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Twistors and 3-symmetric spaces

Jean-Baptiste Butruille

Abstract – We describe complex twistor spaces over inner 3-symmetric spaces G/H, such
that H acts transitively on the fibre. Like in the symmetric case, these are flag manifolds G/K
where K is the centralizer of a torus in G. Moreover, they carry an almost complex structure
defined using the horizontal distribution of the normal connection on G/H, that coincides
with the complex structure associated to a parabolic subgroup P ⊂ GC if it is integrable.
Conversely, starting from a complex flag manifold GC/P , there exists a natural fibration with
complex fibres on a 3-symmetric space, called fibration of degree 3.

1. Introduction

Twistor theory is a story that begins in dimension 4 : let (M, g) be an oriented
Riemannian 4-manifold, because of the decomposition, at the Lie algebra level, so(4) ≃
sp(1) ⊕ sp(1), the bundle of 2-forms splits into

Λ2 = Λ2
+ ⊕ Λ2

−

The twistor space of M is defined to be Z , the unit sphere bundle in Λ2
−. It can be seen

as the bundle whose sections are the almost complex structures (or the Khler forms)
on M , compatible with the metric and orientation. It is this last definition we use in
even dimension higher than 6. The fibre Zx ≃ CP (1), or the vertical distribution, are
equipped with a natural, and in fact with two opposite complex structures which may be
completed using the horizontal distribution induced by the Levi Civita connection : the
resulting almost complex structure J1 on Z is integrable, for one choice of orientation of
the fibre, as soon as the manifold is self-dual, meaning that the Weyl tensor takes values
in Λ2

+, while with the other choice of orientation, we get an almost complex structure
J2 never integrable.

Unfortunately, this has much to do with the representations of SO(4) and generalizes
quite bad in higher dimensions. However, solutions to the problem of finding complex
twistor spaces over a Riemannian manifold M of dimension 2n ≥ 6, non locally con-
formally flat, exist if we suppose it is equipped furthermore with some G-structure,
G  SO(2n). We enter then the field of special geometries. So far, the research on spe-
cial geometries and twistor spaces has been mainly focused, quite naturally, on special
holonomies (for example Khler, or quaternion-Khler manifolds), including symmetric
spaces. We are interested here in special geometries with torsion, i.e. the case where
the G-structure is not underlying a Riemannian holonomy reduction.
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Nearly Khler manifolds are quite representative of the special geometries with torsion,
for several reasons. Firstly they consist in almost Hermitian manifolds (M, g, J) which
are not Khlerian, but not either complex (J is not integrable), nor symplectic (the Khler
form ω is not closed). So they are as far as possible of integrable structures. However,
the condition imposed on the G-structure to define them is quite simple : we ask ∇ω,
where ∇ is the Levi-Civita connection, to be a 3-form, ∀X ∈ TM , ∇Xω = 1

3
ιXdω.

Secondly, the classification of nearly Khler manifolds is intimately related to a class
of homogeneous, non symmetric manifolds (such a homogeneous space K/H is thus
an example of a H-manifold with torsion) : the 3-symmetric spaces. Indeed, it was
shown in [9] that all homogeneous nearly Khler manifolds are of that type and in fact
these are the only compact (or equivalently complete) known examples. And thirdly,
in dimension 6, nearly Khler manifolds have a further reduction to SU(3) and belong,
though not to the series of special holonomies, to another series : the weak holonomies,
like Einstein-Sasaki manifolds in dimension 5 or nearly parallel G2-manifolds in dimen-
sion 7. Khler geometry, Riemannian holonomy, symmetric spaces : the study of nearly
Khler manifolds gives a generalization of these three notions that doesn’t consist only in
weakening the definition but in imposing new, orthogonal conditions that still determine
useful identities, for example on the curvature (this constitutes one of the motivations
given by the major contributor of the field, Alfred Gray, see e.g. [18]).

Moreover, nearly Khler manifolds are already related to twistor theory. Indeed, it was
shown by Eels, Salamon [15] that the twistor space Z of a self-dual Einstein manifold has
a natural Khler structure (g1, J1) (cf [17, 20]) but also a natural nearly Khler structure
(g2, J2). The same holds, as proved in [1] or [21], on the twistor space of a quaternion-
Khler manifold with positive scalar curvature. And if the base is symmetric, then Z is
a 3-symmetric space. On the other hand, S6 ≃ G2/SU(3) has a complex Riemannian
twistor space, because it is locally conformally flat, and inside this one, a reduced twistor
space, isomorphic to G2/U(2), invariant by SU(3).

