
Direct construction of

Compact Directed Acyclic Word Graphs

Maxime Crochemore and Renaud V

�

erin

Institut Gaspard Monge

Universit�e de Marne-La-Vall�ee,

2, rue de la Butte Verte, F-93160 Noisy-Le-Grand.

http://www-igm.univ-mlv.fr

Abstract. The Directed Acyclic Word Graph (DAWG) is an e�cient

data structure to treat and analyze repetitions in a text, especially

in DNA genomic sequences. Here, we consider the Compact Directed

Acyclic Word Graph of a word. We give the �rst direct algorithm to

construct it. It runs in time linear in the length of the string on a �xed

alphabet. Our implementation requires half the memory space used by

DAWGs.

Keywords: pattern matching algorithm, su�x automaton, DAWG, Com-

pact DAWG, su�x tree, index on text.

1 Introduction

In the classical string-matching problem for a word w and a text T , we want to

know if w occurs in T , i.e., if w is a factor of T . In many applications, the same

text is queried several times. So, e�cient solutions are based on data structures

built on the text that serve as an index to look for any word w in T . The typical

running of various implementations of the search is O(jwj) (on a �xed alphabet).

Among the implementations, the su�x tree ([13]) is the most popular. Its size

and construction time are linear in the length of the text. It has been studied

and used extensively. Apostolico [2] lists over 40 references on it, and Manber

and Myers [12] mention several others. Many variants have been developed, like

su�x arrays [12], PESTry [11], su�x cactus [10], or su�x binary search trees

[9]. Besides, the su�x trie, the non-compact version of the su�x tree, has been

re�ned to the su�x automaton (Directed Acyclic Word Graph, DAWG). This

automaton is a good alternative to represent the whole set of factors of a text.

It is the minimal automaton accepting this set. It has been fully exposed by

Blumer [3] and Crochemore [7]. As for the su�x tree, its construction and size

is linear in the length of the text.

In the genome research �eld, DNA sequences can be viewed as words over the

alphabet fa; c; g; tg. They become subjects for linguistic and statistic analysis.

For this purpose, su�x automata are useful data structures. Indeed, the structure

is fast to compute and easy to use.

Meanwhile, the length of sequences in databases grows rapidly and the bot-

tleneck to using the above data structures is their size. Keeping the index in main

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

Author manuscript, published in "Combinatorial Pattern Matching (Aarhus, 1997), France (1997)"

http://hal-univ-mlv.archives-ouvertes.fr/hal-00620006
http://hal.archives-ouvertes.fr

memory is more and more di�cult for large sequences. So, having a structure

using as little space as possible is appreciable for its construction as well as for

its utilization. Compression methods are of no use to reduce the memory space

of such indexes because they eliminate the direct access to substrings. On the

contrary, the Compact Directed Acyclic Word Graph (CDAWG) keeps the direct

access while requiring less memory space. The structure has been introduced by

Blumer et al. [4, 5]). The automaton is based on the concatenation of factors is-

sued from a same context. This concatenation induces the deletion of all states of

outdegree one and of their corresponding transitions, excepting terminal states.

This saves 50% of memory space. At the same time, the reduction of the number

of states (2=3 less) and transitions (about half less) makes the applications run

faster. Both time and space are saved.

In this paper, we give an algorithm to build compact DAWGs. This direct

construction avoids constructing the DAWG �rst, which makes it suitable for

the actual DNA sequences (more than 1:5 million nucleotides for some of them).

The compact DAWG allows to apply standard treatment on sequences twice as

long in reasonable time (a few minutes).

In Section 2 we recall the basic notions on DAWGs. Section 3 introduces the

compact DAWG, also called compact su�x automaton, with the bounds on its

size. We show in Section 4 how to build the CDAWG from the DAWG in time

linear in the size of this latter structure. The direct construction algorithm for

the CDAWG is given in Section 5. A conclusion follows.

