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Symmetric Logarithmic Image Processing Model
Application to Laplacian Edge Detection

Laurent Navarro, Guy Courbebaisse

Abstract—This paper introduces a new model for logarithmic
image processing, called Symmetric Logarithmic Image Pro-
cessing (SLIP), that provides an algebraic framework for the
processing of transmitted light images and intensity images. The
SLIP model is inspired by the previously developed Logarithmic
Image processing (LIP) model and has been built to exhibit a
symmetric structure that allows to deal with negative values dur-
ing logarithmic processing. Structured with a combination law
and an amplification law, the SLIP model defines a vector space
structure on a symmetric bounded set instead of the positive cone
structure that was characteristic of the LIP model. Furthermore,
in the continuation of the LIP model, the SLIP model is physically
consistent with transmitted light formation and human vision’s
brightness perception laws, but also allows to unify the two
physical entities. This article introduces mathematical notions
and operations defining the SLIP model, then explains why
it is physically and psychophysically well justified, and finally
the SLIP model specificity is illustrated with a real application
example.

Index Terms—Logarithmic image processing, Symmetric Log-
arithmic Image Processing.

I. I NTRODUCTION

In this paper, a new model for logarithmic image processing
is proposed. Logarithmic image processing has been widely
developed in recent years. Its relevance is due to the analogy
done with the non-linearities of human perception or those
of transmitted light images for example. The homomorphic
theory introduced by Oppenheim [1] is the starting point
of logarithmic image processing models. The principle is to
introduce a logarithmic homomorphic function allowing the
mapping of an image into a superior algebraic structure. In
1972 Stockham [2] proposed an image enhancement method
based on the homomorphic theory.

In 1988, in the first article introducing the LIP model
[3], Jourlin and Pinoli presented a new algebraic structure
for image processing. The main idea of this model was to
provide a framework allowing the processing of transmitted
light images in a bounded intensity range. The principle is to
represent an image by the light filter through which it has been
formed. Later, Brailean and Al. [4] showed that the LIP model
is also consistent with the non linear (logarithmic) human
visual system. A mathematical generalization of the LIP model
has also been proposed by Panetta and Al., the Parameterized
LIP model [5], which allows interesting adaptive adjustments
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of the model. Image processing operations have been achieved
with the parameterized LIP model, like for example edge
detection [6] or image fusion [7].

In the LIP model, the intensity of an image is modeled
by its gray tone function valued in the bounded set[0,M).
The combination and amplification laws of these gray tone
functions introduced by Jourlin and Pinoli [3] first defined
a cone structure on the[0,M) range. In order to define a
vector space structure they further extended the[0,M) range
to (−∞,M). However, the LIP model’s negative extension’s
problem is that the LIP operations are not physically justified
on the negative part. In addition, in many cases of image
processing, the operators deal with negative parts. Ultrasound
medical imaging or color image processing based on color
opponent process theory are specific examples of images
containing negative parts. The negative part is also a problem
in the case of image processing operations such as wavelet
transform or Laplacian edge detection. Some authors presented
models that can deal with the negative parts of images.
Patrascu and al. [8] elaborated an Homomorphic logarithmic
image processing model defined on the(−1, 1) set. Florea and
al. [9] also extended the pseudo-logarithmic model on the basis
of the Vertan and al.’s model [10], in order to obtain a vector
space structure on(−1, 1). Shvaytser and al. [11] proposed an
other way to treat negative values, this model has been used
in [12]. This model will not be detailed in this article because
it is not a mathematically symmetric model, as it is defined in
the [0,M) range.

The original Symmetric Logarithmic Image Processing
(SLIP) model proposed in this paper is defined in the contin-
uation of the logarithmic image processing (LIP) model and
extends the cone space structure of the LIP model to a vector
space structure in introducing an odd isomorphism.

The present paper is organized as follows: the section 2
briefly presents the LIP model and the existing symmetric
logarithmic image processing models. The section 3 introduces
the proposed Symmetric Logarithmic Image Processing (SLIP)
model that preserves the(−M,M) symmetric set for all op-
erations, and is still consistent with the human visual system.
Finally, the section 4 shows SLIP model advantages on a real
application example, a Laplacian edge detection.