Inspired by this last example, we look, in this article like in a previous one [10],
for twistor spaces with integrable almost complex structure on nearly Khler manifolds.
According to Nagy [22], nearly Khler, complete, simply connected manifolds decompose,
in all dimensions, in a Riemannian product of :
(i) 3-symmetric spaces,
(ii) twistor spaces of non locally symmetric, irreducible, quaternion-Khler manifolds,
(iii) 6-dimensional, non locally 3-symmetric, strictly nearly Khler manifolds.

In [10] we were concerned by (iii), i.e. 6-dimensional manifolds, going back to a prob-
lem left opened by O’Brian, Rawnsley [23]. The results were not fully satisfactory, from
our point of view, since only S6 and Khlerian manifolds, or almost Hermitian mani-
folds locally conformal to them, were given a complex twistor space with our method.
We consider now the case of (i). This time we were able to generalize the fibration
G2/U(2) → G2/SU(3) ≃ S6. The reason is we only used in [10] the reduction of the
structural group to U(n) while we take advantage here of the full holonomy reduction
H of ∇, the canonical Hermitian connection of our 3-symmetric space G/H .
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The paper is organized as follows. Section 2 is devoted to some quite general prelim-
inaries. We give the definition of nearly Khler manifolds. Section 3 is a presentation
of 3-symmetric spaces based on the isotropy representation. We show that the normal
connection of a Riemannian 3-symmetric space (3-symmetric homogeneous spaces are
always reductive) concides with the intrinsic connection of a canonical almost Hermitian
structure defined on it. As a consequence, we are able to give a new characterization
of locally 3-symmetric spaces (see theorem 3.6) as a particular case of Ambrose-Singer
manifolds. However, it can be seen as a reinterpration, in terms of the intrinsic con-
nection, of equations given by Gray in [18]. Moreover, it generalizes a remark of Nagy
in [22] in the nearly Khler case. In section 4 we explain how to construct a twistor
space Z and its almost complex structure on a H-manifold with torsion, such that the
group H acts transitively on the fibre, using a H-connection. In section 5 we extend
the work of Burstall, Rawnsley [12] and others on symmetric spaces to a general re-
ductive homogeneous space G/H , such that the groups G and H have same rank. We
are particularly interested in the case of 3-symmetric spaces (then, our hypothesis is
equivalent to s, the automorphism of order 3 defining our space, being inner, like in
the symmetric case). Twistor spaces constructed on G/H , following the plan of section
4, are flag manifolds. By this we mean a homogeneous space G/K where K is the
centralizer of a torus in G. In particular G acts transitively on them and integrability
conditions (23), (24), translate into algebraic conditions (25) on a subspace n+ of the
complexified Lie algebra gC. Invariant complex structures on flag manifolds are given
by parabolic subgroups P ⊂ GC such that K = P ∩G and so G/K ≃ GC/P . Our main
result of this section (theorem 5.12) is then that the natural almost complex structure
associated to the normal connection on the twistor space is integrable if and only it is
given by such an isomorphism. We summarize this :

Theorem 1.1. Let M = G/H be a normal homogeneous space such that G and H have
same rank. Let (Z,J ) be the Riemannian twistor space of M , equipped with the almost
complex structure associated to the normal connection. Then
(i) Z is an almost complex submanifold of (Z,J ) if and only if it is isomorphic to a
flag manifold G/K, where K is a subgroup of H.
(ii) Supposing (i), (Z,J ) is a complex manifold if and only if it is isomorphic to a
complex flag manifold GC/P .

Conversely, starting with a complex flag manifold GC/P , we define a fibration with
complex fibres over a 3-symmetric space, called fibration of degree 3. We use the same
tools as Burstall and Rawnsley [12] for the construction of their canonical fibration,
going from a flag manifold to a symmetric space. The results of section 5 are applied, in
the last two sections, to 3-symmetric spaces : in section 6, to examples which we found
enlightening, and in section 7 systematically to two types of inner 3-symmetric spaces
in the classification of Gray and Wolf [30] : isotropy irreducible 3-symmetric spaces, like
the sphere S6 ≃ G2/SU(3) ; and twistor spaces over symmetric spaces, like CP (2q+1),
the twistor space of H(q). The former were first discovered by Wolf in [29] : indeed,
in the list given p281, all homogeneous spaces are symmetric, except six 3-symmetric
spaces and one 5-symmetric space.
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Theorem 1.2. Isotropy irreducible 3-symmetric spaces G/H have a complex twistor
space G/K such that
(i) the fibre, H/K, is isomorphic to CP (2) ≃ SU(3)/U(2), except for E8/SU(9) where
the fibre is CP (8) ≃ SU(9)/U(8).
(ii) G/K → G/H is the fibration of degree 3.