2 De�nitions

Let � be a nonempty alphabet and �

�

the set of words over �, with " as the

empty word. If w is a word in �

�

, jwj denotes its length, w

i

its i

th

letter, and

w

i::j

its factor (subword) w

i

w

i+1

: : :w

j

. If w = xyz with x; y; z 2 �

�

, then x, y,

and z denote some factors or subwords of w, x is a pre�x of w, and z is a su�x

of w. S(x) denotes the set of all su�xes of x and F (x) the set of its factors.

For an automaton, the tuple (p; a; q) denotes a transition of label a starting

at p and ending at q. A roman letter is used for mono-letter transitions, a greek

letter for multi-letter transitions. Moreover, (p; �] denotes a transition from p

for which � is a pre�x of its label.

Here, we recall the de�nition of the DAWG, and a theorem about its imple-

mentation and its size proved in [3] and [7].

De�nition1. The Su�x Automaton of a word x, denoted DAWG(x), is the

minimal deterministic automaton (not necessarily complete) that accepts S(x),

the (�nite) set of su�xes of x.

For example, Figure 1 shows the DAWG of the word gtagtaaac. States which

are double circled are terminal states.

Theorem2. The size of the DAWG of a word x is O(jxj) and the automaton can

be computed in time O(jxj). The maximum number of states of the automaton

is 2jxj � 1, and the maximum number of edges is 3jxj � 4.

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

I
1 2 3 4 5 6 7 9

F

8 10

g

t a

g

t a a a c

g

a

a

c

c

a

c

t a

Fig. 1. DAWG(gtagtaaac)

Recall that the right context of a factor u of x is u

�1

S(x). The syntactic

congruence, denoted by �

S(x)

, associated with S(x) is de�ned, for x; u; v 2 �

�

,

by:

u �

S(x)

v () u

�1

S(x) = v

�1

S(x).

We call classes of factors the congruence classes of the relation �

S(x)

. The

longest word of a class of factors is called the representative of the class. States of

DAWG(x) are exactly the classes of the relation �

S(x)

. Since this automaton is

not required to be complete, the class of words not occurring in x, corresponding

to the empty right context, is not a state of DAWG(x).

Moreover, we induce a selection among the congruence classes that we call

strict classes of factors of �

S(x)

and that are de�ned as follows:

De�nition3. Let u be a word of C, a class of factors of �

S(x)

. If at least two

letters a and b of � exist such that ua and ub are factors of x, then we say that

C is a strict class of factors of �

S(x)

.

We also introduce the function endpos

x

: F (x)! N, de�ned, for every word

u, by:

endpos

x

(u) = minfjwj j w pre�x of x and u su�x of wg

and the function length

x

de�ned on states of DAWG(x) by :

length

x

(p) = juj; with u representative of p:

The word u also corresponds to the concatenated labels of transitions of the

longest path from the initial state to p in DAWG(x). The transitions that

belong to the spanning tree of longest paths from the initial state are called

solid transitions. Equivalently, for each transition (p; a; q) we have the property:

(p; a; q) is solid () length

x

(q) = length

x

(p) + 1:

The function length

x

works as well for multi-letter transitions, just replacing 1 in

the above equivalence by the length of the label of the transition. This extends

the notion of solid transitions to multi-letter transitions:

(p; �; q) is solid () length

x

(q) = length

x

(p) + j�j:

In addititon, we de�ne the su�x link for a state of DAWG(x) by:

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

De�nition4. Let p be a state of DAWG(x), di�erent from the initial state, and

let u a word of the equivalence class p. The su�x link of p, denoted by s

x

(p), is

the state q which representative v is the longest su�x z of u such that u 6�

S(x)

z.

Note that, consequently to this de�nition, we have length

x

(q) < length

x

(p). Then,

by iteration, su�x links induce su�x paths in DAWG(x), which is an important

notion used by the construction algorithm. Indeed, as a consequence of the above

inequality, the sequence (p; s

x

(p); s

2

x

(p); :::) is �nite and ends at the initial state

of DAWG(x). This sequence is called the su�x path of p.

