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ON THE JOINT DISTRIBUTION OF q-ADDITIVE

FUNCTIONS ON POLYNOMIAL SEQUENCES

Wolfgang Steiner

April 30, 2002

Abstract. The joint distribution of sequences (fℓ(Pℓ(n)))n∈N, ℓ = 1, 2, . . . , d and
(fℓ(Pℓ(p)))p∈P respectively, where fℓ are qℓ-additive functions and Pℓ polynomials
with integer coefficients, is considered. A central limit theorem is proved for a larger
class of qℓ and Pℓ than by Drmota [3]. In particular, the joint limit distribution
of the sum-of-digits functions sq1(n), sq2(n) is obtained for arbitrary integers q1, q2.
For strongly q-additive functions with respect to the same q, a central limit theorem
is proved for arbitrary polynomials Pℓ with the help of a joint representation of the
digits of Pℓ(n) by a Markov chain.

1. Introduction

For a given integer q > 1, every non-negative integer n has a unique q-ary
expansion

n =
∑

k≥0

ǫq,k(n)qk

with ǫq,k(n) ∈ {0, 1, . . . , q− 1} (where the index q will often be omitted). Then the
sum-of-digits function is given by

sq(n) =
∑

k≥0

ǫq,k(n).

This is a special case of a q-additive function, i.e. a real-valued function f defined
on the non-negative integers which satisfies f(0) = 0 and

f(n) =
∑

k≥0

f(ǫq,k(n)qk).

Such a function is said to be strongly q-additive, if

f(n) =
∑

k≥0

f(ǫq,k(n)).

Bassily and Kátai [1] proved the following central limit theorem.
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2 WOLFGANG STEINER

Theorem 1 (Bassily and Kátai [1]). Let f be a q-additive function such that

f(bqk) = O (1) as k → ∞ for all b ∈ {0, 1, . . . , q − 1}. Assume D(N)
(log N)η → ∞ as

N → ∞ for some η > 0 and let P (n) be a polynomial with integer coefficients,
degree r and positive leading term. Set

µk =
1

q

q−1
∑

b=0

f(bqk), σ2
k =

1

q

q−1
∑

b=0

f(bqk)2 − µ2
k

and

M(N) =

[logq N ]
∑

k=0

µk, D(N)2 =

[logq N ]
∑

k=0

σ2
k.

Then, as N → ∞,

1

N
#

{

n < N

∣

∣

∣

∣

f(P (n)) −M(N r)

D(N r)
< x

}

→ Φ(x)

and
1

π(N)
#

{

p ∈ P, p < N

∣

∣

∣

∣

f(P (p)) −M(N r)

D(N r)
< x

}

→ Φ(x),

where Φ(x) denotes the distribution function of the normal law.

This theorem was only stated for η = 1
3 . However, a short inspection of the

proof shows that η > 0 is sufficient.
Drmota [3] generalised this theorem for certain joint distributions. From now

on, denote by µℓ,k, σℓ,k,Mℓ, Dℓ the µk, σk,M,D of Theorem 1 with respect to fℓ.

Theorem 2 (Drmota [3]). Let fℓ, 1 ≤ ℓ ≤ d, be qℓ-additive functions such that

fℓ(bq
k
ℓ ) = O (1) as k → ∞ for all b ∈ {0, 1, . . . , qℓ − 1}. Assume that Dℓ(N)

(log N)η → ∞,

as N → ∞, for some η > 0 and let Pℓ(x) be polynomials with integer coefficients
of different degrees rℓ and positive leading terms, 1 ≤ ℓ ≤ d. Then, as N → ∞,

1

N
#

{

n < N

∣

∣

∣

∣

fℓ(Pℓ(n)) −Mℓ(N
rℓ)

Dℓ(N rℓ)
< xℓ, 1 ≤ ℓ ≤ d

}

→ Φ(x1)Φ(x2) · · ·Φ(xd)

and

1

π(N)
#

{

p < N

∣

∣

∣

∣

fℓ(Pℓ(p)) −Mℓ(N
rℓ)

Dqℓ
(N rℓ)

< xℓ, 1 ≤ ℓ ≤ d

}

→ Φ(x1)Φ(x2) · · ·Φ(xd).

Note that this theorem was stated only for coprime qℓ, but this assumption is
not used in the proof and therefore not necessary.

The problem is the case of polynomials of the same degree. For d = 2, we show
the following theorem.

Theorem 3. Let q1, q2 > 1 be multiplicatively independent integers and let fℓ be
qℓ-additive functions such that fℓ(bq

k
ℓ ) = O (1) as k → ∞ for all b ∈ {0, 1, . . . , qℓ − 1},

ℓ = 1, 2. Assume that Dℓ(N)
(log N)η → ∞ as N → ∞, for some η > 0 and let Pℓ(n) be
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polynomials with integer coefficients of degree r and positive leading terms, ℓ = 1, 2.
Then, as N → ∞,

1

N
#

{

n < N

∣

∣

∣

∣

fℓ(Pℓ(n)) −Mℓ(N
r)

Dℓ(N r)
< xℓ, ℓ = 1, 2

}

→ Φ(x1)Φ(x2)

and

1

π(N)
#

{

p < N

∣

∣

∣

∣

fℓ(Pℓ(p)) −Mℓ(N
r)

Dℓ(N r)
< xℓ, ℓ = 1, 2

}

→ Φ(x1)Φ(x2).

The first convergence was shown by Drmota [3] for linear polynomials and co-
prime integers q1, q2. In [4], Drmota and the author stated this theorem, but still
only for coprime integers. We will prove the case of multiplicatively independent
integers in Section 3.

Furthermore, we solve the problem of equal degrees of the polynomials for
strongly q-additive functions with respect to the same q in the following section.
Note that this covers the case of multiplicatively dependent q1, q2 since q1- and
q2-additive functions are q-additive, if qs1

1 = qs2
2 = q. Then the distributions clearly

do not satisfy the independence relations of Theorems 2 and 3.
The main part of the proof of all theorems is a proposition similar to the following

one (which proves Theorem 2).

Proposition 1 (Drmota [3]). Let Pℓ(n), 1 ≤ ℓ ≤ d, be polynomials of different
degrees rℓ with integer coefficients and positive leading terms. Let λ > 0 be an
arbitrary constant and hℓ, 1 ≤ ℓ ≤ d, non-negative integers. Then, as N → ∞,

1

N
#
{

n < N
∣

∣

∣ǫqℓ,k
(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , 1 ≤ j ≤ hℓ, 1 ≤ ℓ ≤ d

}

=
1

qh1
1 qh2

2 · · · qhd

d

+ O
(

(logN)−λ
)

and

1

π(N)
#
{

p < N
∣

∣

∣ǫqℓ,k
(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , 1 ≤ j ≤ hℓ, 1 ≤ ℓ ≤ d

}

=
1

qh1
1 qh2

2 · · · qhd

d

+ O
(

(logN)−λ
)

uniformly for integers

(logN rℓ)η ≤ k
(ℓ)
1 < k

(ℓ)
2 < · · · < k

(ℓ)
hℓ

≤ logqℓ
N rℓ − (logN rℓ)η (1 ≤ ℓ ≤ d)

(with some η > 0) and b
(ℓ)
j ∈ {0, 1, . . . , qℓ − 1}.

For a list of references of other results for q-additive functions, we refer to Dr-
mota [3].
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2. Strongly q-additive functions with respect to the same q

2.1. Results.

Theorem 4. Let fℓ, 1 ≤ ℓ ≤ d, be strongly q-additive functions with σℓ = σℓ,k > 0

and Pℓ(n) = g
(ℓ)
rℓ n

rℓ + · · · + g
(ℓ)
1 n + g

(ℓ)
0 polynomials with integer coefficients and

positive leading terms. Then, as N → ∞,

1

N
#

{

n < N

∣

∣

∣

∣

fℓ(Pℓ(n)) −Mℓ(N
rℓ)

Dℓ(N rℓ)
< xℓ, ℓ = 1, . . . , d

}

→ ΦV (x1, . . . , xd)

and

1

π(N)
#

{

p < N

∣

∣

∣

∣

fℓ(Pℓ(p)) −Mℓ(N
rℓ)

Dℓ(N rℓ)
< xℓ, ℓ = 1, 2, . . . , d

}

→ ΦV (x1, . . . , xd)

where ΦV (x1, . . . , xd) denotes the distribution function of the d-dimensional normal
law with covariance matrix V = (vi,j)1≤i,j≤d given by

vi,j =































1 if i = j

Ci,j

(

g(i)
ri

(g
(i)
ri

,g
(j)
rj

)
,

g(j)
rj

(g
(i)
ri

,g
(j)
rj

)

)

if g
(j)
rj Pi(n) ≡ g

(i)
ri Pj(n)

ri−max
{

s
∣

∣

∣
g(i)

ri
g(j)

s 6=g(j)
rj

g(i)
s

}

ri
Ci,j

(

g(i)
ri

(g
(i)
ri

,g
(j)
rj

)
,

g(j)
rj

(g
(i)
ri

,g
(j)
rj

)