Acknowledgement : thank you as always to Andrei (Moroianu) for his precious advice.

2. Preliminaries

The objects – nearly Khler, 3-symmetric spaces – we deal with in this article are both
”algebraic” (since they are isomorphic to a quotient of Lie groups) and ”geometric”
(since they are almost Hermitian differentiable manifolds). So we need two sorts of
preliminaries. First, concerning Lie algebras and representation theory :

Definition 2.1. Let a be a Lie algebra. The derived series (a(i))i≥1 of a is defined by

a(1) = a and a(i+1) = [a(i), a(i)]

The central descending series of a are (ai)i≥1 where

a1 = a, ai+1 = [a1, ai]

Definition 2.2. A Lie algebra a is called solvable if there exists an r ∈ N such that
a(r) = {0}. It is called nilpotent if there exists r such that ar = {0}.
Definition 2.3. Let g be the Lie algebra of a compact semi-simple Lie group G.
A parabolic subalgebra p is a subalgebra that contains a maximal solvable subalgebra of
gC.

The parabolic subalgebras are described using a root system. Let T ⊂ G be a maximal
torus, t its Lie algebra. We denote by R the root system associated to T , i.e. the set of
non zero weights of the adjoint representation Ad of G on the complexified Lie algebra
gC = g ⊗R C. Let B be a choice of simple roots. For β ∈ B, α ∈ R, denote by nβ(α)
the coefficient along β of α in the decomposition

α =
∑

β∈B
nβ(α)β

relative to the base B. By the definition of the simple roots, α is a positive root (α ∈ R+)
if and only if nβ(α) > 0 for all β ∈ B. More generally define, for a subset A ⊂ B,

nA =
∑

β∈A
nβ

Again, α ∈ R+ implies nA(α) ≥ 0 and nA(α) = 0 if and only if nβ(α) = 0 for all β ∈ A.

Denote by gα ⊂ gC the 2-dimensional weight space relative to a root α. The weight
space relative to 0 is simply tC. Denote, also, by [[gα]] the real root space :

[[gα]] = g ∩ (gα ⊕ g−α).
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Theorem 2.4. For each subset A of B, the summand

(1) pA = tC ⊕
∑

nA(α)≥0

gα

is a parabolic subalgebra of gC and moreover, each parabolic subalgebra can be written
in this form for a certain root system and a choice of simple roots.

We decompose pA into

(2) pA = kC

A ⊕ l+A

where

(3) kA = g ∩ pA = t ⊕
∑

nA(α)=0

[[gα]], l+A =
∑

nA(α)>0

gα

Let

l−A = l+A =
∑

nA(α)<0

gα,

gC = pA ⊕ l−A

Lemma 2.5. The summand l+A is a nilpotent subalgebra. In fact, it is the nilradical
(the maximum nilpotent subalgebra) of pA.

Let’s come to the geometric preliminaries. They deal with almost Hermitian mani-
folds, then with nearly Khler manifolds.

An almost Hermitian manifold is a real manifold M of dimension m = 2n with a
reduction of the frame bundle to the unitary group U(n) (a U(n)-structure) or equiv-
alently with a Riemannian metric g and an almost complex structure J (J2 = −Id),
compatible in the sense that, ∀X, Y ∈ TM , g(JX, JY ) = g(X, Y ). Given g, J , we
construct a third tensor, a differential 2-form ω, called the Khler form of M and defined
by

ω(X, Y ) = g(JX, Y ).

