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ON THE JOINT DISTRIBUTION OF ¢-ADDITIVE
FUNCTIONS ON POLYNOMIAL SEQUENCES

WOLFGANG STEINER

April 30, 2002

ABSTRACT. The joint distribution of sequences (f¢(Pz(n)))nen,? = 1,2,...,d and
(fe(Pe(p)))pep respectively, where f, are go-additive functions and P, polynomials
with integer coefficients, is considered. A central limit theorem is proved for a larger
class of ¢y and P, than by Drmota [3]. In particular, the joint limit distribution
of the sum-of-digits functions sq, (n), sq,(n) is obtained for arbitrary integers g1, g2.
For strongly g-additive functions with respect to the same ¢, a central limit theorem
is proved for arbitrary polynomials P, with the help of a joint representation of the
digits of Py(n) by a Markov chain.

1. INTRODUCTION

For a given integer ¢ > 1, every non-negative integer n has a unique g-ary

eTpansion
n= Z eq,k(”)qk
k>0
with €, 1(n) € {0,1,...,¢— 1} (where the index ¢ will often be omitted). Then the
sum-of-digits function is given by
sa(n) =) equ(n).

k>0

This is a special case of a g-additive function, i.e. a real-valued function f defined
on the non-negative integers which satisfies f(0) = 0 and

f(n) = flegr(n)d").

k>0

Such a function is said to be strongly q-additive, if

F(n) =3 flegr(n)):

k>0

Bassily and Kétai [1] proved the following central limit theorem.
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2 WOLFGANG STEINER

Theorem 1 (Bassily and Katai [1]). Let f be a g-additive function such that
f(bg¥) = O (1) as k — oo for all b € {0,1,...,q — 1}. Assume % — 00 as
N — oo for some n > 0 and let P(n) be a polynomial with integer coefficients,
degree T and positive leading term. Set

142 1480
pe ==Y fbd"), == fbg") — i}
q b=0 q b=0
and
[log, N] [log, N]
M(N)= > m, DWN?’= Y o}
k=0 k=0

Then, as N — oo,

By RMGOIES TG W S

and

p)) — M(N")
D(NT)

#{pGP,p<N‘f(P( <z}%¢(x),

.
m(N)
where ®(x) denotes the distribution function of the normal law.

This theorem was only stated for n = L. However, a short inspection of the

3
proof shows that 1 > 0 is sufficient.
Drmota [3] generalised this theorem for certain joint distributions. From now
on, denote by ¢ i, 00k, Mg, Dy the py, o, M, D of Theorem 1 with respect to f.

Theorem 2 (Drmota [3]). Let fo, 1 < { < d, be qe-additive functions such that
fe(bgk) =0 (1) as k — oo for allb € {0,1,...,q0— 1}. Assume that (ﬁé(g))n — 00,
as N — oo, for some n > 0 and let Py(x) be polynomials with integer coefficients

of different degrees Ty and positive leading terms, 1 < /¢ < d. Then, as N — o0,

1 fe(Pe(n)) — Mo(N"*)
N#{H<N Do (N <$e,1§f§d}—><I>(x1)(1)(x2)...q)(xd)
and
fe(Pe(p)) — My(N™)
F(N)#{p<N DqE(N”) <$Z,1§£§d}—>@(zl)¢(x2)(I)(:Cd)

Note that this theorem was stated only for coprime ¢, but this assumption is
not used in the proof and therefore not necessary.

The problem is the case of polynomials of the same degree. For d = 2, we show
the following theorem.

Theorem 3. Let q1,q2 > 1 be multiplicatively independent integers and let f; be
qe-additive functions such that fo(bqf) = O (1) ask — oo for allb € {0,1,...,q, — 1},
£ =1,2. Assume that

— 00 as N — oo, for some n > 0 and let Py(n) be



JOINT DISTRIBUTION OF ¢-ADDITIVE FUNCTIONS 3

polynomials with integer coefficients of degree r and positive leading terms, £ =1, 2.
Then, as N — oo,

1 fe(Py(n)) — My(N") _
N#{H<N Du(N") <xe,€1,2}a@(z1)¢)(x2)
and
fe(Pe(p)) — My(N") _ DDl
7_r(]\]):/'%‘é{p<]\7 De(NT) <.’L'g,£—1,2} (I)( 1)(1)( 2).

The first convergence was shown by Drmota [3] for linear polynomials and co-
prime integers ¢i,¢g2. In [4], Drmota and the author stated this theorem, but still
only for coprime integers. We will prove the case of multiplicatively independent
integers in Section 3.

Furthermore, we solve the problem of equal degrees of the polynomials for
strongly g-additive functions with respect to the same ¢ in the following section.
Note that this covers the case of multiplicatively dependent ¢i,qo since ¢;- and
go-additive functions are g-additive, if ¢;* = ¢35 = ¢. Then the distributions clearly
do not satisfy the independence relations of Theorems 2 and 3.

The main part of the proof of all theorems is a proposition similar to the following
one (which proves Theorem 2).

Proposition 1 (Drmota [3]). Let Py(n), 1 < ¢ < d, be polynomials of different
degrees 1y with integer coefficients and positive leading terms. Let A > 0 be an
arbitrary constant and hy, 1 < ¢ < d, non-negative integers. Then, as N — oo,

%#{R<N

Y4 .
€ (Pem) =00 1 <j < he 1< < d}
1

=+ 0 ((logN)_)‘)
qih q;w L. q;ld

#{p<N

0 g <
) € pt0 (Pe(n) = b ,1§j§hg,1§€§d}
1
_ L 0(teg M)
0’ g

uniformly for integers
(log N*)" < b < k¥ <+ < &) <log,, N — (log N")" (1< (<d)

(with some > 0) and b;e) €{0,1,...,q0 — 1}.

