inria-00000629, version 1
Evaluation properties of symmetric polynomials
Pierrick Gaudry 1Eric Schost 1Nicolas M. Thiéry 2, 3
International Journal of Algebra and Computation 16, 3 (2006) 505 - 523
Résumé : By the fundamental theorem of symmetric polynomials, if $P \in \Q[X_1,\dots,X_n]$ is symmetric, then it can be written $P=Q(\sigma_1,\dots,\sigma_n)$, where $\sigma_1,\dots,\sigma_n$ are the elementary symmetric polynomials in $n$ variables, and $Q$ is in $\Q[S_1,\dots,S_n]$. We investigate the complexity properties of this construction in the straight-line program model, showing that the complexity of evaluation of $Q$ depends only on $n$ and on the complexity of evaluation of $P$. Similar results are given for the decomposition of a general polynomial in a basis of $\Q[X_1,\dots,X_n]$ seen as a module over the ring of symmetric polynomials, as well as for the computation of the Reynolds operator.
- 1 : Laboratoire d'informatique de l'école polytechnique (LIX)
- CNRS : UMR7161 – Polytechnique - X
- 2 : Laboratoire de Mathématiques d'Orsay (LM-Orsay)
- CNRS : UMR8628 – Université Paris XI - Paris Sud
- 3 : Laboratoire de Probabilités, Combinatoire et Statistique (LAPCS)
- Université Claude Bernard - Lyon I
- Domaine : Informatique/Cryptographie et sécurité
- inria-00000629, version 1
- http://hal.inria.fr/inria-00000629
- oai:hal.inria.fr:inria-00000629
- Contributeur : Pierrick Gaudry
- Soumis le : Jeudi 10 Novembre 2005, 11:32:59
- Dernière modification le : Vendredi 1 Septembre 2006, 14:25:29