Let ∇ be the Levi-Civita connection of g. The set of metric connections is an affine
space modeled on the space of sections of Λ1 ⊗ so(m), where so(m) is the bundle of

skew-symmetric endomorphisms of TM . In other words, if ∇̃ is a metric connection,

the difference ∇− ∇̃ is a so(m)-valued 1-form. Now the set of Hermitian connections,

that is connections ∇̃ satisfying not only ∇̃g = 0 but also ∇̃J = 0, is an affine subspace
of the previous one, modeled on Γ(Λ1 ⊗ u(n)), where u(n) is the adjoint bundle of the
U(n)-structure, identified with the bundle of skew-symmetric endomorphisms of the

tangent bundle commuting with J . In other words, ∇− ∇̃ decomposes into

(4)
Λ1 ⊗ so(m) = Λ1 ⊗ u(n)⊥ ⊕ Λ1 ⊗ u(n)

∇− ∇̃ = η + ξ
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where the tensor η is independant on the choice of the Hermitian connection. Let ∇ be
the unique Hermitian connection such that ξ = 0 or

∇−∇ = η

Definition 2.6. We call ∇ the intrinsic connection, or the canonical Hermitian con-
nection, of (M, g, J). Then we call η the intrinsic torsion of the U(n)-structure or the
almost Hermitian manifold.

The torsion T of ∇ and η, the intrinsic torsion, are related by

T (X, Y ) = ηXY − ηY X

Furthermore η can be computed explicitely :

∀X ∈ TM, ηX =
1

2
J ◦ (∇XJ)

Then, η = 0 if and only if J is parallel for the Levi-Civita connection, i.e. M is Khlerian,
or the Riemannian holonomy is contained in U(n). Now,

Definition 2.7. An almost Hermitian manifold (M, g, J) is called nearly Khler if the
intrinsic torsion is totally skewsymmetric,

∀X ∈ TM, (∇XJ)X = 0

Equivalently, the covariant derivative of ω is a 3-form :

∇ω =
1

3
dω

because the Levi-Civita connection has no torsion.

Denote by λ
p,q the bundle of r-forms of type (p, q), p+q = r. If p 6= q, the intersection

of λ
p,q ⊕ λ

q,p with the real forms is the bundle [[λp,q]] ⊂ Λr of real forms of type
(p, q) + (q, p). But if p = q, λ

p,p is already the complexification of [λp,p], the bundle of
real forms of type (p, p). Now, the metric g gives the isomorphisms u(n) ≃ [λ1,1] and
u(n)⊥ ≃ [[λ2,0]] and there is a decomposition,

Λ1 ⊗ u(n)⊥ ≃ [[λ1,0 ⊗ λ
2,0]] ⊕ [[λ0,1 ⊗ λ

2,0]](5)

≃ [[λ3,0]] ⊕ [[U1]] ⊕ [[λ2,1
0 ]] ⊕ Λ1(6)

This is the irreducible decomposition of the representation Λ1 ⊗ u(n)⊥ of U(n) at each
point. The totally skewsymmetric tensors are the sections of the bundle isomorphic to
[[λ3,0]]. Then, M is nearly Khler if and only if η ∈ [[λ3,0]] whereas complex manifolds
are characterized by η ∈ [[λ2,1]], and dω = 0 (the manifold M is symplectic, or almost
Khler) is equivalent to η being a section of the unidentified bundle [[U1]].

With this definition, Khlerian manifolds are nearly Khler but we want to treat them
separately so we give the following definition :

Definition 2.8. A nearly Khler manifold is called strict (strictly nearly Khler manifold)
if there exist no vector X ∈ TM such that ∇XJ is identically zero.
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Nearly Khler manifold have the following important property :

(7) ∇η = 0

Since ∇ is a Hermitian connection, this is equivalent to ∇(∇ω) = 0 or ∇dω = 0.

A consequence (cf [21]) is that any nearly Khler manifold might be decomposed locally
(or globally, if it is simply connected) into the Hermitian product of a Khler manifold
by a strictly nearly Khler manifold. Thus, the study of nearly Khler manifolds reduces
to that of strict ones. From now on, when talking about nearly Khler manifolds we
implicitely assume they are strict.

We end up this section by quoting a result announced in the introduction. This is due
to Alexandrov, Grantcharov, Ivanov [1] or Nagy [21] for quaternion-Khler manifolds,
and to Eels, Salamon [15] in dimension 4.