)

if ri = rj

0 else,

where

Ci,j(gi, gj) =
1

σiσj

Rj−1
∑

l=0

q−1
∑

bi=1

q−1
∑

bj=1

(

πbi,bj ,giql,gj
− 1

q2

)

fi(bi)fj(bj)

+
1

σiσj

Ri−1
∑

l=1

q−1
∑

bi=1

q−1
∑

bj=1

(

πbi,bj ,gi,gjql − 1

q2

)

fi(bi)fj(bj)

with Rℓ such that q| qRℓ

(qRℓ ,g
(ℓ)
rℓ

)
and

πbi,bj ,giql,gj
= πbi,bj ,g,g′ =

1

q2
−

(

(bi + 1)g′ − big′
)(

(bj + 1)g − bjg
)

gg′q2

+
min

(

big′, bjg
)

+ min
(

(bi + 1)g′, (bj + 1)g
)

− min
(

(bi + 1)g′, bjg
)

− min
(

big′, bjg
)

gg′q

where g = giq
l

(ql,gj)
, g′ =

gj

(ql,gj)
and y denotes the representative y′ of y′ ≡ y (q) with

0 ≤ y′ < q. (πbi,bj ,gi,gjql is given symmetrically.)

Remarks. If V is positive definite, we have, with t = (t1, . . . , td),

ΦV (x1, . . . , xd) =
1

(2π)d/2
√

detV

∫ xd

−∞

· · ·
∫ x1

−∞

e−
1
2 tV −1

t
t

dt1 . . . dtd.
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If g
(ℓ)
rℓ is coprime to q, then we have Rℓ = 1.

l ≥ Rj implies πbi,bj ,giql,gj
= 1

q2 for all bi, bj .

The πbi,bj,giql,gj
are the joint probabilities of digits k + l and k of gin and gjn

(which do not depend on k):

πbi,bj ,giql,gj
= Pr[ǫk(giq

ln) = bi, ǫk(gj) = bj ] = Pr[ǫk+l(gin) = bi, ǫk(gj) = bj ].

Note that we need Ci,j(gi, gj) only for coprime gi, gj .
The constant term of the polynomials plays no role.

Corollary 1. Let Pℓ(n) = g
(ℓ)
rℓ n

rℓ + · · · + g
(ℓ)
1 n + g

(ℓ)
0 be polynomials with integer

coefficients and positive leading terms. Then, as N → ∞,

1

N
#







n < N

∣

∣

∣

∣

∣

∣

sq(Pℓ(n)) − q−1
2 logq N

rℓ

√

q2−1
12 logq N

rℓ

< xℓ, ℓ = 1, . . . , d







→ 1

(2π)d/2
√

detV

∫ xd

−∞

· · ·
∫ x1

−∞

e−
1
2 tV −1

t
t

dt1 . . . dtd

with the positive definite matrix V = (vi,j)1≤i,j≤d given by

vi,j =































1 if i = j

Ci,j

(

g(i)
ri

(g
(i)
ri

,g
(j)
rj

)
,

g(j)
rj

(g
(i)
ri

,g
(j)
rj

)

)

if g
(j)
rj Pi(n) ≡ g

(i)
ri Pj(n)

ri−max
{

s
∣

∣

∣
g(i)

ri
g(j)

s 6=g(j)
rj

g(i)
s

}

ri
Ci,j

(

g(i)
ri

(g
(i)
ri

,g
(j)
rj

)
,

g(j)
rj

(g
(i)
ri

,g
(j)
rj

)

)

if ri = rj

0 else,

and

Ci,j(gi, gj) =
q2 − (q, gi)

2 − (q, gj)
2 + 1

gigj(q2 − 1)

+
1

gigj(q2 − 1)





Rj−1
∑

l=1

q2 −
(

q, giq
l

(ql,gj)

)

ql
+

Ri−1
∑

l=1

q2 −
(

q,
gjql

(gi,ql)

)

ql





Remark. For monomials Pℓ(n) = gℓn
r with (gℓ, q) = 1 we just have

vi,j =
(gi, gj)

2

gigj
.

For q = 2 and r = 1, this was proved by W.M. Schmidt [6].
Furthermore, we can calculate the joint distribution of the sum-of-digits functions

for multiplicatively dependent q1, q2.

Corollary 2. For q1 = q̃s1 , q2 = q̃s2 with positive integers q̃, s1, s2 and (s1, s2) = 1,
we have, as N → ∞,

1

N
#







n < N

∣

∣

∣

∣

∣

∣

sq1(n) − q1−1
2 logq1

N
√

q2
1−1
12 logq1

N
< x1,

sq2(n) − q2−1
2 logq2

N
√

q2
2−1
12 logq2

N
< x2







→ 1

2π
√

1 − C2

∫ x2

−∞

∫ x1

−∞

e
− 1

2(1−C2)
(t21+t22−2Ct1t2)

dt1dt2
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with

C =
q̃ + 1

q̃ − 1

√

(q1 − 1)(q2 − 1)

s1s2(q1 + 1)(q2 + 1)
.

For general strongly qℓ-additive functions, similar statements can be derived
easily. The case of multiplicatively independent q1, q2 is treated by Theorem 3.

2.2. A Markov chain and calculation of the covariance.
Define the polynomials

P
(s)
ℓ (n) = g(ℓ)

rℓ
nrℓ + · · · + g(ℓ)

s ns for 1 ≤ s ≤ r = max
1≤ℓ≤d

rℓ.

and fix s in this subsection.
Furthermore, define vectors

w
(s)
k (n) = (wk,s, . . . , wk,r) =

({

ns

qk+1

}

,

{

ns+1

qk+1

}

, . . . ,

{

nr

qk+1

})

for 0 ≤ n < N , where {x} denotes the fractional part of x and see, by Proposition 1,
that they asymptotically form a net to the base q if k ∈

[

(logN)η, logq N
s − (logN)η

]

(but not for k > logq N
s). Proposition 1 gives rather bad error terms if we want to

calculate the number of w
(s)
k (n) in an arbitrary set of T

r−s+1. Nevertheless, this
suggests that they are uniformly distributed and we use the Lebesgue measure as
probability measure on T

r−s+1.

We have ǫk(P
(s)
ℓ (n)) = b if and only if

{

g(ℓ)
rℓ
wk,rℓ

+ · · · + g(ℓ)
s wk,s

}

∈
[

b

q
,
b+ 1

q

)

.

This means that, for each digit b, {w(s)
k (n) | ǫk(P

(s)
ℓ (n)) = b} (as a set of T

r−s+1) is

contained in the stripe S
(s)
b,ℓ between the hyperplanes g

(ℓ)
rℓ xrℓ

+ · · · + g
(ℓ)
s xs = b

q (in-

cluded) and g
(ℓ)
rℓ xrℓ

+· · ·+g(ℓ)
s xs = b+1

q (excluded). If P
(s)
ℓ (n) ≡ 0, set S

(s)
0,ℓ = T

r−s+1

and S
(s)
b,ℓ = ∅ for b 6= 0.

Thus, each set {w(s)
k (n) | ǫk(P

(s)
1 (n)) = b1, . . . , ǫk(P

(s)
d (n)) = bd} is contained

in S
(s)
b1,1 ∩ · · · ∩ S(s)

bd,d and each of these intersections consists of a finite number of

convex sets, the boundaries of which are the above hyperplanes. Let (W
(s)
j )1≤j≤κs

be the partition of T
r induced by these sets (or equivalently by the hyperplanes).

Then fℓ|W (s)
j

is constant for all ℓ, j.

Furthermore, we have ǫk−j(P
(s)
ℓ (n)) = b if and only if T j(w

(s)
k (n)) ∈ S

(s)
b,ℓ with

the map T : T
r → T

r, T (wk,s, . . . , wk,r) = (qwk,s, . . . , qwk,r). Hence
{

n
∣

∣

∣ǫ0(P
(s)
ℓ (n)) = b

(ℓ)
0 , . . . , ǫk(P

(s)
ℓ (n)) = b

(ℓ)
k

}

=

{

n

∣

∣

∣

∣

w
(s)
k (n) ∈ T−kS

(s)

b
(ℓ)
0 ,ℓ

, . . . ,w
(s)
k (n) ∈ S

(s)

b
(ℓ)
k

,ℓ

}

and we define a sequence of random variables (Y
(s)
k )k≥0 on {W (s)

1 ,W
(s)
2 , . . . ,W

(s)
κs }

by

Pr[Y
(s)
0 = W

(s)
j0
, . . . , Y

(s)
k = W

(s)
jk

] = λr−s+1(T
−kW

(s)
j0

∩ . . . T−1W
(s)
jk−1

∩W (s)
jk

)

for 1 ≤ ji ≤ κs, 0 ≤ i ≤ k. (λn denotes the n-dimensional Lebesgue measure.)
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Lemma 1.
(

Y
(s)
k

)

k≥0
is a Markov chain.