For a list of references of other results for g-additive functions, we refer to Dr-
mota [3].
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2. STRONGLY g-ADDITIVE FUNCTIONS WITH RESPECT TO THE SAME ¢

2.1. Results.
Theorem 4. Let f;, 1 < ¢ <d, be strongly g-additive functions with ¢ = o3 > 0
and Py(n) = gy) T4 (é)n + gO polynomials with integer coefficients and

positive leading terms. Then as N — oo,

1 fe(Pe(n)) — My(N™) _
N#{?’L<N Dg(N”) <zp,l=1,...,d H(bv(.’L'l,...,ZEd)
and
fe(Pe(p)) — My(N™)
N (=1,2,....d P e
ﬂ_(N)#{p< De(NT[') < Xy, 9 4y ) - V(-Tla axd)
where Py (x1,...,2q) denotes the distribution function of the d-dimensional normal

law with covariance matriz V. = (v; j)1<sj<d given by

1 ifi=3j
Oy (2 o if 99 () = g Py (n)
- TN\ 6% .98 (0% ,0)) ’ ‘
BTY r—max 890990 299 600} Ci g9 9t i =1
T (g('b) (J)) (g(l) (J)) J
0 else,
where
ijl qg—1 g—1 1
Ca] (glag] gy Z (ﬂ-b bj.giqt,g; T q_) fl( )f]( )
=0 bi=1b;=1
R;—1q—1 g—1 1
0i0j Z Z <7Tb¢,bj,gi,gqu - q_> fi( )f]( )

=1 b;=1b;=1
R
with Ry such that ¢|—L=— and
‘ d (47,9

1 ((bz +1)g — W) ((bj +1)g — bj_g)

Tb,bj,giqt,9; — Tbibj.g.9° = 3 99’2
min (b;¢’, b;g) + min ((bz +1)g’, (bj + 1)g) — min ((bz + l)g’,b]_-g) —min (big’, bjg)
Jr
99'q

where g = (—(}‘M;—) g = # and § denotes the representative y' of y' =y (q) with
95
0<y <gq. (m, by.gi,g;q0 1S given symmetrically.)

Remarks. If V is positive definite, we have, with t = (¢1,...,%4),

@V(:Cl, N eiétvilttdtl N dtd.
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()

If gr,” is coprime to g, then we have Ry = 1.

[ > Rj implies m,, . 4,41, = 7= for all b;, b;.
The my, 1, 4,q1,9; are the joint probabilities of digits k + ! and k of g;n and g;n
(which do not depend on k):

o bs.g50,9; = Prlen(gig'n) = biy ex(g;) = bj] = Prleryi(gin) = bi, ex(g;) = byl.

Note that we need C; ;(g;, g;) only for coprime g;, g;.
The constant term of the polynomials plays no role.

Corollary 1. Let Py(n) = g%)n” + 4 ggl)n + gée) be polynomials with integer

coefficients and positive leading terms. Then, as N — oo,

sq(Pr(n)) — 5+ log, N™
V b logg N7

1 Tq X1
- - e
(2m)4/2¢/det V /700 [oo

with the positive definite matriz V = (v; j)1<i,j<d given by

1
N# n<N <zp,l=1,....d

=SV g dty

1 ifi=j
9t 9 () _
Cij 0D .6D) (4D 4D if gr; P;(n) = gr, Pj(n)
o D.990) (499
Y0 T rimmaxds[ol) 09 #0900 ) gt o) ,
R W\ @Dy GO ) Y=
0 else,
and
Co(i.07) ?—(q,9)* — (¢,95)° +1
4,j\9i,95) = 2
9i9i(q® — 1)
R;—1 2 __ giql R.—1 42 _ gqu
1 — 4 (q’ (ql,gj)) — 4 (q’ (guql))
+ + —
9i9;(¢* = 1) ; ¢ ; ¢

Remark. For monomials Pp(n) = gen” with (g¢,q) = 1 we just have

For ¢ = 2 and r = 1, this was proved by W.M. Schmidt [6].
Furthermore, we can calculate the joint distribution of the sum-of-digits functions
for multiplicatively dependent ¢, go.

Corollary 2. For q1 = ¢°', g2 = §°* with positive integers q, s1, s2 and (s1,82) =1,
we have, as N — 00,

2l log,, N Sg (M) — q22_1 log,, N

1 Sq. (M
~# <N M)2 E <1, - <2
-1 —1
q112 1ogq1 N q212 1ogq2 N

_ 1 2,2
. o (t+3 2Ct1t2)dt1dt2

1 T2 xrq
e
271'\/ 1-— 02 [oo /700
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with

CtHl\/ (1 = V(2 — 1)
q—1\ sis2(qn +1)(g2 + 1)

For general strongly q,-additive functions, similar statements can be derived
easily. The case of multiplicatively independent q1, g is treated by Theorem 3.

2.2. A Markov chain and calculation of the covariance.
Define the polynomials

) = gOpre ... ) s =
P,” (n) Gry " 4o+ gg'n® for 1<s<r 1??@“

and fix s in this subsection.
Furthermore, define vectors

s s+1 r
(S) - - n n n
Wi (1) = (ke W) = <{qk+1 } ’ {qk“ } {qk“ }>

for 0 < n < N, where {z} denotes the fractional part of x and see, by Proposition 1,
that they asymptotically form a net to the base ¢ if k € [(log N, log, N* — (log N)”]
(but not for k& > log, N %). Proposition 1 gives rather bad error terms if we want to
calculate the number of w,(:) (n) in an arbitrary set of T"~5*1. Nevertheless, this
suggests that they are uniformly distributed and we use the Lebesgue measure as
probability measure on T"~5+1,

We have ek(Pé(s) (n)) = b if and only if
b b+1
(o0t v g} e [L 251,
q 9
This means that, for each digit b, {w,(:) (n) | ek(Pé(s) (n)) = b} (as a set of T"~5t1) is
contained in the stripe Séfe) between the hyperplanes g%)z” + -+ gg):cS = 2 (in-
cluded) and ¢z, + - +g{" 2, = ble (excluded). If P;S)(n) =0, set Séfg = Tr—s+!
and S} = 0 for b # 0.
Thus, each set {W](CS)(TL) | ek(Pl(S) (n)) = by,... ,ek(PCES)(n)) = bq} is contained
in Séf?l N---N Séj? 4 and each of these intersections consists of a finite number of

convex sets, the boundaries of which are the above hyperplanes. Let (Wj(s))lg <re

be the partition of T" induced by these sets (or equivalently by the hyperplanes).
Then fg|W(s) is constant for all £, j.
J