3 Compact Directed Acyclic Word Graphs

3.1 De�nition

The compression of DAWGs is based on the deletion of some states and their

corresponding transitions. This is possible using multi-letter transitions and the

selection of strict classes of factors de�ned in the previous section (De�nition 3).

Thus, we de�ne the Compact DAWG as follows.

De�nition5. The Compact Directed Acyclic Word Graph of a word x,

denoted by CDAWG(x), is the compaction of DAWG(x) obtained by keeping

only states that are either terminal states or strict classes of factors according

to �

S(x)

, and by labeling transitions accordingly.

Consequently to De�nition 3, the strict classes of factors correspond to the states

that have an outdegree greater than one. So, we can delete every state having

outdegree one exactly, except terminal states. Note that initial and �nal states

are terminal states too, so they are not deleted.

I

2

3 4

F

c

a

g

t

a

t

a

g

t

a

a

a

c

a

a

c

a

gtaaac

c

a

c

c

Fig. 2. CDAWG(gtagtaaac)

The construction of the DAWG of a word including some repetitions shows

that many states have outdegree one only. For example, in Figure 1, the DAWG

of the word gtagtaaac has 12 states, 7 of which have outdegree one; it has 18

transitions. Figure 2 displays the result after the deletion of these states, using

multi-letter transitions. The resulting automaton has only 5 states and 11 edges.

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

According to experiments to construct DAWGs of biological DNA sequences,

considering them as words over the alphabet � = fa; c; g; tg, we got that more

than 60% of states have an outdegree one. So, the deletion of these states is

worth, it provides an important saving. The average analysis of the number of

states and edges is done in [5] in a Bernouilly model of probability.

When a state p is deleted, the deletion of outgoing edges is realized by adding

the label of the outgoing edge of the deleted state to the labels of its incoming

edges. For example, let r, p and q be states linked by transitions (r; b; p) and

(p; a; q). We replace the edges (r; b; p) and (p; a; q) by the edge (r; ba; q). By

recursion, we extend this method to every multi-letter transition (r; �; p).

In the example (Figure 1), one can note that, inside the word gtagtaaac,

occurrences of g are followed by ta, and those of t and gt by a. So, gta is the

representative of state 3 and it is not necessary to create states for g and (gt or

t). Then, we directly connect state I to state 3 with edges (I,gta,3) and (I,ta,3).

States 1 and 2 are so deleted.

The su�x links de�ned on states of DAWGs remain valid when we reduce

them to CDAWGs because of the next lemma.

Lemma6. If p is a state of CDAWG(x), then s

x

(p) is a state of CDAWG(x).

3.2 Size bounds

By Theorem 2 DAWG(x) is linear in jxj. As we shall see below (Section 3.3),

labels of multi-letter transitions are implemented in constant space. So, the size

of CDAWG(x) is also O(jxj). Meanwhile, as we delete many states and edges,

we review the exact bounds on the number of states and edges of CDAWG(x).

They are respectively denoted by States(x) and Edges(x).

Corollary7. Given x 2 �

�

, if jxj = 0, then States(x) = 1; if jxj = 1, then

States(x) = 2; else jxj � 2, then 2 � States(x) � jxj+ 1 and the upper bound is

reached when x is in the form a

jxj

, where a 2 �.

Corollary8. Given x 2 �

�

, if jxj = 0, Edges(x) = 0; if jxj = 1, Edges(x) = 1;

else jxj � 2, then Edges(x) � 2jxj � 2 and this upper bound is reached when x

is in the form a

jxj�1

c, where a and c are two di�erent letters of �.

3.3 Implementation and Results

Transition matrices and adjacency lists are the classical implementations of au-

tomata. Their principal di�erence lies in the implementation of transitions. The

�rst one gives a direct access to transitions, but requires O(States(x)� card(�)).