II. CLASSICAL LIP MODEL AND EXISTING SYMMETRIC

LOGARITHMIC MODELS

A. Mathematical considerations

A linear vector spaceS over a fieldK, generallyR or C, is
equipped with a vector addition+ and a scalar multiplication

ha
l-0

07
09

35
0,

 v
er

si
on

 2
 - 

26
 J

un
 2

01
2



3

× of each element ofS by each element ofK on the left,
these operations satisfying a number of classical properties.

A positive linear coneS+ overK+, generallyR+ orC+, is
equipped with a vector addition+ and a scalar multiplication
× of each element ofS+ by each element ofK+ on the left.
K+, R+ andC+ are constituted by the positive elements of
the fields K, R and C respectively. A positive linear cone has
the same properties and operation rules than a linear space,so
it is closed for addition and for positive scalar multiplication
operations. A neutral element exists for the addition, the
addition is commutative and associative, and the positive scalar
multiplication also possesses a neutral element and follows the
associative and distributive laws.

B. The LIP model

1) The Gray tone function:In the LIP model, an image
is represented by its associated gray tone function, denoted
f , defined on the non-empty spatial domainD in R2. The
gray tone functions are valued in the bounded real number
interval [0,M), whereM is strictly positive, called the gray
tone range. Elements of[0,M) are called the gray tones. The
gray tone functionf is related to the gray level functioñf as
follows:

f =M − f̃ (1)

In this approach, the intensity scale is inverted:0 is total
whiteness or transparency, andM the absolute blackness
or opacity. Indeed, the initial goal of the LIP model was
the addition of two transmitted-light images. Physically,the
addition of two transmitted-light images follows the classical
transmittance law, and total blackness can not be reached.
The scale inversion is justified, as0 corresponds to the total
transparency and is the neutral element for a mathematical
addition in this case.

2) The Structure of the LIP model:The initial aim of the
LIP model was to define an additive operation closed in the
bounded positive real number intensity range[0,M) [3] [13],
ie. the positive linear cone[0,M).

The addition of two gray tone functionsf andg defined on
the spatial supportD and valued in the real number interval
[0,M) is defined as:

f +△g = f + g −
fg

M
(2)

and the multiplication by a positive real scalarλ is defined as:

λ ×△f =M −M

(

1−
f

M

)λ

(3)

In order to extend the positive linear cone[0,M) to a vector
space, Jourlin and Pinoli [3] defined the opposite−△f of a gray
tone functionf :

−△f = −M
f

M − f
(4)

and they extended the scalar multiplication to any real number.
Then the subtraction between two gray tone functionsf and
g can be introduced:

f −△g =M
f − g

M − g
(5)

The gray tone range is also extended from[0,M) to
(−∞,M). The set of gray tone functions valued in this range
is related toR through the fundamental isomorphism [13]
defined as:

ψ(f) = −M ln

(

M − f

M

)

(6)

and
ψ−1(f) =M

(

1− e
−f

M

)

(7)

However, the set on which the vector space is defined is
asymmetric. The LIP operations are bounded in the positive
part [0,M) and unbounded in the negative part(−∞, O].
Thus, despite it is mathematically consistent, the LIP model
distorts negative values informations in real applications (see
section 4).

C. Other symmetric logarithmic models

1) Homomorphic-LIP (HLIP) model:The Homomorphic-
LIP’s main idea was purely mathematical. Patrascu and al.
[8] noticed than during the processing of an image, the
mathematical operations concerning the real functions usethe
real numbers algebra, so results are spread on the whole real
axis. The problems appear at the end of the processing, when
it is necessary to truncate the results in order to representthem
on a bounded range.

Thus, in the HLIP model, gray functions are valued in the
symmetric set(−1, 1).

The addition of two gray levelsf andg is defined as:

f < + > g =
f + g

1 + fg
(8)

and the multiplication by a scalarλ is defined as:

λ < × > f =
(1 + f)λ − (1− f)λ

(1 + f)λ + (1− f)λ
(9)

The space of gray functions structured with the addition
< + > and the multiplication by a real scalar< × > defines
a real vector space. The fundamental isomorphism between
the space of gray functions valued in(−1, 1) and the classical
vector space defined inR is expressed as:

ψ(f) =
1

2
. ln

(

1 + f

1− f

)

(10)

and

ψ−1(f) =
ef − e−f

ef + e−f
(11)

The HLIP model has no real physical or physiological
justifications, but the results are bounded in the(−1, 1) set.