Furthermore, we have ek,j(Pé(s) (n)) = b if and only if Tj(w,(:) (n)) € Slgse) with
the map T : T" — T", T'(wk,s, - - - , Wk,r) = (QWks, - - -, Qg ). Hence

{n]eoP ) = b, e (P ) =}

- {n wil (n) e T7RSC) L wid () € SG) e}
0 s ko
and we define a sequence of random variables (Yk(s))kzo on {W P Wi Wi
by
PriY,” =w Ly =w =A@t W 0 r W aw)

for 1 < j; < ks, 0 <i <k. (N, denotes the n-dimensional Lebesgue measure.)
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Lemma 1. (Yk(s)) is a Markov chain.
E>0

Proof. Let U be the subspace of R"~*+! spanned by the vectors (gg), . ,gy)),
1 < ¢ < d IfU has (full) rank » — s + 1, then T is injective on each Wj(s),
1 < j < ks. Otherwise, Wj(s) contains with every point z all points « + U+ and
T is ¢°-to-one with § = r — s + 1 — rank(U). Furthermore, TW]-(S) is the (disjoint)
union of sets Wi(s), since the image of the hyperplane g%)z” + -+ gg)zs = 2 is
the hyperplane gﬁf)xw + -4 gge)xs = 0. Hence we have

Pry " =w® Ly =w

Jo 7 Tkl T T gk

= )\r—s+1(T_(k+1)Wj(j) A---Aw® )

Jk+1

1 —kyy7(s) (s) (s)
= FAT_sH(T Wirn-- w0 n TW].M)
1 - (s) (s) . (s) (s)
= { qTS)\TfSJFl(T ijo n---n ij ) if ij < Tij+1
0 else.
Thus
Pr(y), =W v =w Ly =w)
LT if W(s) - TW(é) s) (s s) s)
N { 0 ese YT Pr[Yk(Jrl = ijilwk( = Wj(k ],

i.e. the Markov chain property is fulfilled.

As already noted, each fy is constant on each Wj(s) because of Wj(s) C Séf?l NN Sh,d

for some b;. Therefore we define the d-dimensional function f on (Wj(s))lgjg,gs by

) = (fl(Wj(S)), . .,fd(Wj(S))) = (f1(b1), - -, fa(ba)).

Before stating a central limit theorem for f (Yk(s)), we study the covariance
Cov/( fi(Yk(is)), fj(Yk(;))). To this effect, the following lemma, which will be proved

together with Proposition 2, will be very useful. Note that Yk(s) - Slgse) is equivalent
to fo(Y,*)) =b.
Lemma 2.

Pr[yk(f) c Slgj,)i’yk(;) - SZE:,)]'] = Z Cmi,bs,qCmj,bj,q5 (1)

O PO
Mg, o5 T =0

q J

where ¢y, .4 are the Fourier coefficients of 1(y/q,(b41)/q)

() e ()

2mim

for m # 0.

€0,b,q = —5»  Cm,bq =
q

By Lemma 2, we have

Pr(v," € 5. v, C 1)1 = cop, gcon,.q = Pr[Yy € S{OIPry ) € 5% ]
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if the polynomlals do not have the same degree or are not proportional. Then
Cov(f;(Vi), ;) = 0.

Now assume r; = r; and that the polynomials are proportional. Furthermore,
let w.lo.g. k; > k;. Then the m; in (1) must satisfy migﬁz) = 0(gr %), ie.

m; =0 (—k‘l%) If k; — k; > R;, this implies m; = 0(¢). Hence we have
Cmi bi,qCmy b;,q = 0 for (mg,my) # (0,0) and

(q
Cov (fz(Yk(;)); f]‘ (Yk(]s))) =0 if kl - kj Z RZ or kj - kz Z Rj.
(For kj > k;, we get the result by the symmetry of the covariance.)
Since the Markov chain (Yk(s))kzo is homogeneous, we obtain

B(N) B(N)
Cov | > ) > £
k=A(N) k=A(N)

min(R;—1,B(N)—k)

B(N)
= Z Z Cov (fi(y(s) fJ( k+l))

k=A(N) l=max(—R;+1,A(N)—k)

BV - AN) Y Cov (AH L) + 0 )

l=—R;+1
for A(N) =[(log N)"],B(N) = [1ogq N] — [(log N)™].
Now we can state the central limit theorem.
Proposition 2. The sums of the random variables f(Yk(S)) satisfy a multidimen-

sional central limit theorem with convergence of moments. More precisely, we have,
for alla = (ay,...,aq) € RY, as N — oo,

B N s d ar T
( )N) Ze 1 ;Z‘fé(y( ) - Doi—1 o My(N)

- N (O,aV(S)at) , (2)
B(N) — A(N)
where the covariance matriz V() = ( Z(Sj))K' ‘<d s given by
<ig<
-1
o8 — C Y(S
Vi 0i0; l:§+1 oV (fz( ), fi k“))
and for all integers hy > 0 we have
h
d B(N) N _ 77 ¢
N) fZ(Y ) MZ(N) / h h
E xi e xhdd (5)(.T1’...’:L'd)- (3)
g Dg(N) 1 d 14
Proof. We have
d B(N) @ - B(N) o "
Varz Z ZZCOV Z ;fi(Yk ), Z U—]_fj(Yk )
(=1 k= AN) i=1 j=1 k=A(N) * k=A(N) 7

:(B(N)_A(N))Zzai“j Y Cov (fi(Y(S) £i( ,Hl)) +0()

i=1 j= 19195 = —R;+1
= (B(N) — A(N))aV®al + 0 (1).
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If aV(®)a® = 0, then 390 _, Zk A () agfg(Yk(S)) = O (1) and both sides in (2) are
Z€ero.