Proof. Let U be the subspace of R
r−s+1 spanned by the vectors (g

(ℓ)
s , . . . , g

(ℓ)
r ),

1 ≤ ℓ ≤ d. If U has (full) rank r − s + 1, then T is injective on each W
(s)
j ,

1 ≤ j ≤ κs. Otherwise, W
(s)
j contains with every point x all points x + U⊥ and

T is qδ-to-one with δ = r − s+ 1 − rank(U). Furthermore, TW
(s)
j is the (disjoint)

union of sets W
(s)
i , since the image of the hyperplane g

(ℓ)
rℓ xrℓ

+ · · · + g
(ℓ)
s xs = b

q is

the hyperplane g
(ℓ)
rℓ xrℓ

+ · · · + g
(ℓ)
s xs = 0. Hence we have

Pr[Y
(s)
0 = W

(s)
j0
, . . . , Y

(s)
k+1 = W

(s)
jk+1

] = λr−s+1(T
−(k+1)W

(s)
j0

∩ · · · ∩W (s)
jk+1

)

=
1

qδ
λr−s+1(T

−kW
(s)
j0

∩ · · · ∩W (s)
jk

∩ TW (s)
jk+1

)

=

{

1
qδ λr−s+1(T

−kW
(s)
j0

∩ · · · ∩W (s)
jk

) if W
(s)
jk

⊆ TW
(s)
jk+1

0 else.

Thus

Pr[Y
(s)
k+1 = W

(s)
jk+1

|Y (s)
0 = W

(s)
j0
, . . . , Y

(s)
k = W

(s)
jk

]

=

{

1
qr if W

(s)
jk

⊆ TW
(s)
jk+1

0 else

}

= Pr[Y
(s)
k+1 = W

(s)
jk+1

|Y (s)
k = W

(s)
jk

],

i.e. the Markov chain property is fulfilled.

As already noted, each fℓ is constant on eachW
(s)
j because ofW

(s)
j ⊆ S

(s)
b1,1 ∩ · · · ∩ Sbd,d

for some bi. Therefore we define the d-dimensional function f on (W
(s)
j )1≤j≤κs by

f(W
(s)
j ) =

(

f1(W
(s)
j ), . . . , fd(W

(s)
j )

)

= (f1(b1), . . . , fd(bd)).

Before stating a central limit theorem for f(Y
(s)
k ), we study the covariance

Cov(fi(Y
(s)
ki

), fj(Y
(s)
kj

)). To this effect, the following lemma, which will be proved

together with Proposition 2, will be very useful. Note that Y
(s)
k ⊆ S

(s)
b,ℓ is equivalent

to fℓ(Y
(s)
k ) = b.

Lemma 2.

Pr[Y
(s)
ki

⊆ S
(s)
bi,i
, Y

(s)
kj

⊆ S
(s)
bj ,j ] =

∑

mi,mj :
miP

(s)
i

(n)

qki
+

mjP
(s)
j

(n)

q
kj

≡0

cmi,bi,qcmj ,bj ,q, (1)

where cm,b,q are the Fourier coefficients of 1[b/q,(b+1)/q)

c0,b,q =
1

q
, cm,b,q =

e
(

−mb
q

)

− e
(

−m(b+1)
q

)

2πim
for m 6= 0.

By Lemma 2, we have

Pr[Y
(s)
ki

⊆ S
(s)
bi,i
, Y

(s)
kj

⊆ S
(s)
bj ,j ] = c0,bi,qc0,bj ,q = Pr[Y

(s)
ki

⊆ S
(s)
bi,i

]Pr[Y
(s)
kj

⊆ S
(s)
bj ,j ]
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if the polynomials do not have the same degree or are not proportional. Then

Cov(fi(Y
(s)
ki

), fj(Y
(s)
kj

)) = 0.

Now assume ri = rj and that the polynomials are proportional. Furthermore,

let w.l.o.g. ki ≥ kj . Then the mi in (1) must satisfy mig
(i)
r ≡ 0 (qki−kj ), i.e.

mi ≡ 0
(

qki−kj

(qki−kj ,g
(i)
r )

)

. If ki − kj ≥ Ri, this implies mi ≡ 0 (q). Hence we have

cmi,bi,qcmj ,bj ,q = 0 for (mi,mj) 6= (0, 0) and

Cov
(

fi(Y
(s)
ki

), fj(Y
(s)
kj

)
)

= 0 if ki − kj ≥ Ri or kj − ki ≥ Rj .

(For kj ≥ ki, we get the result by the symmetry of the covariance.)

Since the Markov chain (Y
(s)
k )k≥0 is homogeneous, we obtain

Cov





B(N)
∑

k=A(N)

fi(Y
(s)
k ),

B(N)
∑

k=A(N)

fj(Y
(s)
k )





=

B(N)
∑

k=A(N)

min(Rj−1,B(N)−k)
∑

l=max(−Ri+1,A(N)−k)

Cov
(

fi(Y
(s)
k ), fj(Y

(s)
k+l)

)

= (B(N) −A(N))

Rj−1
∑

l=−Ri+1

Cov
(

fi(Y
(s)
k ), fj(Y

(s)
k+l)

)

+ O (1)

for A(N) = [(logN)η], B(N) = [logq N ] − [(logN)η].
Now we can state the central limit theorem.

Proposition 2. The sums of the random variables f(Y
(s)
k ) satisfy a multidimen-

sional central limit theorem with convergence of moments. More precisely, we have,
for all a = (a1, . . . , ad) ∈ R

d, as N → ∞,
∑B(N)

k=A(N)

∑d
ℓ=1

aℓ

σℓ
fℓ(Y

(s)
k ) −∑d

ℓ=1
aℓ

σℓ
M ℓ(N)

√

B(N) −A(N)
→ N

(

0,aV (s)at
)

, (2)

where the covariance matrix V (s) =
(

v
(s)
i,j

)

1≤i,j≤d
is given by

v
(s)
i,j =

1

σiσj

Rj−1
∑

l=−Ri+1

Cov
(

fi(Y
(s)
k ), fj(Y

(s)
k+l)

)

and for all integers hℓ ≥ 0 we have

E

d
∏

ℓ=1





∑B(N)
k=A(N) fℓ(Y

(s)
k ) −M ℓ(N)

Dℓ(N)





hℓ

→
∫

xh1
1 · · ·xhd

d dΦV (s)(x1, . . . , xd). (3)

Proof. We have

Var

d
∑

ℓ=1

B(N)
∑

k=A(N)

aℓ

σℓ
fℓ(Y

(s)
k ) =

d
∑

i=1

d
∑

j=1

Cov





B(N)
∑

k=A(N)

ai

σi
fi(Y

(s)
k ),

B(N)
∑

k=A(N)

aj

σj
fj(Y

(s)
k )





= (B(N) −A(N))
d
∑

i=1

d
∑

j=1

aiaj

σiσj

Rj−1
∑

l=−Ri+1

Cov
(

fi(Y
(s)
k ), fj(Y

(s)
k+l)

)

+ O (1)

= (B(N) −A(N))aV (s)at + O (1) .



JOINT DISTRIBUTION OF q-ADDITIVE FUNCTIONS 9

If aV (s)at = 0, then
∑d

ℓ=1

∑B(N)
k=A(N) aℓfℓ(Y

(s)
k ) = O (1) and both sides in (2) are

zero.
Otherwise, use the central limit theorem for stationary and homogeneous Markov

chains or ϕ-mixing sequences (see e.g. Billingsley [2], p. 364) which holds if all

states are recurrent and aperiodic. For Y
(s)
k , this condition is satisfied, since we

clearly have an integer m such that TmW
(s)
j = T

r−s+1 for all W
(s)
j and hence

Pr[Y
(s)
k+l = W

(s)
jk+l

|Y (s)
k = W

(s)
jk

] > 0 for all l ≥ m. This implies the ϕ-mixing prop-

erty for Xk =
∑d

ℓ=1 aℓfℓ(Y
(s)
k ) and the central limit theorem holds for Xk, too.

(Note that Xk need not be a Markov chain, if
∑d

ℓ=1 aℓfℓ is not injective.)
For the convergence of moments, it suffices to show that they exist. The onedi-

mensional moments are

E





∑B(N)
k=A(N) fℓ(Y

(s)
k ) −M ℓ(N)

Dℓ(N)





hℓ

∼ 1

N

∑

n<N





∑B(N)
k=A(N) fℓ(ǫk(n)) −M ℓ(N)

Dℓ(N)





hℓ

and converge therefore (cf. [1]). The multidimensional moments converge since

E
∣

∣

∣Xr
N X̃

s
N

∣

∣

∣ ≤
(

EX2r
N

)
1
2

(

E X̃2s
N

)
1
2

holds for all random variables XN , X̃N . Thus

the proposition is proved.