The second one stores only the exact number of transitions in memory, but needs

O(log card(�)) time to access them. When the size of the alphabet is big and

the transition matrix is sparse, adjacency lists are preferable. Otherwise, like

for genomic sequences, transition matrix is a better choice, as shown by the

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

experiments below. So, we only consider here transition matrices to implement

CDAWGs.

We now describe the exact implementation of states and edges. We do this

on a four-letter alphabet, so characters take 0:25 byte. We use integers encoded

with 4 bytes. For each state, to encode the target state of outgoing edges, tran-

sitions matrices need a vector of 4 integers. Adjacency lists need, for each edge,

2 integers, one for the target state and another one for the pointer to the next

edge.

The basic information required to construct the DAWG is composed of a

table to implement the function s

x

and one boolean value (0:125 byte) for each

edge to know if it is solid or not. For the CDAWG, in order to implement multi-

letter transitions, we need one integer for the endpos

x

value of each state, and

another integer for the label length of each edge. And that is all.

Indeed, we can �nd the label of a transition by cutting o� the length of this

transition from the endpos

x

value of its ending state. Then, we got the position of

the label in the source and its length. Keeping the source in memory is negligible

considering the global size of the automaton (0:25 byte by character). This is

quite a convenient solution also used for su�x trees. Figure 3 displays how the

0

0

I

0

0

0

I

0

0

0

I

0

0

0

I

0

aac

length

x

s

x

endpos

x

State Number

3

32

2

I

3

2

2

3

4

6

9

I

F

8

1

c

gtaaac

c

ac

a

a

ta

gta

c

gtaaac

Fig. 3. Data Structure of CDAWG(gtagtaaac)

states of CDAWG(gtagtaaac) are implemented.

Then, respectively for transitions matrices and adjacency lists, each state

requires 20:5 and 17:13 bytes for the DAWG, and 40:5 and 41:21 bytes for the

CDAWG. As a reference, su�x trees, as implemented by McCreight [13], need

28:25 and 20:25 bytes per state. Moreover, for CDAWG and su�x trees the

source has to be stored in main memory. Theoretical average numbers of states,

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

calculated by Blumer et al. ([5]), are 0:54n for CDAWG, 1:62n for DAWG, and

1; 62n for su�x trees, when n is the length of x. This gives respective sizes in

bytes per character of the source: 45:68 and 32:70 for su�x trees, 33:26 and 27:80

for DAWGs, and 22:40 and 22:78 for CDAWGs.

Considering the complete data structures required for applications, the func-

tion endpos

x

has to be added for the DAWG and the su�x tree. In addition,

the occurrence number of each factor has to be stored in each state for all the

structures. Therefore, the respective sizes in bytes per character of the source

become : 58:66 and 45:68 for su�x trees, 46:24 and 40:78 for DAWGs, and 24:26

and 24:72 for CDAWGs.

Source

x

jxj

Nb states

jxj

Nb transitions

jxj

Nb transitions

Nb states

memory

gain

dawg cdawg dawg cdawg dawg cdawg

chro II 807188 1,64 0,54 2,54 1,44 1,55 2,66 50,36%

coli 499951 1,64 0,54 2,54 1,44 1,53 2,66 51,95%

bs 1 183313 1,66 0,50 2,50 1,34 1,50 2,66 54,78%

bs 115 49951 1,64 0,54 2,54 1,44 1,55 2,66 50,16%

random 500000 1,62 0,55 2,54 1,47 1,57 2,68 49,53%

random 100000 1,62 0,55 2,55 1,47 1,57 2,68 49,35%

random 50000 1,62 0,54 2,54 1,46 1,56 2,68 49,68%

random 10000 1,62 0,54 2,54 1,46 1,56 2,68 49,47%

theor. aver. ratios 1,63 0,54 2,54 1,46 1,56 2,67 50,55%

Table 1. Statistic table with account between DAWG and CDAWG.