2) Symmetric Pseudo-LIP model:The Pseudo-LIP model
has been introduced by Vertan and al. [10] in 2009. They
proposed the use of a logarithmic-like image processing model
with gray tone valued in the[0, 1) range.

The addition of two gray levelsf andg is defined as:

f ⊕ g =
f + g − 2fg

1− fg
(12)

and the multiplication by a positive real scalarλ is defined as:

λ⊗ f =
λf

1 + (λ− 1)f
(13)
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The fundamental isomorphism between the space of gray
valued in[0, 1) and the classical cone space valued in[0,∞)
is defined as:

ψ(f) =
f

1− f
(14)

and

ψ−1(f) =
f

1 + f
(15)

The symmetric Pseudo-LIP model has been introduced by
Florea and al. [9] in order to achieve the extension to a vector
space structure. The aim of this model is comparable to the
aim of the HLIP, as the results are bounded on the(−1, 1)
range. The fundamental isomorphism between the space of
gray valued in(−1, 1) and the classical vector space valued
in (−∞,∞) is defined as:

ψ(f) =
f

1− |f |
(16)

and

ψ−1(f) =
f

1 + |f |
(17)

III. F UNDAMENTALS OF THE SYMMETRIC LOGARITHMIC

IMAGE PROCESSINGMODEL

A. Definitions

This section presents the concepts needed in subsequent
sections of this paper: signum and absolute value functions
and their properties. These functions belong to mathematical
distributions [14].

Distributions (generalized functions) are mathematical ob-
jects that generalize the notion of function and measurement.
Distribution theory extends the concept of differentiation to
all locally integrable functions [14].

The absolute value function is defined as:

|x| =

{

x if x ≥ 0
−x if x < 0

(18)

The derivative of the absolute value function, defined for
non-negative real numbers as:

sgn(x) =
d |x|

dx
, for x 6= 0 (19)

is the signum function defined onR as:

sgn(x) =







−1 if x < 0
0 if x = 0
1 if x > 0

(20)

B. The space of gray levels

In the SLIP model, an image is represented by its associated
gray level function, denotedf , defined on the non-empty
spatial domainD in R2. The gray level functions are valued in
the bounded symmetric real number interval(−M,M), where
M is strictly positive, called the gray levels range. Elements
of (−M,M) are called the gray levels.M represents the
maximum light intensity and−M is the total light absorption.
These assumptions will be more detailed in subsection III-E.

−200 −100 0 100 200

−600

−400

−200

0

200

400

600

 

 
LIP
SLIP

Fig. 1. Comparison diagram of LIP and SLIP models. The two functions
have the same behavior for the positive values, but for the negative values the
LIP model is not symmetric.

C. The fundamental isomorphism

The SLIP model has been built in creating an odd isomor-
phism inspired from the LIP model isomorphism in order to
obtain a model which has the same behavior for positive and
negative values. The SLIP fundamental isomorphism is defined
as:

ψ(f) = −M sgn(f). ln

(

M − |f |

M

)

(21)

and
ψ−1(f) =M sgn(f).

(

1− e
−|f|
M

)

(22)

which must be understood in the sense of distributions.
A comparison of the LIP and the SLIP models isomor-

phisms exhibits that the SLIP model is symmetric and well
adapted to negative values, whereas the LIP model, if extended
beyond0, presents a non logarithmic behavior for negative
values (fig. 1).

D. The vectorial operations

In order to define a vector space structure, addition and
multiplication by a real scalar are introduced below.

1) The addition: The addition of two gray levelsf and g
is defined as:

f +△g =M sgn(f + g).

[

1−

(

1−
|f |

M

)γ1

.

(

1−
|g|

M

)γ2
]

(23)
with:

γ1 =
sgn(f)

sgn(f + g)
; γ2 =

sgn(g)

sgn(f + g)
(24)

This can be easily proved using the following property:

|x| =
x

sgn(x)
(25)
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2) The multiplication by a scalar:The multiplication by a
scalarλ is defined as:

λ ×△f =M sgn(λf).

[

1−

(

1−
|f |

M

)|λ|
]

(26)

The set of gray levels functions valued on the symmetric
range (-M,M), structured with addition and multiplicationby
a real scalar, defines a real vector space.