For the calculation of Cov(fi(Y
(s)
k ), fj(Y

(s)
j )), it suffices to consider Yk = Y

(1)
k

and linear polynomials because of Lemma 2 and the succeeding remarks. For the
sum-of-digits function, we even get explicit expressions.

Lemma 3. Let P1(n) = g1n, P2(n) = g2n and f1(n) = f2(n) = sq(n). Then the
covariance of f1(Yk) and f2(Yk) is given by

Cov(f1(Yk), f2(Yk)) =
(q2 − d2

1 − d2
2 + 1)(g1, g2)

2

12g1g2
, (4)

where d1 =
(

q, g1

(g1,g2)

)

and d2 =
(

q, g2

(g1,g2)

)

.

Proof. The covariance is given by

Cov(f1(Yk), f2(Yk)) (5)

=

q−1
∑

b1=0

q−1
∑

b2=0

Pr[ǫk(g1n) = b1, ǫk(g2n) = b2]b1b2 − E f1(Yk)E f2(Yk).

Because of Lemma 2, the digit probability does not change if we replace g1, g2
by g1

(g1,g2) ,
g2

(g1,g2) . Therefore assume (g1, g2) = 1. In order to get integers, set

ab1,b2 = qg1g2Pr[ǫk(g1n) = b1, ǫk(g2n) = b2]

= #

{

x ∈ {0, 1, . . . , qg1g2 − 1}
∣

∣

∣

∣

[

x

g2

]

≡ b1 (q),

[

x

g1

]

≡ b2 (q)

}

.

We study Ai,j =
∑q−1

b1=q−i

∑q−1
b2=q−j ab1,b2 because of

q−1
∑

b1=0

q−1
∑

b2=0

ab1,b2b1b2 =

q−1
∑

i=1

q−1
∑

b1=q−i

q−1
∑

j=1

q−1
∑

b2=q−j

ab1,b2 .
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For every x in the set corresponding to ab1,b2 , (qg1g2 − 1 − x) is in the set
corresponding to aq−1−b1,q−1−b2 . Therefore we have ab1,b2 = aq−1−b1,q−1−b2 and

Ai,j =

i−1
∑

b1=0

j−1
∑

b2=0

ab1,b2

= #{x ∈ {0, . . . , qg1g2 − 1} | x ≡ 0, . . . , ig2 − 1(qg2), x ≡ 0, . . . , jg1 − 1(qg1)}

Since (qg1, qg2) = q, the system of congruences x ≡ x1 (qg2) and x ≡ x2 (qg1)
has no solution x if x1 6≡ x2 (q) and a unique solution modulo qg1g2 for x1 ≡ x2 (q).

If we denote the representative y′ of y′ ≡ y (q) with 0 ≤ y′ < q by y(q), then

Ai,j = ig2
jg1 − jg1

(q)

q
+ jg1

(q) ig2 − ig2
(q)

q
+ min(ig2

(q)
, jg1

(q)
)

=
ig2jg1
q

− ig2
(q)
jg1

(q)

q
+ min(ig2

(q)
, jg1

(q)
).

Hence

q−1
∑

i=1

q−1
∑

j=1

Ai,j =
q(q − 1)2

4
g1g2 −

q(q − d1)(q − d2)

4
+ d1d2

q′′−1
∑

i=1

q′−1
∑

j=1

min(id2, jd1),

where q′ = q/d1 and q′′ = q/d2. We have

q′′−1
∑

i=1

q′−1
∑

j=1

min(id2, jd1)

=

q′′−1
∑

i=1

id2

(

q′ − 1 −
[

id2

d1

])

+

q′−1
∑

j=1

jd1

(

q′′ − 1 −
[

jd1

d2

])

+

q′′

d1
−1
∑

i=1

id1d2

and

q′′−1
∑

i=1

i

(

q′ − 1 −
[

id2

d1

])

= (q′ − 1)

q′′−1
∑

i=1

i− d2

d1

q′′−1
∑

i=1

i2 − 1

d1

q′′−1
∑

i=1

id2
(d1)

i

=
(q′ − 1)(q′′ − 1)q′′

2
− q′(q′′ − 1)(2q′′ − 1)

6
+

1

d1

q′′

d1
−1
∑

j=0

d1−1
∑

i=1

(jd1 + i)id2
(d1)

=
q′(q′′

2 − 1)

6
+
q′′

4

(

−q′′ − q′′

d1
− d1 + 3

)

+
q′′

d2
1

d1−1
∑

i=1

id2
(d1)

i.
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With

d2

d1

d1−1
∑

i=1

id2
(d1)

i =
d2

d1







d1−1
∑

i=1

d2i
2 −

[

2d1
d2

]

∑

i=
[

d1
d2

]

+1

d1i− · · · −
d1−1
∑

i=
[

(d2−1)d1
d2

]

+1

(d2 − 1)d1i







=d2







d1−1
∑

i=1

d2

d1
i2 − (d2 − 1)

d1−1
∑

i=1

i+

[

(d2−1)d1
d2

]

∑

i=1

i+ · · · +

[

d1
d2

]

∑

i=1

i







=
d2
2(d1 − 1)(2d1 − 1)

6
− d2(d2 − 1)(d1 − 1)d1

2

+

d2−1
∑

j=1

(jd1 − jd1
(d2)

+ d2)(jd1 − jd1
(d2)

)

2d2

=
d2
1 + d2

2 + 1

12
+
d2
1d2 + d1d

2
2 − 3d1d2

4
− d1

d2

d2−1
∑

j=1

jd1
(d2)

j

we obtain

g1g2Cov(f1(Yk), f2(Yk)) =
1

q

q−1
∑

i=1

q−1
∑

j=1

Ai,j − g1g2
(q − 1)2

4

= − (q − d1)(q − d2)

4
+
q2 − d2

2

6
+

−d1q − q − d2
1d2 + 3d1d2

4

+
d2
1 + d2

2 + 1

12
+
d2
1d2 + d1d

2
2 − 3d1d2

4

+
q2 − d2

1

6
+

−d2q − q − d1d
2
2 + 3d1d2

4
+
q − d1d2

2

=
q2 − d2

1 − d2
2 + 1

12

and the lemma is proved.

Clearly we have

Pr[ǫk(g1n) = b1, ǫk(g2n) = b2] =
Abi+1,bj+1 −Abi,bj+1 −Abi+1,bj +Abi,bj

qg1g2

for (g1, g2) = 1. Thus

Pr[ǫk(g1n) = b1, ǫk(g2n) = b2] = πb1,b2,g1,g2

first for (g1, g2) = 1, and, with Lemma 2, for general g1, g2. With the remarks
succeeding Theorem 4, we get

v
(s)
i,j =







Ci,j

(

g(i)
ri

(g
(i)
ri

,g
(j)
rj

)
,

g(j)
rj

(g
(i)
ri

,g
(j)
rj

)

)

if g
(j)
rj P

(s)
i (n) = g

(i)
ri P

(s)
j (n)

0 else.
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For q1 = q̃s1 and q2 = q̃s2 , f1(n) = sq1(n) and f2(n) = sq2(n) are strongly
q-additive functions with q = qs2

1 = qs1

2 . Then, for P1(n) = P2(n) = n, (Yk)k≥0 is
clearly a sequence of independent random variables and

f1(Yk) = X0+q̃X1+· · ·+q̃s1−1Xs1−1+Xs1 +· · ·+q̃s1−1X2s1−1+· · ·+q̃s1−1Xs1s2−1,

f2(Yk) = X0+q̃X1+· · ·+q̃s2−1Xs2−1+Xs2 +· · ·+q̃s2−1X2s2−1+· · ·+q̃s2−1Xs1s2−1,

where (Xj)0≤j≤s1s2−1 is a sequence of identically distributed independent random
variables on {0, 1, . . . , q̃ − 1}.

Hence we have

Cov(f1(Yk), f2(Yk)) =

s1s2−1
∑

j=0

cjVarXj ,

where cj runs through {q̃ab : 0 ≤ a ≤ s1−1, 0 ≤ b ≤ s2−1} because of (s1, s2) = 1.
This implies

Cov(f1(Yk), f2(Yk)) =
q̃2 − 1

12

(

1 + q̃ + · · · + q̃s1−1
) (

1 + q̃ + · · · + q̃s2−1
)

=
(q̃ + 1)(q̃s1 − 1)(q̃s2 − 1)

12(q̃ − 1)
.

With σ2
1 = Var f1(Yk) = s2(q

2
1 − 1)/12 and σ2

2 = Var f2(Yk) = s1(q
2
2 − 1)/12, we

get for the normalized covariance

Cov(f1(Yk), f2(Yk))

σ1σ2
=
q̃ + 1

q̃ − 1

(q1 − 1)(q2 − 1)
√

s1s2(q21 − 1)(q22 − 1)
.

2.3. Comparison of moments.
It remains to compare the moments of fℓ(Pℓ(n)) to those in (3). We need the

following proposition (cf. Proposition 1).