Moreover, Table 1 compares sizes of DAWG and CDAWGmeant for applica-

tions to DNA sequences. Sizes for random words of di�erent lengths and j�j = 4

are also given. DNA sequences are Saccharomyces cerevisiae yeast chromosome

II (chro II), a contig of Escherichia Coli DNA sequence (coli), and contigs 1

and 115 of Bacillus Subtilis DNA sequence (bs). Number of states and edges

according to the length of the source and the memory space gain are displayed.

Theoretical average ratios are given, calculated from Blumer et al. ([5]). First,

we observe there are 2=3 less states in the CDAWG, and near of half edges.

Second, the memory space saving is about 50%. Third, the number of edges by

state is going up to 2:66. With a four-letter alphabet, this is interesting because

the transition matrix becomes smaller than adjacency lists. At the same time,

we keep a direct access to transitions.

4 Constructing CDAWG from DAWG

The DAWG construction is fully exposed and demonstrated in [3] and [7]. As we

show in this section, the CDAWG is easily derived from the DAWG.

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

Indeed, we just need to apply the de�nition of the CDAWG recursively. This

is computed by the function Reduction, given below. Observe that, in this func-

tion, state(p; a] denotes the state pointed to by the transition (p; a]. The com-

putation is done with a depth-�rst traversal of the automaton, and runs in time

linear in the number of transitions of DAWG(x). Then, by theorem 2, the com-

putation also runs in time linear in the length of the text.

However, this method needs to construct the DAWG �rst, which spends

time and memory space proportional to DAWG(x), though CDAWG(x) is sig-

ni�cantly smaller. So, it is better to construct the CDAWG directly.

Reduction (state E) returns (ending state, length of redirected edge)

1. If (E not marked) Then

2. For all existing edge (E; a] Do

3. (state(E; a] , jlabel((E; a])j) Reduction(state(E; a]);

4. mark(E) TRUE;

5. If (E is of outdegree one) Then

6. Let (E; a] this edge ;

7. Return (state(E; a] , 1 + jlabel((E; a])j);

8. Else

9. Return (E,1);

5 Direct Construction of CDAWG

In this section, we give the direct construction of CDAWGs and show that the

running time is linear in the size of the input word x on a �xed alphabet.

5.1 Algorithm

Since the CDAWG of x is a minimization of its su�x tree, it is rather natural

to base the direct construction on McCreight's algorithm [13]. Meanwhile, prop-

erties of the DAWG construction are also used, especially su�x links (notion

that is di�erent from the su�x links of McCreight's algorithm), lengths, and

positions, as explained in the previous section.

First, we introduce the notions used by the algorithm, some of them are

taken from [13]. The algorithm constructs the CDAWG of the word x of length

n, noted x

0::n�1

. The automaton is de�ned by a set of states and transitions,

especially with I and F, the initial and �nal states. A partial path represents a

connected sequence of edges between two states of the automaton. A path is a

partial path that begins at I. The label of a path is the concatenation of the

labels of corresponding edges.

The locus, or exact locus, of a string is the end of the path labeled by the

string. The contracted locus of a string � is the locus of the longest pre�x of �

whose locus is de�ned.

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

Preliminary Algorithm Basically, the algorithm to build CDAWG inserts the

paths corresponding to all the su�xes of x from the longest to the shortest. We

de�ne suf

i

as the su�x x

i::n�1

of x. We denote by A

i

the automaton constructed

after the insertion of all the suf

j

for 0 � j � i.

A B

C D

I F I
1

F

I

1

2

F I

1

2

3 F

aabbabbc
a

abbabbc

bbabbc

bbabbc

a

b

a

b

b

a

b

b

c

b

b

a

b

b

c

b

a

b

b

c

a

b

b

c

a

b

b

b

b

ab
bc

c

abbabbc

abbc

c

c

Fig. 4. Construction of CDAWG(aabbabbc)

Figure 4 displays four steps of the construction of CDAWG(aabbabbc). In this

Figure (and the followings), the dashed edges represent su�x links of states,

which are used subsequently. We initialize the automaton A

"

with states I and

F. At step i (i > 0), the algorithm inserts a path corresponding to suf

i

in A

i�1

and produces A

i

. The algorithm satis�es the following invariant properties:

P1: at the beginning of step i, all su�xes suf

j

, 0 � j < i, are paths in A

i�1

.