Otherwise, use the central limit theorem for stationary and homogeneous Markov
chains or ¢-mixing sequences (see e.g. Billingsley [2], p. 364) which holds if all

states are recurrent and aperiodic. For Y(S) this condition is satisfied, since we
clearly have an integer m such that TmW(s) Tr=s+! for all Wj(s) and hence

Pr[Yk(i)l = Wj(lil |Yk(s) = VVJ(kS )] > 0 for all [ > m. This implies the @-mixing prop-

erty for Xj = 22:1 agfg(Yk(S)) and the central limit theorem holds for X, too.
(Note that X} need not be a Markov chain, if Z?Zl ag fe is not injective.)
For the convergence of moments, it suffices to show that they exist. The onedi-
mensional moments are
B(N s Vi he N Vi
Sy fe (V) = ML (N) 1 Py felex(n)) = To(N)
Dy(N) N Dy(N)

n<N

he

E

and converge therefore (cf. [1]). The multidimensional moments converge since
- 1 AN -
E ‘X}(,va < (EX%)? (E XJQVS) > holds for all random variables Xy, Xy. Thus
the proposition is proved.
For the calculation of Cov(f}(Yk(S))7 fj(Yj(S))), it suffices to consider Y3 = Yk(l)

and linear polynomials because of Lemma 2 and the succeeding remarks. For the
sum-of-digits function, we even get explicit expressions.

Lemma 3. Let Pi(n) = gin, Pa(n) = gan and f1(n) = fa(n) = sq(n). Then the

covariance of f1(Yr) and fao(Yy) is given by

(¢* —di —d3 +1)(g1.92)°
129192

Cov(f1(Ye), f2(Yr)) =

where d; = (q, (glgfl%)) and dy = (q, ﬁ).

Proof. The covariance is given by

Cov(f1(Ye), f2(Yr)) (5)

-1 ¢g—1
Z rlex(g1n) = b1, ex(gan) = ba]bibs — E f1(Yi)E fo(Yi).

: (4)

I
u MQ =

Because of Lemma 2, the digit probability does not change if we replace g1, g2
by (91 gZ) (91 gZ) Therefore assume (g1, g2) = 1. In order to get integers, set

by b, = q9192Pr[ex(g1n) = b1, €x(gan) = bo]

x x
#{ze{o,l,...,qglgzl}‘[—] = by (g) H bz(q)}-
g2 g1
We study A, ; = Zbl — 12@ —q—j Qb1 b, because of
q—1 q—1 g—1 g¢—1 q—1 gq-—1
5 8 = o
b1=0b2=0 i=1 b1=q—1i j=1 ba=q—j
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For every x in the set corresponding to ap, p,, (¢9192 — 1 — ) is in the set
corresponding to aq—1-p, q—1-b,. LTherefore we have ap, b, = @g—1-b,,q—1—b, and

i—1 j—1

Ay =" anp,

b1=0b2=0

=#{z €{0,...,99192 = 1} [z =0,...,ig2 — 1(q92), 2 = 0,..., jgr — 1(qg1)}

Since (qg1,q9g92) = g, the system of congruences = = x1 (qg2) and = = 22 (qg1)

has no solution z if 1 # x5 (¢) and a unique solution modulo ¢gigs for 1 = x5 (¢)

If we denote the representative y’ of 4/ = y (¢) with 0 <y’ < ¢ by 79, then

 —@ —(@
Aij = igs Jg1 — Jg1 +]—(q) 192 — 192 +min(@( )7]91(11))
q
19291 i92( )E( ? —(q) —(q)
= - +min(iga ", jg1 )
q q
Hence
qg—1qg—1 2 qg —1q -1
1 —d —d .
Y 4 = 7%%92 _ale j@ 2 L didy 33 min(ids, jd)
i=1 j=1 i=1 j=1
where ¢’ = ¢/d; and ¢” = q/ds. We have
q//_lq/_l
Z Z min(idg,jdl)
i=1 j=1
—1 —1 -1
q ng q ]dl 1
o) o1 - Ea
2 i=1
and
¢ -1 -1 "_q "_q
do . da 1 ——(d1)
/o 1— 'L_ —_ !/ 1 e 2 - d
Silv-[R]) X2y z z




JOINT DISTRIBUTION OF ¢-ADDITIVE FUNCTIONS 11

With
2dq
d dlfl (d) d d171 {@] dl*1
2 ——(a1). 2 .2 . .
—= d == doi” — dii—-- — do — 1)d
i= i= i:[%}ﬂ—l i:{ 2d2) 1}+1
2o, T
i=1 i=1 i=1
:dg(d1 —1)(2d; — 1) _ do(dy — 1)(dq — 1)d4
6 2
2— . ——(d . —(d
+dzl (G =G ™ + do)(jdy — 5di ™)
. 2d,
j=1
_ B 31 didy  did 3y dy dil 7
12 4 !
Jj=1
we obtain

1 =la _1)2
9192Cov(f1(Yz), fo(Yx)) Z:z_: 9192 1 )

(g—d)(g—ds) ¢ —di  —dig—q—didy +3didy

B 1 e T 4
d% +d% +1 d%dg + dld% — 3d1ds
12 4
n q2 —d% " —dgq—q—dld% + 3d1da " q—d1d2
6 4 2
P -di-di+1

12

and the lemma is proved.

Clearly we have

Abi‘i’lqb]“‘rl - Abiyijrl - AbiJrLbj + Abiﬁb]‘
49192

Prlex(gin) = b1, ex(gan) = bo] =
for (g1,92) = 1. Thus

PP[Gk(gm) = b1, (92n) = b2] = Tb1,b2,91,92

first for (g1,92) = 1, and, with Lemma 2, for general g, g2. With the remarks
succeeding Theorem 4, we get

ot g9 .
1(3) Cij (( %),ggn) D9 m)) if gﬁﬁ)Pf )( )—ggl)P( )( )

0 else.
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For ¢1 = ¢°* and ¢2 = ¢°%, fi(n) = sq,(n) and fa(n) = sq,(n) are strongly
g-additive functions with ¢ = ¢;2 = ¢3*. Then, for Pi(n) = Py(n) = n, (Yi)k>o is
clearly a sequence of independent random variables and