Proposition 3. Let Pℓ(x), 1 ≤ ℓ ≤ d, be integer polynomials with positive leading
terms, λ > 0 an arbitrary constant and hℓ, 1 ≤ ℓ ≤ d, non-negative integers. Then
for integers

(logN)η ≤ k
(ℓ)
1 < k

(ℓ)
2 < · · · < k

(ℓ)
hℓ

≤ logq N
rℓ − (logN)η (1 ≤ ℓ ≤ d)

(with some η > 0) which satisfy

k
(ℓ)
j 6∈

(

logq N
s − (logN)η, logq N

s + (logN)η
)

for all 1 ≤ s ≤ rℓ − 1, we have uniformly, as N → ∞,

1

N
#
{

n < N
∣

∣

∣ǫk(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , 1 ≤ j ≤ hℓ, 1 ≤ ℓ ≤ d

}

=

r
∏

s=1

p
(s)

k
(1)
1 ,··· ,k

(d)
hd

,b
(1)
1 ,...,b

(d)
hd

+ O
(

(logN)−λ
)
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and

1

π(N)
#
{

p < N
∣

∣

∣ǫk(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , 1 ≤ j ≤ hℓ, 1 ≤ ℓ ≤ d

}

=
r
∏

s=1

p
(s)

k
(1)
1 ,··· ,k

(d)
hd

,b
(1)
1 ,...,b

(d)
hd

+ O
(

(logN)−λ
)

with

p
(s)

k
(1)
1 ,··· ,k

(d)
hd

,b
(1)
1 ,...,b

(d)
hd

=







Pr

[

Y
(s)

k
(ℓ)
j

⊆ S
(s)

b
(ℓ)
j ,ℓ

for all (j, ℓ) ∈ Ks

]

if Ks 6= ∅
1 else,

where

Ks =
{

(j, ℓ)
∣

∣

∣k
(ℓ)
j ∈

[

logq N
s−1 + (logN)η, logq N

s − (logN)η
]

}

.

Proof. We follow the proofs of Lemma 5 in [1] and Proposition 1 in [3]. Let ψb,q,∆(x)
be defined by

ψb,q,∆(x) =
1

∆

∫ ∆/2

−∆/2

1[b/q,(b+1)/q)({x+ z})dz.

Its Fourier series
∑

m∈Z
dm,b,q,∆e(mx) is given by dm,0,q,∆ = 1

q and

dm,b,q,∆ =
e
(

−mb
q

)

− e
(

−m(b+1)
q

)

2πim

e
(

m∆
2

)

− e
(

−m∆
2

)

2πim∆
for m 6= 0.

Clearly we have

ψb,q,∆(x) =







1 if x ∈
[

b
q + ∆, b+1

q − ∆
]

,

0 if x ∈ [0, 1] \
[

b
q − ∆, b+1

q + ∆
]

.

If we set

t(y1, . . . , yd) =
d
∏

ℓ=1

hℓ
∏

j=1

ψ
b
(ℓ)
j ,qℓ,∆





yℓ

q
k
(ℓ)
j +1

ℓ



 ,

then we get for ∆ < 1/(2q)

∣

∣

∣

∣

∣

#
{

n < N
∣

∣

∣ǫk(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , 1 ≤ j ≤ hℓ, 1 ≤ ℓ ≤ d

}

−
∑

n<N

t(P1(n), . . . , Pd(n))

∣

∣

∣

∣

∣

≤
d
∑

ℓ=1

hℓ
∑

j=1

#







n < N

∣

∣

∣

∣

∣

∣







Pℓ(n)

q
k
(ℓ)
j +1

ℓ







∈ U
b
(ℓ)
j ,qℓ,∆







≪ ∆N +N(logN)−λ

with Ub,q,∆ = [0,∆] ∪
q−1
⋃

b=1

[

b
q − ∆, b

q + ∆
]

∪ [1 − ∆, 1] and Lemma 4 of [1]. For

primes, we get a similar statement.
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Hence we have to consider the sums

Σ =
∑

n<N

t(P1(n), . . . , Pd(n)) =
∑

M∈M

TM

∑

n<N

e (m1 · v1P1(n) + · · · + md · vdPd(n)) ,

where M is the set of all (m1, . . . ,md) with integer vectors mℓ = (m
(ℓ)
1 , . . . ,m

(ℓ)
hℓ

),

TM =

d
∏

ℓ=1

hℓ
∏

j=1

d
m

(ℓ)
j ,b

(ℓ)
j ,q,∆

and vℓ =

(

q
−k

(ℓ)
1 −1

ℓ , . . . , q
−k

(ℓ)
hℓ

−1

ℓ

)

.

First of all, set ∆ = (logN)−δ with an arbitrary (but fixed) constant δ > 0.

Then we can restrict to those M for which |m(ℓ)
j | < (logN)2δ for all j, ℓ because of

∑

∃ℓ,j:|m
(ℓ)
j |≥(log N)2δ

|TM| ≪





∞
∑

m=[(log N)2δ ]

1

∆m2





(

∞
∑

m=0

min

(

1,
1

m
,

1

∆m2

)

)h−1

≪ 1

∆
(logN)−δ

(

log
1

∆

)h−1

≪ (logN)−δ/2,

where h = h1 + · · ·+hd. Furthermore, it is sufficient to consider just the case where

m
(ℓ)
j 6= 0 for all j, ℓ. (Otherwise, just reduce hℓ to a smaller value.)
Set

QM(n) = m1 · v1P1(n) + · · · + md · vdPd(n).

We have to check whether QM(n) has degree r and satisfies the conditions of
Lemmata 1 and 2 of [1] saying that

1

N

∑

n<N

e(P (n)) = O
(

(logN)−τ0
)

,

1

π(N)

∑

p<N

e(P (p)) = O
(

(logN)−τ0
)

,

as N → ∞, hold if the the leading coefficient of P (n) is A
H with (A,H) = 1 and

(logN)τ < H < N r(logN)−τ (6)

for some τ (depending on τ0).

The coefficient of nr is, if we set kmax = maxℓ k
(ℓ)
hℓ

,

AM

HM

=
∑

(j,ℓ)∈Kr

g
(ℓ)
r m

(ℓ)
j qkmax−k

(ℓ)
j

qkmax
+

∑

(j,ℓ) 6∈Kr

g
(ℓ)
r m

(ℓ)
j qkmax−k

(ℓ)
j

qkmax
(7)

with (AM, HM) = 1. If AM 6= 0, then (6) is satisfied. If AM = 0, assume
kmax ∈ Kr. Then we obtain

∑

(j,ℓ)∈Kr

g(ℓ)
r m

(ℓ)
j qkmax−k

(ℓ)
j ≡ 0

(

qkmax−(logq Nr−1−(log N)η)
)

.
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Because of |m(ℓ)
j | < (logN)2δ, this implies

∑

(j,ℓ)∈Kr
g
(ℓ)
r m

(ℓ)
j qkmax−k

(ℓ)
j = 0. Hence

AM = 0 if and only if both sums in (7) are zero and we have

1

N
#
{

n < N
∣

∣

∣ǫk(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , 1 ≤ j ≤ hℓ, 1 ≤ ℓ ≤ d

}

=
1

N
#
{

n < N
∣

∣

∣ǫk(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , (j, ℓ) ∈ Kr

}

× 1

N
#
{

n < N
∣

∣

∣ǫk(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , (j, ℓ) 6∈ Kr

}

+ O
(

(logN)−λ
)

.

Now we can repeat the arguments for (j, ℓ) ∈ Kr−1 and get inductively

1

N
#
{

n < N
∣

∣

∣ǫk(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , 1 ≤ j ≤ hℓ, 1 ≤ ℓ ≤ d

}

=

r
∏

s=1

1

N
#
{

n < N
∣

∣

∣ǫk(ℓ)
j

(Pℓ(n)) = b
(ℓ)
j , (j, ℓ) ∈ Ks

}

+ O
(

(logN)−λ
)

.

Hence we may assume from now on that all k
(ℓ)
j are contained in one set Ks for

some s ≤ r.
If the degree of QM(n) is smaller than s, we have

|QM(n)| ≪ (logN)2δNs−1

qlogq Ns−1+(log N)η =
(logN)2δ

q(log N)η

for all n < N and, with e(y) = 1 + O (y),

∑

∣

∣

∣
m

(ℓ)
j

∣

∣

∣
<(log N)2δ,deg(QM(n))<s

TM

(

∑

n<N

e(QM(n)) −N

)

≪ N(logN)2δ(h+1)

q(log N)η .

Thus we can treat these QM(n) as if they were the zero polynomial and it suffices

to regard the polynomials P
(s)
ℓ (n) and

Q
(s)
M

(n) = m1 · v1P
(s)
1 (n) + · · · + md · vdP

(s)
d (n).