P2: at the beginning of step i, the states ofA

i�1

are in one-to-one correspondence

with the longest common pre�xes of pairs of su�xes longer than suf

j

.

We de�ne head

i

as the longest pre�x of suf

i

which is also a pre�x of suf

j

for

some j < i. Equivalently, head

i

is the longest pre�x of suf

i

which is also a path

of A

i�1

. We de�ne tail

i

as head

�1

i

suf

i

. At step i, the preliminary algorithm has

to insert tail

i

from the locus of head

i

in A

i�1

(see Figure 5).

To do so, the contracted locus of head

i

in A

i�1

is found with the help of

function SlowFind that compares letter-to-letter the right path of A

i�1

to suf

i

.

This is similar to the corresponding McCreight's procedure, except on what

is explained below. Then, if necessary, a new state is created to split the last

encountered edge, state that is the locus of head

i

. The automaton B of Figure 4,

displays the creation of state 1 during the insertion of suf

1

=abbabbc. Note that,

if an already existing state matches the strict class of factor of head

i

, the last

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

tail

i

I F

head

i

Fig. 5. Scheme of the insertion of a suf

i

in A

i�1

.

encountered edge is split in the same way, but it is redirected to this state. Such

an example appears in the same example (case D): the insertion of suf

5

=bbc

induces the redirection of the edge (2,babbc,F) that becomes (2,b,3). Then, an

edge labeled by tail

i

is created from the locus of head

i

to F. We can write the

preliminary algorithm as follows:

Preliminary Algorithm

1. For all suf

i

(i 2[0..n-1]) Do

2. (q;) SlowFind(I);

3. If (= ") Then

4. insert (q,tail

i

,F);

5. Else

6. create v locus of head

i

splitting (q;]

and insert (v,tail

i

,F);

or redirect (q;] onto v,

the last created state;

7. End For all;

8. mark terminal states;

Note �rst that SlowFind returns the last encountered state. This keeps ac-

cessible the transition (q;] that can be split if this state is not an exact locus.

Second, as in the DAWG construction, if a non-solid edge is encountered

during SlowFind, its target state has to be duplicated in a clone and the non-

solid edge is redirected to this clone. But, if the clone has just been created at

the previous step, the edge is redirected to this state. Note that, in the two cases,

the redirected transition becomes solid.

Finally, when tail

i

= " at the end of the construction, terminal states are

marked along the su�x path of F.

From the above discussion, a proof of the invariance of properties P1 and P2

can be derived. Thus, at the end of the algorithm all subwords of x and only

these words are labels of paths in the automaton (property P1). By property P2,

states correspond to strict classes of factors (when the longest common pre�x of

a pair of su�xes is not equal to any of them) or to terminal states (when the

contrary holds). This gives a sketch of the correctness of the algorithm.

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

The running time of the preliminary algorithm is O(jxj

2

) (with an imple-

mentation by transition matrix), like is the sum of lengths of all su�xes of the

word x.

Linear Algorithm To get a linear-time algorithm, we use together properties

of DAWGs construction and of su�x trees construction. The main feature is the

notion of su�x links. They are de�ned as for DAWGs in Section 2. They are the

clue for the linear-running-time of the algorithm.

Three elements have to be pointed out about su�x links in the CDAWG.

First, we do not need to initialize su�x links. Indeed, when suf

0

is inserted,

x

0

is obviously a new letter, which directly induces s

x

(F)=I. Note that s

x

(I) is

never used, and so never de�ned. Second, traveling along the su�x path of a

state p does not necessarily end at state I. Indeed, with multi-letter transitions,

if s

x

(p)=I we have to treat the su�x a

�1

� (a 2 �) where � is the representative

of p. And third, su�x links induce the following invariant property satis�ed at

step i:

P3: at the beginning of step i, the su�x links are de�ned for each state of A

i�1

according to De�nition 4.