[V = Xo+GX 1+ 43 X, 14+ X+ 4G T Xog, 14+ 4G X 6y 1,

fo(Yi) = Xo+GX1+- 432 ' Xgy 1+ X+ 462 Xogy 14+ G2 Xy 6n-1,

where (X,;)o<j<s1s.—1 1S a sequence of identically distributed independent random
variables on {0,1,...,4 — 1}.
Hence we have

S182—1

Cov(f1(Yr), f2(Yk)) = Z cjVar X,
=0

where ¢; runs through {G*:0<a<s —1,0<b< sy—1} because of (s1,s2) = 1.
This implies

o
Cov(f1(Yi), fo(Yz)) = & D (I+G+-+@ N (Q+g+---+¢2")

(@+ 1)@ =1)(g” - 1)
127 1) '

With 0?2 = Var f1(Yy) = s2(¢? — 1)/12 and 05 = Var fo(Yy) = s1(¢3 — 1)/12, we
get for the normalized covariance

Cov(fi(¥), oY) _d+1  (an—Dle2—-1)
0102 ‘1*1\/8182@%—1)@%_1)

2.3. Comparison of moments.
It remains to compare the moments of fy(Py(n)) to those in (3). We need the
following proposition (cf. Proposition 1).

Proposition 3. Let Py(x), 1 < ¢ <d, be integer polynomials with positive leading
terms, A > 0 an arbitrary constant and hy, 1 < £ < d, non-negative integers. Then
for integers

(log N)" < ki < k) <+ < ki <log, N — (log N)" (1< ¢<d)
(with some n > 0) which satisfy
KO ¢ (1ogq N* — (log N)", log, N* + (log N)")

for all1 < s <ry—1, we have uniformly, as N — oo,

%#{R<N

e (Pem) = b0, 1< j < he1 <0< df

.....

_ (s) -
— Hpkg)’___’k’(ld)’b(ll) bf) + O ((logN) )
=1 d d
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and
_ 30 ;
P < Nao @) =¥ 1< i<k se<d)
Y
- Hpku) B + 0O ((logN)™%)
with

(s) ) Pr [ (S,Z)) c st (15) for all (j,0) € KS] if Ks 210
Pray L p@ @ =
Lo Thg L 2Ry 1 else,

where
K, = {(j,z) ‘k;y) € [log, N*' + (log N)", log, N* — (log N)"] } :
Proof. We follow the proofs of Lemma 5 in [1] and Proposition 1 in [3]. Let ¢ q A (2)
be defined by
ﬂ%%A@)Zgg/a Lio/q,0+1)/q) ({2 + 2})d2
N

Its Fourier series Y

. . 1
mez m bg.ae(ma) is given by dm 09,4 = 5 and

o) e (-mEEY) ( (ma) o (-ma
dmb,g.A = Smim Ey—y for m # 0.

Clearly we have

Voq,a(x) =
‘ 0 1fze[0,1]\[g Ab+1+A}
If we set
L ye
t y1,...,yd HH’I/)I)([)#H, O )
¢=1j=1 qej

then we get for A < 1/(2q)

’# {n <N ’ek@ (P(n)) = b, 1< j < he1<l< d} — 3" HPu(n), ..., Pa(n)
! n<N
d hy
Py(n) _
ZZ n<N k(.[—)-l-l EUb;['),qg,A < AN+N(10gN) A
(=1 j=1 qu
with Upqa = [0,A] U U [— — A2 —|—A} [1 — A,1] and Lemma 4 of [1]. For

b=1
primes, we get a similar statement.
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Hence we have to consider the sums

D= tPi(n),... = > Tm > e(my-viPi(n)+--+mg-vaPa(n)),

n<N MeM n<N
where M is the set of all (my, ..., mg) with integer vectors m, = (mg ). mgi))
d he
™ =[]]]¢ m® b q
¢=1j5=1
SO —kjy) =1
and vy = | g, yee sy

First of all, set A = (log N)~° with an arbitrary (but fixed) constant § > 0.
Then we can restrict to those M for which |m§€)| < (log N)?® for all j, ¢ because of

h—1
= 1 = 11
2 Iml<| > on (me(lvau—nﬂ»

3¢,5:|m”|> (log N2 m=[(log N)??] m=0
1 1\h1
< Z(logN)_6 (log Z) < (log N)™9/2,

where h = hy +- - -+ hq. Furthermore, it is sufficient to consider just the case where
mge) # 0 for all j,¢. (Otherwise, just reduce hy to a smaller value.)
Set
QM(H) =my - V1P1(n) +---+mg- vde(n).

We have to check whether Qni(n) has degree r and satisfies the conditions of
Lemmata 1 and 2 of [1] saying that

N Z O ((log N)™™),

n<N

- 53 e(P) = O (o))

(N
p<N

as N — oo, hold if the the leading coefficient of P(n) is 4 with (4, H) =1 and

(log N)" < H < N"(log N)™ " (6)
for some 7 (depending on 7).

The coefficient of n” is, if we set kpnax = maxy k}(fg),

(£) O]
O m® gl —H§ $Om® gk

Am r My ]
H - Z qFmax T Z qFmax (7)
(4.0 €Ky (4,0 ¢Kr

with (An, Hm) = 1. If A # 0, then (6) is satisfied. If Ay = 0, assume
kmax € K,.. Then we obtain

Z ggé)m(f) kmax =k — () (qkmax—(logq N“l—(logN)")) .
(G OEK
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(
Because of |m§€)| < (log N)?, this implies Y G0ek, gg)my)qkmx*k]‘e) = 0. Hence
Am = 0 if and only if both sums in (7) are zero and we have

%#{R<N

e (Pem) =t 1< j < he1 <0< df
1 .
= # {n <N }ek;@ (Pu(n)) = b, (j, ) € K}

1

ey (Pe(m) = 67, (5,0) € I, | + O (log N) ™).

Now we can repeat the arguments for (j,¢) € K,_1 and get inductively
1
—# {n <N

N
H’“ 1
s_lﬁ#{n<N

e (Pem) =t 1< j <he 1 <0< df

ey (Pu(n) = b, (j,6) € K} +0 ((log N)™).