(6) is satisfied if and only if Q
(s)
M

(n) 6≡ 0 and we obtain

Σ = N
∑

M∈M:Q
(s)
M

(n)≡0

TM+O






N(logN)−τ0

∑

M∈M:|m
(ℓ)
j |<(log N)2δ,Q

(s)
M

(n) 6≡0

|TM|







+ O
(

N(logN)−δ/2
)

+ O
(

N(logN)−λ
)

.

Since the main term
∑

M∈M:Q
(s)
M

(n)≡0
TM depends on ∆, we have to replace TM

by

T ′
M =

d
∏

ℓ=1

hℓ
∏

j=1

c
m

(ℓ)
j ,b

(ℓ)
j ,q

.
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Hence we have to estimate the difference
∑

M∈M:QM(n)≡0(TM − T ′
M

).

We clearly have

d
m

(ℓ)
j ,b

(ℓ)
j ,q,∆

= c
m

(ℓ)
j ,b

(ℓ)
j ,q

(

1 + O
(

m
(ℓ)
j ∆

))

as ∆ → 0 and therefore

TM = T ′
M

(

1 + O
(

max
j,ℓ

m
(ℓ)
j ∆

))

. (8)

First assume |m(ℓ)
j | < (logN)δ/2 for all j, ℓ. From (8) and c

m
(ℓ)
j ,b

(ℓ)
j ,q

≤ min

(

1, 1

m
(ℓ)
j

)

,

we obtain

∑

M∈M:|m
(ℓ)
j |<(log N)δ/2

|TM − T ′
M
| ≪

∑

M∈M:|m
(ℓ)
j |<(log N)δ/2

|T ′
M
|(logN)−δ/2

≪





[(log N)δ/2]
∑

m=1

1

m





h

(logN)−δ/2 ≤
(

log(logN)δ/2
)h

(logN)δ/2
≪ (logN)−δ/3

It remains to estimate the TM and T ′
M

with |m(ℓ)
j | > (logN)δ/2 for some j, ℓ

which satisfy the equation Q
(s)
M

(n) ≡ 0, i.e.

∑

j,ℓ

g(ℓ)
r qkmax−k

(ℓ)
j m

(ℓ)
j = 0.

By Lemma 14 of [4], we get

∑

M∈M:Q
(s)
M

(n)≡0,|m
(ℓ)
j |≥(log N)δ/2 for some j,ℓ

T ′
M ≪ (logN)

− δ
2(h−1)2

and the same estimate for TM. Note that this lemma is stated for a linear equation
where one of the coefficients is 1, but the proof can be easily adapted for general
linear equations.

Hence

∑

M∈M:Q
(s)
M

(n)≡0

TM = p̃
(s)

k
(1)
1 ,...,k

(d)
hd

,b
(1)
1 ,...,b

(d)
hd

+ O
(

(logN)
− δ

2(h−1)2

)

,

where
p̃
(s)

k
(1)
1 ,...,k

(d)
hd

,b
(1)
1 ,...,b

(d)
hd

=
∑

M∈M:Q
(s)
M

(n)≡0

T ′
M

and we get

Σ = Np̃
(s)

k
(1)
1 ,...,k

(d)
hd

,b
(1)
1 ,...,b

(d)
hd

+ O
(

(logN)−λ
)

,

for δ = 2(h− 1)2λ and τ0 > λ.
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It remains to prove that the p̃
(s)

k
(1)
1 ,··· ,k

(d)
hd

,b
(1)
1 ,...,b

(d)
hd

are the probabilities defined by

the Markov chain.
We have
{

n < N
∣

∣

∣ǫk(ℓ)
j

(P
(s)
ℓ (n)) = b

(ℓ)
j for all (j, l) ∈ Ks

}

=







n < N

∣

∣

∣

∣

∣

∣

w
(s)
kmax

(n) ∈
⋂

(j,ℓ)∈Ks

T k
(ℓ)
j −kmaxS

(s)

b
(ℓ)
j ,ℓ







and this intersection consists of a finite number of convex sets, which can be arbi-
trarily well approximated by elementary rectangles

r
∏

i=s





Ji
∑

j=1

b̃
(i)
j q−j ,

Ji
∑

j=1

b̃
(i)
j q−j + q−Ji



 .

By Proposition 1, we get

1

N
#







n < N

∣

∣

∣

∣

∣

∣

w
(s)
kmax

(n) ∈
r
∏

i=s





Ji
∑

j=1

b̃
(i)
j q−j ,

Ji
∑

j=1

b̃
(i)
j q−j + q−Ji











=
1

N
#
{

n < N
∣

∣

∣ǫkmax−j+1(n
i) = b̃

(i)
j , 1 ≤ j ≤ Ji, s ≤ i ≤ r

}

→ 1

qJs . . . qJr
,

if kmax ≤ logN−(logN)η and Ji ≤ kmax−(logN)η. This means that the density in
each of this rectangles converges to its Lebesgue measure. Since we do not change
⋂

j,ℓ T
k
(ℓ)
j −kmaxS

(s)

b
(ℓ)
j ,ℓ

if we shift all k
(ℓ)
j and increase N , the Ji can be arbitrarily

large. Therefore p̃
(s)

k
(1)
1 ,··· ,k

(d)
hd

,b
(1)
1 ,...,b

(d)
hd

must be its Lebesgue measure, which is just

p
(s)

k
(1)
1 ,··· ,k

(d)
hd

,b
(1)
1 ,...,b

(d)
hd

.

This also implies Lemma 2 (d = 2, h1 = h2 = 1).

Proposition 3 shows that we have to replace fℓ by f
(Nrℓ )

ℓ ,

f
(Nrℓ)

ℓ (Pℓ(n)) =

rℓ
∑

s=1

(s−1) logq N+B(N)
∑

k=(s−1) logq N+A(N)

fℓ(ǫk(Pℓ(n))).

Note that f
(Nrℓ )

ℓ (Pℓ(n)) = fℓ(Pℓ(n)) +O ((logN)η). Similarly define M ℓ(N
rℓ) and

Dℓ(N
rℓ) by taking the sum only over these k. Note that these definitions are

slightly different from those in [3,4] (and [1], where f is denoted by f1).

Corollary 3. We have

1

N

∑

n<N

d
∏

ℓ=1

(

f
(Nrℓ )

ℓ (Pℓ(n)) −M ℓ(N
rℓ)

Dℓ(N rℓ)

)hℓ

− E

d
∏

ℓ=1





∑rℓ

s=1

∑(s−1) logq N+B(N)

k=(s−1) logq N+A(N) fℓ

(

Y
(s)
k

)

−M ℓ(N
rℓ)

Dℓ(N rℓ)





hℓ

→ 0
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and

1

π(N)

∑

p<N

d
∏

ℓ=1

(

f
(Nrℓ )

ℓ (Pℓ(p)) −M ℓ(N
rℓ)

Dℓ(N rℓ)

)hℓ

− E

d
∏

ℓ=1





∑rℓ

s=1

∑(s−1) logq N+B(N)

k=(s−1) logq N+A(N) fℓ

(

Y
(s)
k

)

−M ℓ(N
rℓ)

Dℓ(N rℓ)





hℓ

→ 0,

where the Y
(s)
k and Y

(s′)
k′ are independent if s 6= s′.

Proof. The second terms are the sum over all integers

k
(ℓ)
1 , . . . , k

(ℓ)
hℓ

∈ [A(N), logq N
rℓ −A(N)] \

rℓ−1
⋃

s=1

[logq N
s −A(N), logq N

s +A(N)],

1 ≤ ℓ ≤ d, of

E

d
∏

ℓ=1

hℓ
∏

j=1

fℓ

(

Y
(s)

k
(ℓ)
j

)

− µ
ℓ,k

(ℓ)
j

Dℓ(N rℓ)

=

q−1
∑

b
(1)
1 =0

· · ·
q−1
∑

b
(d)
hd

=0

d
∏

ℓ=1

hℓ
∏

j=1

fℓ(b
ℓ
j) − µ

ℓ,k
(ℓ)
j

Dℓ(N rℓ)
Pr

[

Y
(s)

k
(ℓ)
j

⊆ S
(s)

b
(ℓ)
j

for all j, ℓ

]

,

where the s are such that k
(ℓ)
j ∈ Ks. Since the Y

(s)

k
(ℓ)
j

are independent for different

s, we have

Pr

[

Y
(s)

k
(ℓ)
j

⊆ S
(s)

b
(ℓ)
j

for all (j, ℓ)

]

=

r
∏

s=1

Pr

[

Y
(s)

k
(ℓ)
j

⊆ S
(s)

b
(ℓ)
j

for all (j, ℓ) ∈ Ks

]

and, by Proposition 3, the corresponding first terms are the same up to an er-
ror term of O

(

(logN)−λ
)

. Hence the convergences are valid with error terms

O
(

(logN)−λ+h−hη
)

.