E. Physical and Physiological considerations

In this subsection, it is shown that the SLIP model allows to
unify physical and psychophysical properties of the LIP model
in using the model’s symmetry.

In the classical LIP model, a scale inversion of the gray tone
range[0,M) is performed, so white values are represented by
0 and the black ones byM . This fact is completely justified
for transmitted light images [15], as the value0 corresponds
to the total transparency andM total darkness, which can
not be reached. In this case, images are considered as images
resulting from light passed through a filter. In the context of
the human visual perception, the justification of Pinoli [16] for
this inversion stands on the bio-electrical intensity delivered by
the retinal stage of the eyes. In fact, Baylor et al. established in
1979 [17] [18] that the increase of the incident light intensity
produces a decrease of the bio-electrical intensity of the eye.
The problem with this assumption concerning the LIP model
is that the ”glare limit” of the eye is reached for white
values (high intensities), so the logarithmic behavior of the
human visual system is located in the white values and it
seems that the inversion in the context of human vision is not
relevant. When using the LIP model, it is necessary to consider
two application cases: transmitted light images where a scale
inversion is generally performed and reflected light images
where the LIP operations can be performed directly on image
gray levels.

In the SLIP model, in order to unify the two physical
entities, the positive part[0,M) of the interval (−M,M)
is dedicated to reflected light images and the negative part
(−M, 0] is dedicated to light intensity filters. So, the negative
part (−M, 0] of the SLIP model is equivalent to the positive
part [0,M) of the LIP model. Indeed, a light intensity filter
can be mathematically seen as a negative image. With the
SLIP model, a reflected light image can be processed directly
without any transformation, as it is defined on the[0,M)
range. On the other hand, in order to process a transmitted
light image f̃ with the SLIP model, it is necessary to drag it
along the isomorphism, by substracting the illumination light
M to tranform it into its corresponding light intensity filterf
(f becomes entirely negative):

f = f̃ −M (27)

This property is important, because images of different types
can be processed together with the SLIP framework. The result
of a reflected image passed through a light intensity filter can
be calculated; for example an eye viewing a scene through a
slide, as shown in fig. 2. In this example, the filter consists
in 3 horizontal bands of 25% light absorption, i.e. a value

Fig. 2. Original Lena image (left) and Lena image viewed through a light
intensity filter (right). The filter consists in 3 horizontalbands of 25% light
absorption..

of −M/4 (non-absorbtive bands have a value of0), and it is
represented by the negative imageF whose values are in the
(−M/4, 0] range. It is also important to note that the0 bound
represents both the abscence of absorption and the limit of
light detection of the eye, and this is where the connection
between reflection images and filters is done. The resulting
imageI ′ is the classical Lena image (fig. 2)I viewed through
the filterF . This is directly performed with a SLIP addition:

I ′ = I +△F. (28)

IV. EXPERIMENTAL RESULTS ONLAPLACIAN EDGE

DETECTION

A. Laplacian operator

This section aims at confirming advantages of the SLIP
model in dealing with negative parts during processing. The
Laplace operator is a good simple example, as the results
run from either side of zero with negative values. However,
more sophisticated operators such as Fourier transform or any
operator using subtraction operation could benefit the fact
that results are bounded. Gray-level mathematical morphology
could also take advantage of the SLIP model, as they widely
use subtraction.

A LIP-Laplacian operator has been developed by Deng
and Pinoli [19] in order to perform differentiation-based edge
detection:

lap∆f =
1

8
×△((f1 +△f3 +△f7 +△f9)

+△2 ×△(f2 +△f4 +△f6 +△f8) −△12 ×△f5) (29)

but this Laplacian-like operator has been built so that there is
no negative part in the results. The Laplace operator used in
this section is the standard Laplace operator or Laplacian,used
in image processing. It is a second order differential operator
defined as the divergence of the gradient.