The next remark allows redirections without having to search with SlowFind

for existing states belonging to a same class of factors.

Remark. Let �� have locus p and assume that q = s

x

(p) is the locus of �. Then,

p is the locus of su�xes of �� whose lengths are greater than j�j.

The algorithm has to deal with su�x links each time a state is created.

This happens when a state is duplicated, and when a state is created after the

execution of SlowFind.

In the duplication, su�x links are updated as follows. Let w be the clone

of q. In regard to strict classes of factors and De�nition 4, the class of w is

inserted between the ones of q and s

x

(q). So, we update su�x links by setting

s

x

(w)=s

x

(q) and s

x

(q)=w.

Moreover, the duplication has the same properties as in the DAWG construc-

tion. Let (p; ; q) be the transition redirected during the duplication of q. We

can redirect all non-solid edges that end the partial path and that start from

a state of the su�x path of p. This is done until the �rst edge that is solid. We

are helped in this operation by the function FastFind, similar to the one used

in McCreight's algorithm [13], that goes through transitions just comparing the

�rst letters of their labels. This function returns the last encountered state and

edge. Note that it is not necessary to �nd each time the partial path from a

su�x of p, we just need to take the su�x link of the last encountered state and

the label of the previous redirected transition.

Let # be the representative of a state of the su�x path of p. Observe that

the corresponding redirection is equivalent to insert suf

i+j�j�j#j

. Indeed, all op-

erations done after this redirection will be the same as for the insertion of suf

i

,

since they go through the same path.

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

I

q

v

s r

�

�

�

�

s

x

Fig. 6. Scheme of the search using su�x links

After the execution of SlowFind, if state v is created, we have to compute its

su�x link. Let be the label of the transition starting at q and ending at v. To

compute the su�x link, the algorithm goes through the path having label from

the su�x link of q, s = s

x

(q). The operation is repeated if necessary. Figure 6

displays a scheme of this search. The thick dashed edges represent paths in the

automaton, and the thin dashed edge represents the su�x link of q. This search

will allow to insert, as for the duplication, the su�xes suf

j

, for i < j < i+jhead

i

j.

To travel along the path, we use again the function FastFind. Let r and (r;]

be the last state and transition encountered by FastFind. If r is the exact locus

of , it is the wanted state, and we set then s

x

(v) = r. Else, if (r;] is a solid

edge, then we have to create a new node w. The edge (r;] is split, it becomes

(r; ; w), and we insert the transition (w,tail

i

,F). Else, (r;] is non-solid. Then,

it is split and becomes (r; ; v). In the two last cases, since s

x

(v) is not found, we

run FastFind again with s

x

(r) and , and this goes on until s

x

(v) is eventually

found, that is, when = ".

The discussion shows how su�x links are updated to insure that property

P3 is satis�ed. The operations do not inuence the correctness of the algorithm,

sketched in the last section, but yield the following linear-time algorithm. Its

time complexity is discussed in the next section.

Linear Algorithm

1. p I; i 0;

2. While not end of x Do

3. (q;) SlowFind(p);

4. If (= ") Then

5. insert (q,tail

i

,F);

6. s

x

(F) q;

7. If (q 6= I) Then p s

x

(q) Else p I;

8. Else

9. create v locus of head

i

splitting (q;];

10. insert (v,tail

i

,F);

11. s

x

(F) v;

12. �nd r = s

x

(v) with FastFind;

13. p r;

14. update i;

15. End While;

16. mark terminal states;

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

5.2 Complexity

Theorem9. The algorithm that builds the CDAWG of a word x of �

�

can

be implemented in time O(jxj) and in space O(jxj � card(�)) with a transition

matrix, or in time O(jxj� log card(�)) and in space O(jxj) with adjacency lists.