Hence we may assume from now on that all k]@ are contained in one set K for
some s < 7.
If the degree of Qn(n) is smaller than s, we have

(log N)?° Ns—1 (log N)?°
|QM(n)| < qlogq Ns=14(log N)n = q(logN)"

for all n < N and, with e(y) =1+ O (y),

>, Tt (Z e(Qum(n)) — N

N (log N)20(+1)
q(lOg Ny
|m{?|<(og N)?* deg(@u(m)<s NN

Thus we can treat these Qn(n) as if they were the zero polynomial and it suffices
to regard the polynomials Pé(s) (n) and

QW) (n) = my -vi P (n) + -+ ma - vaPy (n).

(6) is satisfied if and only if QS[) (n) # 0 and we obtain

Y=N > Tv+0O | N(log N)™™ > | T
MeM:Q{Y (n)=0 MeM:|m ?|<(log N)25,Q5; (n)#0

+0 (N(log N)™/2) + O (N(log N) ™) .

Since the main term ZMeM‘Q(S)( Twm depends on A, we have to replace Ty
UM

by

n)=0

d hy

/o
Ba= T eno 0.

1=1j=1
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Hence we have to estimate the difference EMeM:QM(n)EO(TM —T{y)-
We clearly have

V4
dm(e) b g A = Cm;€)7b§£)7q (1 + O (m§ )A))

3 05 4

as A — 0 and therefore

Tv =Ty (1 +0 (n;zzx mge)A)) ) (8)

First assume |m§-e)| < (log N)*/?for all j,£. From (8) and c_ () . , < min (1, s ),
Jo0vi j

we obtain

3 Thg — Tl < 3 | Tagl(log N)~*/2
MeM:|m?|<(log N)3/2 MeM:|m V| < (log N)3/2

[og )32\ "

1
< > ~ (log N)~%/2 <

m=1

h
(log(log N)%/2) 5
Aever ) log N)~—9/3
It remains to estimate the Ty and 73, with |m§-e)| > (log N)%/2 for some 7,

which satisfy the equation QSI) (n) =0, ie.

@
S g0k k(O = o,
I

By Lemma 14 of [4], we get

__ s
> Ty < (log N) ™ 2012
MGM:Qﬁ)(n)EOJm;[’HZ(IOg N)8/2 for some j,¢

and the same estimate for T;. Note that this lemma is stated for a linear equation
where one of the coefficients is 1, but the proof can be easily adapted for general
linear equations.

Hence

~(s) s
2 T = pl(csi“,...,kf),bi“,...,bid) +0 ((log N) 2(’“”2) ;
MEM:QSI)(n)EO d d

where -
~(s o /
Py @ @ = E Tm
JEERERE) hg U1 oo hg )
MeM:Qy, (n)=0

and we get
¥ =Np® s + O ((log N) ™),
hq

for § =2(h —1)?X and 70 > \.
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It remains to prove that the ﬁl(:(z) L@ () @ are the probabilities defined by
R

1111111

the Markov chain.
We have

{n <N ‘ekj@) (P () = b for all (j,1) € K}

s 9 s
— e Nl e () TS
(J,6)EKs

and this intersection consists of a finite number of convex sets, which can be arbi-
trarily well approximated by elementary rectangles

T

| Zb :

i=s [ j=1

By Proposition 1, we get

%# n<N|w eﬁ Zb“ _JZb)_J—i-q Ji

1 : 5 (4) . .
:—#{n<N‘ekmax_»+1 n') = b; ,1§3§J',s§z§r}—>7,
N i+1( J ¢ q’s .. .q7

if kmax < log N—(log N)" and J; < kmax — (log N)7. This means that the density in
each of this rectangles converges to its Lebesgue measure. Since we do not change

O s . . . . .
ﬂj,e ' kma"S((l) if we shift all k](_e) and increase N, the J; can be arbitrarily

large. Therefore p;(z)
™ .

p(S)
IS (@ (1) (@
R S 1

This also implies Lemma 2 (d = 2,hy = hy = 1).

.......

L@ @ must be its Lebesgue measure, which is just
Whgo

NTe)

)

Proposition 3 shows that we have to replace f; by fé

re (s—1)log, N+B(N)

(Pe(n)) = > fe(er(Pe(n))).

s=1k=(s—1)log, N+A(N)

NTE)

fe

Note that fe (Pg( )) = fe(Pe(n)) + O ((log N)7). Similarly define M,(N") and
Dy(N™) by taking the sum only over these k. Note that these definitions are
slightly different from those in [3,4] (and [1], where f is denoted by fi).

Corollary 3. We have

he
7o (Pu(n) = M (N7)
N Z H ( ¢ DZ(NT[) )

n<N (=1

(s—1)log, N+B(N) he

T (s) AT T
Eﬁ Zéil Zk (s— l)logq N+A(N) fl (Y ) 7M€(N 2)
Dg(N”)

(=1

— 0
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and
—(N"¢t) — - he
1 SO (L (Pep)) — My(N™)
7T(N) oy et Dg(Nw)
1)log, N+B(N) (s) — . he
Eﬁ Zk (s—1)log, N+A(N) ff (Y )*MZ(N[) 0
N
=1 Dy(N™) 7

where the Yk(s) and Yk(,sl) are independent if s # s'.
Proof. The second terms are the sum over all integers

re—1

K9,k € [A(N),log, N™ — A(N)]\ | [log, N* — A(N),log, N* + A(N)],

1<0<d, of

d  he fl ( k((e))> - ‘ué,k@)
E ]

H H Dy(N™e)
(=1j5=1

q—1 q—1 fl = g

d hye
= (z): z): H 1:[ W)]P [Y((‘?) c S(“) for all j, 4 :

where the s are such that k(é) € K. Since the Y((E) are independent for different

s, we have

Pr {Yk(?) C SIS?) for all (4, ¢ ] H Pr {Y((‘?) c st m for all (j,4) € K. }

s=1

and, by Proposition 3, the corresponding first terms are the same up to an er-
ror term of O ((log N)~*). Hence the convergences are valid with error terms
O ((log N)=A+h=hm),