In the discrete image processing case, the Laplacian of an
image can be calculated using a convolution of the considered
image by a Laplacian kernel. The standard Laplacian V-8
kernel for Image Laplacian computation is:

k =





1 1 1
1 -8 1
1 1 1



 (30)
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Then the Laplacian filtering is performed using the convolu-
tion operation withI an image of sizeM×N to be processed
andk the kernel of size3× 3:

O(i, j) = I(i, j) ∗ k (31)

This expression is numerically equivalent to:

O(i, j) =

3
∑

k=1

3
∑

l=1

I(i+ k − 1, j + l − 1).k(k, l) (32)

wherei = 1..M −m+ 1 and j = 1..N − n+ 1
The calculus of the SLIP Laplacian filter is:

O(i, j) = ψ−1(ψ(I(i, j)) ∗ k)) = I(i, j)) ∗△k (33)

CLIP (classical linear image processing) and SLIP Lapla-
cian resulting images are shown in fig. 3. The LIP model
fails in computing the standard Laplacian because the negative
values are not bounded. These negative values reached so low
values that the resulting image is distorted, and is white when
normalized in the(0, 1) range.

Fig. 3. Lena image filtered with the CLIP (left) and SLIP (right) models
V-8 Laplacian filter. Images have been normalized in the(0, 1) set.

The maximum and minimum values of the Laplacian re-
sulting images of Lena computed with CLIP, LIP and SLIP
models are indicated in table I. In the digital caseM is equal
to 28 = 256. These results confirm that SLIP model operators
are bounded in the(−M,M) range.

min max
CLIP -810 622
SLIP -254.9748 254.6712
LIP -2.5831e+006 254.6712

TABLE I
COMPARATIVE TABLE OF MAXIMUM AND MINIMUM VALUES OF THE

LAPLACIAN IMAGES COMPUTED WITH CLIP, LIP AND SLIP MODELS.

B. Laplacian edge detection

A comparison between the CLIP, SLIP, HLIP and Pseudo-
LIP models exhibits that the differences in the fundamental
isomorphisms of each model lead to different laplacian results.
In this subsection, segmentation has been performed using the
classical Otsu method [20] in order to find the right theshold
to segment each laplacian image, as it is summarized in table
II. The histograms of the three Laplacian images are bimodals,
so the Otsu method is appropriate. Results of segmentations

are shown in fig. 4. The CLIP Laplacian segmentation doesn’t
exhibit any effective detection in the image. Then, it appears
clearly that there is an increase in level of detection for each
model, due to the different thresholds automatically founds
with the Otsu method. The HLIP Laplacian segmentation fails
to detect all edges, as the thresholded image doesn’t exhibit all
reflections of Lena’s hat in the mirror. On the contrary, The
Pseudo-LIP Laplacian segmentation exhibits a lot of noise.
The SLIP Laplacian segmentation image is a compromise
between edges and noise detection and will be more usable
for binary mathematical morphology operations.

Fig. 4. CLIP(top left), SLIP (top right), HLIP (bottom left)and Pseudo-LIP
(bottom right) Laplacians of Lena image thresholded with theOtsu method.

Threshold value
CLIP 0.4706
SLIP 0.4118
HLIP 0.3725
Pseudo-LIP 0.4980

TABLE II
COMPARATIVE TABLE OF THRESHOLD VALUES OF THELAPLACIAN IMAGE

PROCESSED WITH THEOTSU METHOD FORCLIP, SLIP, HLIPAND

PSEUDO-LIP MODELS.

V. CONCLUSION

In this paper, the SLIP (Symmetric Logarithmic Image
Processing) model for Logarithmic Image Processing has been
proposed, in the continuation of the LIP model. Based on
an odd function, it provides an algebraic structure for the
processing of transmitted light images and intensity images
reunified on the same bounded range(−M,M). It is also
physically justified and consistent with transmitted lightim-
ages formation and human vision brightness perception laws.
Moreover, the SLIP model, structured with combination and
amplification laws, defines a vector space structure on the
symmetric bounded range which is mathematically consistent.
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Its advantages have been illustrated on a real application
example, a Laplacian edge detection, where the SLIP model is
far better adapted. Indeed, resulting images are bounded onthe
symmetric interval(−M,M) whereas the same operator, in
the case of the classical LIP model, give resulting images inthe
(−∞,M) set and distorts information. The SLIP model opens
strong new perspectives, as it is equipped with a vector space
structure on the bounded range(−M,M), and also physically
and psychophysically justified. Our current researches focus on
other image processing operations and in sophisticated tools,
such as SLIP Fourier Transform, mathematical morphlogy and
wavelet transform [21]. Taking into account recent work in
logarithmic image processing, the extension of the PLIP to
the Parameterized SLIP could be easily implemented, in order
to define PSLIP operators dealing with negative values.
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