I

I

v

x

��

 � tail

i

suf

i

head

i

i j k

q

s r

Fig. 7. Positions of labels when suf

i

is inserted

Sketch of the proof

It can be proved that each step of the algorithm leads to increase strictly variables

j or k in the generic situation displayed in Figure 7. These variables respectively

represent the index of the current su�x being inserted, and a pointer on the

text. These variables never decrease. Therefore, the total running time of the

algorithm is linear in the length of x.

6 Conclusion

We have considered the Compact Direct Acyclic Word Graph, which is an e�-

cient compact data structure to represent all su�xes of a word. There are many

data structures representing this set. But, this one allows an interesting space

gain compared to the well-known DAWG, which is a reference. Indeed, on the

one hand, the upper bounds are of jxj+ 1 states and 2jxj � 2 transitions. This

saves jxj states and jxj transitions of the DAWG, which leads to faster utilisation.

On the other hand, experiments on genomic DNA sequences and random strings

display a memory space gain of 50% according to the DAWG. Moreover, when

the size of the alphabet is small, transition matrices do not take more space than

adjacency lists, keeping direct access to transitions. Thus, we can construct the

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

data structure of twice larger strings, keeping them in main memory, which is

actually important to get e�cient treatments.

This work shows that the CDAWG can be constructed directly. The algorithm

is linear in the length of the text. Of course, it is easier to compute, by reduction,

the CDAWG from the DAWG. On the contrary, our algorithm saves time and

space simultaneously.

References

1. A. Anderson and S. Nilsson. E�cient implementation of su�x trees. Software,

Practice and Experience, 25(2):129{141, Feb. 1995.

2. A. Apostolico. The myriad virtues of subword trees. In A. Apostolico & Z. Galil,

editor, Combinatorial Algorithms on Words., pages 85{95. Springer-Verlag, 1985.

3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.

The smallest automaton recognizing the subwords of a text. Theoret. Comput.

Sci., 40:31{55, 1985.

4. A. Blumer, J. Blumer, D. Haussler, and R. McConnell. Complete inverted �les

for e�cient text retrieval and analysis. Journal of the Association for Computing

Machinery, 34(3):578{595, July 1987.

5. A. Blumer, D. Haussler, and A. Ehrenfeucht. Average sizes of su�x trees and

dawgs. Discrete Applied Mathematics, 24:37{45, 1989.

6. B. Clift, D. Haussler, R. McDonnell, T.D. Schneider, and G.D. Stormo. Sequence

landscapes. Nucleic Acids Research, 4(1):141{158, 1986.

7. M. Crochemore. Transducers and repetitions. Theor. Comp. Sci., 45:63{86, 1986.

8. M. Crochemore and W. Rytter. Text Algorithms, chapter 5-6, pages 73{130. Ox-

ford University Press, New York, 1994.

9. R. W. Irving. Su�x binary search trees. Technical report TR-1995-7, Computing

Science Department, University of Glasgow, April 1995.

10. J. Karkkainen. Su�x cactus : a cross between su�x tree and su�x array. CPM,

937:191{204, July 1995.

11. C. Lefevre and J-E. Ikeda. The position end-set tree: A small automaton for word

recognition in biological sequences. CABIOS, 9(3):343{348, 1993.

12. U. Manber and G. Myers. Su�x arrays: A new method for on-line string searches.

SIAM J. Comput., 22(5):935{948, Oct. 1993.

13. E. McCreight. A space-economical su�x tree construction algorithm. Journal of

the ACM, 23(2):262{272, Apr. 1976.

14. E. Ukkonen. On-line construction of su�x trees. Algorithmica, 14:249{260, 1995.

This article was processed using the L

A

T

E

X macro package with LLNCS style

ha
l-0

06
20

00
6,

 v
er

si
on

 1
 -

13
 F

eb
 2

01
3