Similarly to Corollary 2 of [3], we obtain

N Z H (fe Lo N%(N”W

n<N (=1
) Ve he
1 (Pe(n)) = My(N™)\
Il < DAV ) ’

n<N€ 1

and therefore, by the method of moments (see e.g. Billingsley [2], p. 390),

Dg(N”)
logq N+B(N) (s) J— ,

Z Zk (s— 1)logqN+A(N)fe (Y ) 7ME(N 2)

Dg(N”)

<1‘g,€1,2,...,d}

— Pr

<zp,l=1,...,d
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Clearly we have My(N"¢) = r;M;(N), Dy(N™)? = r;D;(N)? and
T (s=1)log, N+B(N) (s) AT (NT
Dam1 Zk:(s—l) log, N+A(N) fe (Yk ) — My(N™)
E@ (N”)

1 sz A(N)fé( )_MK(N)_}L
o0/B(N) —A(N) + 1 N

(280 + -+ 27)

by Proposition 2, where the Z(9) = (Z{S), ce Zés)) are independent normally dis-
tributed random vectors with covariance matrices V(*). (For s > 7, we have
fg(Y(s)) 0= Z(é) because of P(s)( ) =0 and S(‘S) Tr—st+1)

Hence the sum is normally distributed and the elements of the covariance matrix

/' are given by
1 (€)) (r)
(U Tij(vm»Jr“'Jr ”)
(s)

For r; # rj, all v;; are zero, as well as for all s > r;. If gg)Pi( ) = gﬁf)P»( ), then

oM = =) — - If we just have r; = r; and g(]) 9 = gD for all s > o,

i,j i,3
C= v(T; and v, 3) =0 for s < &'. Therefore v; ; = “};Sv(zl)
PR
the covariance matrix has the stated form.

The corresponding statements for primes are obtained similarly and this con-
cludes the proof of Theorem 4.

and

3. PrROOF OF THEOREM 3
We have to prove the following proposition.

Proposition 4. Let ¢q1, g2 be multiplicatively independent integers and Py(n), Pa(n)
integer polynomials with positive leading terms. Let X > 0 be an arbitrary constant
and hi, ho mon-negative integers. Then for integers

(log N™)T < k%“) < k/’y) <-e < k:,(li) <log, N™ — (logN™)" (£=1,2)

(with some 1 > 0), we have, as N — 0o,

1 1 2 .
N#{ €guniv (P1(n) = b} )’qu,kf) (Po(n)) =bP 1< j< he}
1 —
= = + O ((log N) )
41 92
and

—p@ —p2 ;
it {p< N ey an Pr(m) =0, c o (Palm)) =671 < j < e

1
= T + O ((IOgN)i)‘)

q1 92

uniformly for b;e) €{0,...,q¢— 1} and kée) in the given range, where the implicit
constant of the error term may depend on qg, Py, hy and .

For the proof we need the following three lemmata. The first one is a corollary
to Baker’s theorem on linear forms, in a version due to Waldschmidt [7].
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Lemma 4 (Corollary 3 in [3]). Let k1, ko be positive integers, qi1,qa positive real
numbers and my, mo real numbers such that S+ + 5% # 0. Then there exists a
q, qo

constant C' > 0 such that

77;;1 WIZ > max |77;;1| , |T'Zj| e—Clog q1 log g2 log(max(k1,k2)) log(max(\m1|,|m2|))-
q1 d> q P

The next lemma is an adapted version of Lemmata 1 and 2 of [1] which are due
to Hua [5] and Vinogradov.

Lemma 5 (Lemmata 10 and 11 in [4]). Let P(n) be a polynomial of degree r
with leading coefficient 3. For every 19 > 0, we have a 7 > 0 such that
N7"(logN)" < < (logN)™"

implies
+ 3 e(Pm) = 0 ((log N) ™)
n<N

and

) > e(P(p)) = O ((log N)™™)

as N — 00.

Proof of Proposition 4. As for Proposition 2, we have to estimate the sums

Y= Z Tml,mg Z e (m1 . V1P1(7’L> + my - VQPQ(TL)) .

(my,mz)eM n<N

The case of different degrees of the polynomials is treated by Proposition 1. So
we can assume that they have the same degree r1 = ro = 7.

As in the proof of Proposition 2, we fix A = (log N)™° and restrict to those
(my, my) for which |m§-e)| < (log N)?° and mge) # 0 (qe) for all j, .

Suppose now gf«l)ml -vi + gﬁQ)mg -vg # 0 and set € = n/(h1 + ha — 1). Then

there exists an integer K with 0 < K < h; + he — 2 such that for all j and ¢/ = 1,2

4 4
B — k0 ¢ [(log V)2, (log N)F+D=)

So fix K with this property.

First suppose kﬁ)l — ky) < (log N)X¢ for all j,¢. Then we set

he ® _ .0
¢ k" —k;
g = g E m; )qeh"' T (t=1,2)
=1

and have log [m7,| < (log N)%¢. We can apply Lemma 4 to

m ma

(1) (2) _
() mi-vp =+ () msyo - Vo

" " kD41 kD41
a1 qs
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and obtain

1 2 —kp) =1 k) -1 log log N (log N)¥¢
gﬁ)m1-vl+g§)m2-vQ’2max @ Mgy ) emclosls N lost)

(log N)"e—clog log N (log N)*¢

-, max(q1, g2)

> RE
phithy—2

elog(max(q1,q2)) (log N)" —clog log N (log N)" F1+72=1 . (log N)"

>
- NT - NT

for some constant ¢ > 0 and all 7 > 0. Because of

(71 + ha)(log N)*
min(qy, gz)~(es M)’

¢tmy v+ ¢Pmy - vo| <

Lemma 5 can be applied.