Similarly to Corollary 2 of [3], we obtain

1

N

∑

n<N

d
∏

ℓ=1

(

fℓ(Pℓ(n)) −Mℓ(N
rℓ)

Dℓ(N rℓ)

)hℓ

− 1

N

∑

n<N

d
∏

ℓ=1

(

f
(Nrℓ )

ℓ (Pℓ(n)) −M ℓ(N
rℓ)

Dℓ(N rℓ)

)hℓ

→ 0

and therefore, by the method of moments (see e.g. Billingsley [2], p. 390),

1

N
#

{

n < N

∣

∣

∣

∣

fℓ(Pℓ(n)) −Mℓ(N
rℓ)

Dℓ(N rℓ)
< xℓ, ℓ = 1, 2, . . . , d

}

→ Pr





∑rℓ

s=1

∑(s−1) logq N+B(N)

k=(s−1) logq N+A(N) fℓ

(

Y
(s)
k

)

−M ℓ(N
rℓ)

Dℓ(N rℓ)
< xℓ, ℓ = 1, . . . , d



 .
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Clearly we have M ℓ(N
rℓ) = rℓM ℓ(N), Dℓ(N

rℓ)2 = rℓDℓ(N)2 and

∑rℓ

s=1

∑(s−1) logq N+B(N)

k=(s−1) logq N+A(N) fℓ

(

Y
(s)
k

)

−M ℓ(N
rℓ)

Dℓ(N rℓ)

=
1√
rℓ

rℓ
∑

s=1

∑B(N)
k=A(N) fℓ

(

Y
(s)
k

)

−M ℓ(N)

σℓ

√

B(N) −A(N) + 1
→ 1√

rℓ

(

Z
(1)
ℓ + · · · + Z

(r)
ℓ

)

by Proposition 2, where the Z(s) = (Z
(s)
1 , . . . , Z

(s)
d ) are independent normally dis-

tributed random vectors with covariance matrices V (s). (For s > rℓ, we have

fℓ(Y
(s)
k ) = 0 = Z

(s)
ℓ because of P

(s)
ℓ (n) ≡ 0 and S

(s)
0,ℓ = T

r−s+1.)
Hence the sum is normally distributed and the elements of the covariance matrix

V are given by

vi,j =
1

√
rirj

(

v
(1)
i,j + · · · + v

(r)
i,j

)

.

For ri 6= rj , all v
(s)
i,j are zero, as well as for all s > ri. If g

(j)
rj Pi(n) ≡ g

(i)
ri Pj(n), then

v
(1)
i,j = · · · = v

(ri)
i,j = vi,j . If we just have ri = rj and g

(j)
rj g

(i)
s = g

(i)
ri g

(j)
s for all s > s′,

then v
(s′+1)
i,j = · · · = v

(ri)
i,j and v

(s)
i,j = 0 for s ≤ s′. Therefore vi,j = ri−s′

ri
v
(ri)
i,j and

the covariance matrix has the stated form.
The corresponding statements for primes are obtained similarly and this con-

cludes the proof of Theorem 4.

3. Proof of Theorem 3

We have to prove the following proposition.

Proposition 4. Let q1, q2 be multiplicatively independent integers and P1(n), P2(n)
integer polynomials with positive leading terms. Let λ > 0 be an arbitrary constant
and h1, h2 non-negative integers. Then for integers

(logN rℓ)η ≤ k
(ℓ)
1 < k

(ℓ)
2 < · · · < k

(ℓ)
hℓ

≤ logqℓ
N rℓ − (logN rℓ)η (ℓ = 1, 2)

(with some η > 0), we have, as N → ∞,

1

N
#
{

n < N
∣

∣

∣ǫq1,k
(1)
j

(P1(n)) = b
(1)
j , ǫ

q2,k
(2)
j

(P2(n)) = b
(2)
j , 1 ≤ j ≤ hℓ

}

=
1

qh1
1 qh2

2

+ O
(

(logN)−λ
)

and

1

π(N)
#
{

p < N
∣

∣

∣
ǫ
q1,k

(1)
j

(P1(n)) = b
(1)
j , ǫ

q2,k
(2)
j

(P2(n)) = b
(2)
j , 1 ≤ j ≤ hℓ

}

=
1

qh1
1 qh2

2

+ O
(

(logN)−λ
)

uniformly for b
(ℓ)
j ∈ {0, . . . , qℓ − 1} and k

(ℓ)
j in the given range, where the implicit

constant of the error term may depend on qℓ, Pℓ, hℓ and λ.

For the proof we need the following three lemmata. The first one is a corollary
to Baker’s theorem on linear forms, in a version due to Waldschmidt [7].
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Lemma 4 (Corollary 3 in [3]). Let k1, k2 be positive integers, q1, q2 positive real
numbers and m1,m2 real numbers such that m1

q
k1
1

+ m2

q
k2
2

6= 0. Then there exists a

constant C > 0 such that
∣

∣

∣

∣

∣

m1

qk1
1

+
m2

qk2
2

∣

∣

∣

∣

∣

≥ max

(

|m1|
qk1
1

,
|m2|
qk2
2

)

e−C log q1 log q2 log(max(k1,k2)) log(max(|m1|,|m2|)).

The next lemma is an adapted version of Lemmata 1 and 2 of [1] which are due
to Hua [5] and Vinogradov.

Lemma 5 (Lemmata 10 and 11 in [4]). Let P (n) be a polynomial of degree r
with leading coefficient β. For every τ0 > 0, we have a τ > 0 such that

N−r(logN)τ < β < (logN)−τ

implies
1

N

∑

n<N

e(P (n)) = O
(

(logN)−τ0
)

and
1

π(N)

∑

p<N

e(P (p)) = O
(

(logN)−τ0
)

as N → ∞.

Proof of Proposition 4. As for Proposition 2, we have to estimate the sums

Σ =
∑

(m1,m2)∈M

Tm1,m2

∑

n<N

e (m1 · v1P1(n) + m2 · v2P2(n)) .

The case of different degrees of the polynomials is treated by Proposition 1. So
we can assume that they have the same degree r1 = r2 = r.

As in the proof of Proposition 2, we fix ∆ = (logN)−δ and restrict to those

(m1,m2) for which |m(ℓ)
j | < (logN)2δ and m

(ℓ)
j 6≡ 0 (qℓ) for all j, ℓ.

Suppose now g
(1)
r m1 · v1 + g

(2)
r m2 · v2 6= 0 and set ε = η/(h1 + h2 − 1). Then

there exists an integer K with 0 ≤ K ≤ h1 + h2 − 2 such that for all j and ℓ = 1, 2

k
(ℓ)
j+1 − k

(ℓ)
j 6∈

[

(logN)Kε, (logN)(K+1)ε
)

.

So fix K with this property.

First suppose k
(ℓ)
j+1 − k

(ℓ)
j < (logN)Kε for all j, ℓ. Then we set

mℓ = g(ℓ)
r

hℓ
∑

j=1

m
(ℓ)
j q

k
(ℓ)
hℓ

−k
(ℓ)
j

ℓ (ℓ = 1, 2)

and have log |mℓ| ≪ (logN)Kε. We can apply Lemma 4 to

g(1)
r m1 · v1 + g(2)

r m2 · v2 =
m1

q
k
(1)
h1

+1

1

+
m2

q
k
(2)
h2

+1

2
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and obtain

∣

∣

∣g(1)
r m1 · v1 + g(2)

r m2 · v2

∣

∣

∣ ≥ max

(

q
−k

(1)
h1

−1

1 , q
−k

(1)
h2

−1

2

)

e−c log log N (log N)Kε

≥ max(q1, q2)
(log N)η

e−c log log N (log N)Kε

N r

≥ elog(max(q1,q2))(log N)η−c log log N (log N)
η

h1+h2−2
h1+h2−1

N r
≥ (logN)τ

N r

for some constant c > 0 and all τ > 0. Because of

∣

∣

∣
g(1)

r m1 · v1 + g(2)
r m2 · v2

∣

∣

∣
≤ (h1 + h2)(logN)2δ

min(q1, q2)−(log N)η ,

Lemma 5 can be applied.

Otherwise we have some sℓ, ℓ = 1, 2, such that k
(ℓ)
j+1 − k

(ℓ)
j < (logN)Kε for all

j < sℓ and k
(ℓ)
sℓ+1 − k

(ℓ)
sℓ ≥ (logN)(K+1)ε. Here we set

mℓ = g(ℓ)
r

sℓ
∑

j=1

m
(ℓ)
j q

k(ℓ)
sℓ

−k
(ℓ)
j

ℓ (ℓ = 1, 2).

and have again log |mℓ| ≪ (logN)Kε. Furthermore, we can estimate the sums

hℓ
∑

j=sℓ+1

m
(ℓ)
j

q
k
(ℓ)
j +1

ℓ

= O
(

(logN)2δq
−ksℓ

−(log N)(K+1)ε

ℓ

)

.

