation (quad tree, 0-1 pixel matrix, interest point
detectors,...).

Definition 1 The Levenshtein distance (or Edit Dis-
tance) between two strings x = x1...xT and y = y1...yV
is given by the minimum number of edit operations
needed to transform x into y, where an operation is
an insertion, deletion, or substitution of a single char-
acter.

Rather than counting the number of edit operations,
one can assign an edit cost to each edit operation and
search for the less costly transformation:

• c(xi, yj) is the cost of the substitution of xi by yj ,

• c(xi, λ) is the cost of the deletion (xi into the
empty symbol λ),

• c(λ, yj) is the cost of the insertion of yj .

Input:Two strings x(T) and y(V)
Output: Edit Distance D(T, V) between x and y

D(0, 0)← 0
for r=1 to T do

D(r, 0)← D(r − 1, 0) + c(xr, λ)
end for

for k=1 to V do

D(0, k)← D(0, k − 1) + c(λ, yk)
end for

for r=1 to T do

for k=1 to V do

d1 ← D(r − 1, k − 1) + c(xr, yk)
d2 ← D(r − 1, k) + c(xr, λ)
d3 ← D(r, k − 1) + c(λ, yk)
D(r, k)← min(d1, d2, d3)

end for

end for

Return D(T, V)

3. Project Implementation

The first job of the group of students is to divide
the different tasks between all the members of the
group and organize the communication to be able to
integrate all the parts before the evaluation of the
project. A student version of the project can be found
online at his address: http://labh-curien.univ-st-
etienne.fr/∼sebban/AA-RDF/applet.php?lang=en.

3.1. GUI

Figure 2. Recognition of the digit 7 in the final GUI.

The project focuses on machine learning. The aim is
not to test the programming skills of the students. So,
the choice of the programming language and the design
of the GUI is left to the students. However, in our case,
most of the students use the JAVA Swing API. This

ha
l-0

07
14

50
9,

 v
er

si
on

 1
 -

4
Ju

l 2
01

2

TML 2012

API provides tools to create a graphical user interface
(GUI) for Java programs. An example of a resulting
GUI is given Figure 2.

3.2. Dataset

Figure 3. Example of a dataset and its statistics computed
by the students’ system

The students have to create their own dataset and a
structure to store the data. Some students decide to
create a real database system (using for example Post-
greSQL4) and store the images which contain a digit.
With this kind of method, the student can use and
compare multiple representations of the image. Some
students decide to store only the Freeman code as tex-
tual information or as XML files as shown in Figure 3.
Whatever the structure, the students find out early in
their experimental process that more than one person
should populate the dataset with some digits to make
sure that the instances of each class are diverse enough
(in term of writing style) to have a sufficiently good
classification accuracy.

3.3. Algorithms

The students can choose any programming language
but it is usually done according to the choice of the
API for the GUI (so most of the time, it is JAVA).
Most of the necessarily algorithms are given (as pseudo
code) during the lecture and have to be implemented.
However, the part concerning the preprocessing of the
digit (for example the transformation into a Freeman
code independently of the position of the digit in the
drawing window) is left as the students’ choice. De-
pending on their organization skills, the students may
not have time to implement all the possible optimiza-
tions of the KNN algorithm. In this case, we expect
them to be critical about the performance of their al-
gorithm especially during the demo.

4http://www.postgresql.org/

3.4. Evaluation

Because of the limited size of their database, most of
the students use a 5-fold or a leave-one-out cross vali-
dation strategy to evaluate the global performance of
their algorithm. They keep increasing the size of their
dataset until they reach a “sufficiently” good accuracy
(around 80% with a representative enough database).
Then, they try to use the dataset reduction techniques
to evaluate the loss of accuracy.

They usually try to test different “K” for the KNN al-
gorithm and keep the one that gives the best accuracy
results by cross validation.

For the edit distance, they usually start by giving an
equal weight to each of the three edit operations then
they increase the weights of the insertion and dele-
tion compared to the substitution. A better idea is
to weight the substitution differently for each possible
code. Indeed, it must seem easier to change a Free-
man code 1 into a code 2 (because it is a small an-
gle) than to change a Freeman code 1 into a code 4.
(Rico-Juan & Micó, 2003) is a good reference to find
the weights of the edit operations for this problem.

4. Conclusion

The proposed project shows the whole process of su-
pervised classification from the data acquisition to the
design of a classification system and its evaluation.
The project is usually extremely successful with the
students. Most of them are very proud of the per-
formance of their system and most of the time, they
implement side games such as Sudoku or letter games
(such as scrabble) to show the performance of their
system online. The project, besides giving practical
applications to some machine learning techniques seen
in class, gives them the opportunity to work as a group.
As explained in the text, some changes can be made on
the representations of the images and on the distances
used to compare two elements in the database.

Acknowledgements

This work is supported by the Pascal 2 network of
Excellence.

References

Freeman, Herbert. On the encoding of arbitrary ge-
ometric configurations. IRE Transactions on Elec-
tronic Computers, EC-10(2):260–268, June 1961.

Rico-Juan, Juan Ramón and Micó, Luisa. Comparison
of aesa and laesa search algorithms using string and

ha
l-0

07
14

50
9,

 v
er

si
on

 1
 -

4
Ju

l 2
01

2

TML 2012

tree-edit-distances. Pattern Recogn. Lett., 24(9-10):
1417–1426, June 2003. ISSN 0167-8655.

Vidal, Enrique. New formulation and improvements
of the nearest-neighbour approximating and elimi-
nating search algorithm (aesa). Pattern Recognition
Letters, 15(1):1–7, 1994.

ha
l-0

07
14

50
9,

 v
er

si
on

 1
 -

4
Ju

l 2
01

2