Otherwise we have some sy, £ = 1,2, such that EO I<:§e) < (log N)¥¢ for all

J+1
Jj < s¢and kii)ﬂ — kY > (log N)E+De . Here we set

Se kgg)_k(é)
my = gﬁe) Zmy)qé e (t=1,2).

j=1

and have again log |m,| < (log N)¥¢. Furthermore, we can estimate the sums

he m§e> 25 —ks,—(log N)(K+1)E
— Se
g o= O | (log N)=gq, .
Jj=se¢t+1 qej
Thus we get
__ __ h1 (1) ha (2)
g(l)m1 vy Jrg(2)H12 .VQ‘ S | 4 my | My | J2
" " | B4 k241 _ Z k(D41 _ k(241
a1 43 Ji=s1+1 g7 Ja=s2t+l gy

B SR G I CO | Ke
1 ED) —cloglog N (log N
> max <q1 s e glog N (log N)

s R SO | e
-0 ((logN)% max (fh g )e(logN)(KH) )

W1 _p@_
> max (fh f P £oz 1) ¢—cloglog N (log N) ™
)

and Lemma 5 can again be applied.
If g1 and ¢» are coprime, then we have gﬁl)ml -vi + 97(«2)1’112 - vy = 0 only for

m; = my = 0. Otherwise we may have other choices of (m, ms).

Set ¢ = (q1,¢2) and @1 = ¢1/q, §2 = q2/q. Assume, w.l.o.g., kéll) > ki) Then
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we have
h 1) h 2) (2
L gD e @)
DTt o
hi=l g™ jo=1 gy
1 1 2 1 1 2 2
m(l)qkil)*kﬁ)qki;qk,‘iﬁk?) g m® qkil)*kﬁz )qqki;qkﬁjl)fkﬁjl)fler(l)qki;
oM % 2 hi—191 2 hy 92
= kD kD
~y 1 5 N2 hq
q 92 "¢

(1)
k 1) _p(2)
+o e miD g g
2

D @ )
LR RN

G1 "Go 2q M

(1) (2) (2
2) Ky Ky, —ky qkﬁlll)—kf)

where we have omit the “+1” in the denominator for simplicity. (Just consider
k]@ — 1 instead of kﬁe).) Hence we must have

W gD R N ) PN ¢ kY
1 1) Fny =k D 1) <Fny, —Fn o1 B gD Ly _ ki,
gﬁ)(ml G 1 q M 1 +'”+mh171Q1 1 1 th hq 1+mh1 =0 q 1 .

(9)
Of course this is useful only if ¢ > 1, which we assume first. We have to
distinguish several cases. (9) implies

JRCORACY kD g0 D
b 2o ()

forallj,1 <j<h;—1.1If kj(i)l fkjm > (log N)¢ for some j, then |m§é)| < (log N)?
implies that the left hand side of (10) must be zero. Hence mgll) = 0(q1) which
implies T, m, = 0 since we have excluded mglll) =0. If k](:_)l - k]m < (log N) for

all j, then the left hand side of (9) must be zero and mglll) =0(q)-

Now consider the case §; = 1, i.e. g1|¢g2. Then we have to check

3 o m E® o m 3
1 1) Fry k'’ —k 1 Fhy k'’ —k 1) P
gt) (mg A R Y AL A T TR I A S (11)
@) _ .2 @) _ @
9y kP —k® L@@ o KP-E® . Lm_ @ 9 B _p®
9 (m§ A et Mt A S S e e

This implies

(1) (2) k_(Z)_k_(Z) k(z)—k(z) k_(Z)_k_(Z)
2) Kk, —k (2) Fn J+1 (2) h ho—1 (2) Ry, j
95 )q h1 ™ hy <mj 192 ° e tmy gy Amy | =01(¢

(12)
for 1 <j < hs—1 and for j =0, if we set k((f):&
Assume first k,(lll) — k,(;) < (log N )¥/2. Then we can do the same reasonings as

above and obtain m,(i) =0(go).

The last (and most difficult) case is k:}(lll) - k,(;) > (log N)/2. First suppose that
g» has some prime divisor P2 fq. Then we get from (12)

2)_ () 2)_ () @) _ (2
9y kD kS 9y kD -k 9 kD kS
gt <m§'+)1q2h2 B 7n§'+)1qzh2 e m;zz)> =0 (pzhz ’ >
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for 0 < j < hy — 1 and again mi) = 0(g2). Suppose next that ¢ has some prime

divisor p fg>. Then we have
gv (mgl)qk&_kgn o mgll)_lqk&),k;llhl " mgl)) =0 (pk&uc@)

and we can do the same reasonings with /h; instead of .
It remains to consider g and §» with prime factorisations ¢ = p{* ...p%, G2 = p{* ... p%,
where all e; and é; are positive integers. Let us rewrite (11):

S (2) 5 (1) _ 1.(1) S (25
1 k €1+(k5 —k )67; 1 k' é;
g? <m§)llpih2 R | )
=1 =1

S S
(k(Z)_k(Z))~i+(k(1)_k(2)) ; (k(l)_k(z)) ;
(i AT )

A
=1 =1

By assumption, ¢; and ¢2 are multiplicatively independent. Thus we have s > 2
and e;/é; # e;/€; for some i, j. Therefore k,(i) é; — (k,(Lll) - k,(i))ei cannot be zero for

€/2 for some i. Let

all i and the difference must be at least 3 (log N')
1
1 2 2) -
(ks = ki) e, — i3 @i, > 5 (log N)*/2,
Then we have

S (1) (1) (1) (2) (2) 5
k' —k i k' —k in—k i
gﬁl) (mgl) I I pl(' p e 4+t mgﬁ) =0 <p§0h1 hy V€0~ € 0)
=1

and we can again do the same reasonings. Similarly
2) - 1 2 1
kD&, — (kY — k)eq, > 5 (log N)*/2

leads to

i=1

S D k@) (e, 1 </2
g <m§2)Hp§ e TR )+---+m§fj> zo(pfo(logm )

and the same result.
Hence, we finally get

1
Z |Tm17m2| ) ‘N Z e ((gv("l)ml “V1+ g7(~2)m2 : V2)n)

(ml,mg);é(0,0) n<N

=0 ((log N)—6/2) o) ((1og N)2(h1+h2)6—,\) 7

which completes the proof of Proposition 4.
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