Thus we get

∣

∣

∣g(1)
r m1 · v1 + g(2)

r m2 · v2

∣

∣

∣ ≥

∣

∣

∣

∣

∣

∣

m1

q
k
(1)
s1

+1

1

+
m2

q
k
(2)
s2

+1

2

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

h1
∑

j1=s1+1

m
(1)
j1

q
k
(1)
j1

+1

1

∣

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

∣

h2
∑

j2=s2+1

m
(2)
j2

q
k
(2)
j2

+1

2

∣

∣

∣

∣

∣

∣

≥ max

(

q
−k(1)

s1
−1

1 , q
−k(2)

s2
−1

2

)

e−c log log N (log N)Kε

−O
(

(logN)2δ max

(

q
−k(1)

s1
−1

1 , q
−k(2)

s2
−1

2

)

e−(log N)(K+1)ε

)

≫ max

(

q
−k(1)

s1
−1

1 , q
−k(2)

s2
−1

2

)

e−c log log N (log N)Kε

and Lemma 5 can again be applied.

If q1 and q2 are coprime, then we have g
(1)
r m1 · v1 + g

(2)
r m2 · v2 = 0 only for

m1 = m2 = 0. Otherwise we may have other choices of (m1,m2).

Set q = (q1, q2) and q̃1 = q1/q, q̃2 = q2/q. Assume, w.l.o.g., k
(1)
h1

≥ k
(2)
h2

. Then
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we have

h1
∑

j1=1

g
(1)
r m

(1)
j1

q
k
(1)
j1

1

+

h2
∑

j2=1

g
(2)
r m

(2)
j2

q
k
(2)
j2

2

= g(1)
r

m
(1)
1 q̃

k
(1)
h1

−k
(1)
1

1 q̃
k
(2)
h2

2 q
k
(1)
h1

−k
(1)
1 + · · · +m

(1)
h1−1q̃

k
(1)
h1

−k
(1)
h1−1

1 q̃
k
(2)
h2

2 q
k
(1)
h1

−k
(1)
h1−1 +m

(1)
h1
q̃

k
(2)
h2

2

q̃
k
(1)
h1

1 q̃
k
(2)
h2

2 q
k
(1)
h1

+ g(2)
r

m
(2)
1 q̃

k
(1)
h1

1 q̃
k
(2)
h2

−k
(2)
1

2 q
k
(1)
h1

−k
(2)
1 + · · · +m

(2)
h2
q̃

k
(1)
h1

1 q
k
(1)
h1

−k
(2)
h2

q̃
k
(1)
h1

1 q̃
k
(2)
h2

2 qk
(1)
h1

,

where we have omit the “+1” in the denominator for simplicity. (Just consider

k
(ℓ)
j − 1 instead of k

(ℓ)
j .) Hence we must have

g(1)
r

(

m
(1)
1 q̃

k
(1)
h1

−k
(1)
1

1 q
k
(1)
h1

−k
(1)
1 + · · · +m

(1)
h1−1q̃

k
(1)
h1

−k
(1)
h1−1

1 q
k
(1)
h1

−k
(1)
h1−1 +m

(1)
h1

)

≡ 0

(

q̃
k
(1)
h1

1

)

.

(9)
Of course this is useful only if q̃1 > 1, which we assume first. We have to

distinguish several cases. (9) implies

m
(1)
j+1q

k
(1)
h1

−k
(1)
j+1

1 + · · · +m
(1)
h1−1q

k
(1)
h1

−k
(1)
h1−1

1 + · · · +m
(1)
h1

≡ 0

(

q̃
k
(1)
h1

−k
(1)
j

1

)

(10)

for all j, 1 ≤ j ≤ h1−1. If k
(1)
j+1−k

(1)
j ≥ (logN)ε for some j, then |m(ℓ)

j | < (logN)2δ

implies that the left hand side of (10) must be zero. Hence m
(1)
h1

≡ 0 (q1) which

implies Tm1,m2 = 0 since we have excluded m
(1)
h1

= 0. If k
(1)
j+1 − k

(1)
j ≤ (logN)ε for

all j, then the left hand side of (9) must be zero and m
(1)
h1

≡ 0 (q1).

Now consider the case q̃1 = 1, i.e. q1|q2. Then we have to check

g(1)
r

(

m
(1)
1 q̃

k
(2)
h2

2 q
k
(1)
h1

−k
(1)
1 + · · · +m

(1)
h1−1q̃

k
(2)
h2

2 q
k
(1)
h1

−k
(1)
h1−1 +m

(1)
h1
q̃

k
(2)
h2

2

)

+ (11)

g(2)
r

(

m
(2)
1 q̃

k
(2)
h2

−k
(2)
1

2 qk
(1)
h1

−k
(2)
1 + · · · +m

(2)
h2−1q̃

k
(2)
h2

−k
(2)
h2−1

2 qk
(1)
h1

−k
(2)
h2−1 +m

(2)
h2
qk

(1)
h1

−k
(2)
h2

)

= 0.

This implies

g(2)
r qk

(1)
h1

−k
(2)
h2

(

m
(2)
j+1q

k
(2)
h2

−k
(2)
j+1

2 + · · · +m
(2)
h2−1q

k
(2)
h2

−k
(2)
h2−1

2 +m
(2)
h2

)

≡ 0

(

q̃
k
(2)
h2

−k
(2)
j

2

)

(12)

for 1 ≤ j ≤ h2 − 1 and for j = 0, if we set k
(2)
0 = 0.

Assume first k
(1)
h1

− k
(2)
h2

≤ (logN)ε/2. Then we can do the same reasonings as

above and obtain m
(2)
h2

≡ 0 (q2).

The last (and most difficult) case is k
(1)
h1

− k
(2)
h2

≥ (logN)ε/2. First suppose that

q̃2 has some prime divisor p̃2 6 |q. Then we get from (12)

g(2)
r

(

m
(2)
j+1q

k
(2)
h2

−k
(2)
j+1

2 + · · · +m
(2)
j+1q

k
(2)
h2

−k
(2)
h2−1

2 +m
(2)
h2

)

≡ 0

(

p̃
k
(2)
h2

−k
(2)
j

2

)
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for 0 ≤ j ≤ h2 − 1 and again m
(2)
h2

≡ 0 (q2). Suppose next that q has some prime

divisor p 6 |q̃2. Then we have

g(1)
r

(

m
(1)
1 q

k
(1)
h1

−k
(1)
1 + · · · +m

(1)
h1−1q

k
(1)
h1

−k
(1)
h1−1 +m

(1)
h1

)

≡ 0
(

p
k
(1)
h1

−k
(2)
h2

)

and we can do the same reasonings with ε/h1 instead of ε.

It remains to consider q and q̃2 with prime factorisations q = pe1
1 . . . pes

s , q̃2 = pẽ1
1 . . . pẽs

s ,
where all ei and ẽi are positive integers. Let us rewrite (11):

g(1)
r

(

m
(1)
1

s
∏

i=1

p
k
(2)
h2

ẽi+(k
(1)
h1

−k
(1)
1 )ei

i + · · · +m
(1)
h1

s
∏

i=1

p
k
(2)
h2

ẽi

i

)

+ g(2)
r

(

m
(2)
1

s
∏

i=1

p
(k

(2)
h2

−k
(2)
1 )ẽi+(k

(1)
h1

−k
(2)
1 )ei

i + · · · +m
(2)
h2

s
∏

i=1

p
(k

(1)
h1

−k
(2)
h2

)ei

i

)

= 0.

By assumption, q1 and q2 are multiplicatively independent. Thus we have s ≥ 2

and ei/ẽi 6= ej/ẽj for some i, j. Therefore k
(2)
h2
ẽi − (k

(1)
h1

− k
(2)
h2

)ei cannot be zero for

all i and the difference must be at least 1
2 (logN)ε/2 for some i. Let

(k
(1)
h1

− k
(2)
h2

)ei0 − k
(2)
h2
ẽi0 ≥ 1

2
(logN)ε/2.

Then we have

g(1)
r

(

m
(1)
1

s
∏

i=1

p
(k

(1)
h1

−k
(1)
1 )ei

i + · · · +m
(1)
h1

)

≡ 0

(

p
(k

(1)
h1

−k
(2)
h2

)ei0−k
(2)
h2

ẽi0

i0

)

and we can again do the same reasonings. Similarly

k
(2)
h2
ẽi0 − (k

(1)
h1

− k
(2)
h2

)ei0 ≥ 1

2
(logN)ε/2

leads to

g(2)
r

(

m
(2)
1

s
∏

i=1

p
(k

(2)
h2

−k
(2)
1 )(ẽi+ei)

i + · · · +m
(2)
h2

)

≡ 0

(

p
1
2 (log N)ε/2

i0

)

and the same result.
Hence, we finally get

∑

(m1,m2) 6=(0,0)

|Tm1,m2 | ·
∣

∣

∣

∣

∣

1

N

∑

n<N

e
(

(g(1)
r m1 · v1 + g(2)

r m2 · v2)n
)

∣

∣

∣

∣

∣

= O
(

(logN)−δ/2
)

+ O
(

(logN)2(h1+h2)δ−λ
)

,

which completes the proof of Proposition 4.
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