Theorem 2.9. Let π : M → N be the twistor space of a quaternion-Khler manifold
of dimension 4q, q ≥ 2, or of a Khler-Einstein manifold in dimension 4, with positive
scalar curvature. Then M has a natural Khlerian structure (g1, J1) (see [20, 17, 25])
but also a natural strictly nearly Khler structure (g2, J2). Moreover, let V be the vertical
distribution on M , tangent to the fibres, and let H be the horizontal distribution (such
that TM = V ⊕ H) induced by the Levi-Civita connection of g, the metric on N , we
have :

g1|V = 2g2|V , g1|H = g2|H = π∗(g) and J1|V = −J2|V , J1|H = J2|H

3. 3-symmetric spaces

Another important class of examples of nearly Khler manifolds is provided by the
3-symmetric spaces. They were introduced by Gray [18] in 1970 as a generalization of
the well-known symmetric spaces :

Definition 3.1. A 3-symmetric space is a homogeneous space M = G/H, where G has
an automorphism s of order 3 such that

(8) Gs
0 ⊂ H ⊂ Gs

where Gs = {g ∈ G | s(g) = g} is the fixed points set of s and Gs
0 is the identity

component of Gs.

Let g, h be the Lie algebras of G, H , respectively. For a symmetric space, the
eigenspace, for the eigenvalue −1, of the differential s∗ : g → g of the automorphism at
e, is an Ad(H)-invariant complement of h in g, so that a symmetric space is always a
reductive homogeneous space.

For a 3-symmetric space, things are slightly more complicated : s∗ has now three

eigenvalues, 1, j = −1
2

+ i
√

3
2

and j2 = j̄ = −1
2
− i

√
3

2
, two of which are complex, and
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correspondingly there is a decomposition (by (8), h is always the eigenspace for the
eigenvalue 1) :

gC = hC ⊕ mj ⊕ mj2

Now, m = (mj ⊕ mj2) ∩ g satisfies

(9) g = h ⊕ m, Ad(H)m ⊂ m

so 3-symmetric spaces are also reductive homogenous spaces.

But we have more than this.

Recall that on a reductive homogenous space, the associated bundle G×Adm (we view
G as a principal bundle of structure group H over M), is identified with the tangent
bundle TM and that invariant tensors, for the right action of G on M , are identified with
constant tensors on m. Recall also that an almost complex structure might be identified
with the bundle T+M of (1,0) vectors. Thus, an invariant almost complex structure on
a reductive homogeneous space is identified with a maximal isotropic subspace m+ of
mC or equivalently with a decomposition mC = m+ ⊕ m− where m− = m+. Now, on a
3-symmetric space there is already such a decomposition, by the definition of m.

Definition 3.2. The canonical almost complex structure of a 3-symmetric space is the
invariant almost complex structure such that the (1,0)-vector fields are the sections of
the associated bundle G ×Ad mj.

In other words we put m+ = mj. We will give another definition, more faithful to the
original one. The restriction of s∗ to m represents an invariant tensor S of M which
satisfies :
(i) S3 = Id
(ii) ∀x ∈ M, 1 is not an eigenvalue of Sx

Thus, one can write S, as for a (non trivial) third root of unity,

(10) S = −1

2
Id +

√
3

2
J

where
J2 = −Id

We say that J is the canonical almost complex structure of the 3-symmetric space.

Similarly, on a reductive homogeneous space, an Ad(H)-invariant scalar product g on
m, where m satisfies (9), defines an invariant metric on M , also denoted by g. If M is
a symmetric space, the pair (M, g) is called a Riemannian symmetric space. If M is a
3-symmetric space and g, J are compatible, (M, g) is called a Riemannian 3-symmetric
space.

A sufficient condition for a reductive homogeneous space to be a symmetric space is

(11) [m, m] ⊂ h

Indeed, we define an endormorphism f of g by setting f |h = Id|h and f |m = −Id|m.
Then, (11) together with

(12) [h, m] ⊂ m
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(a consequence of (9)) imply

(13) ∀X, Y ∈ g, [f(X), f(Y )] = f([X, Y ])

So f can be integrated into an automorphism (an involution) of G :

∀X ∈ g, s(exp(X)) = exp(f(X))

(G is simply connected whence exp : g → G is surjective).

Similar conditions exist, for 3-symmetric spaces :

Lemma 3.3. Let M = G/H be a reductive homogeneous space, with an invariant almost
complex structure represented by the decomposition

mC = m+ ⊕ m−

Then M is a 3-symmetric space endowed with its canonical almost complex structure if
and only if

(14) [m+, m+] ⊂ m−, [m−, m−] ⊂ m+ and [m+, m−] ⊂ hC.

Proof. The proof is very similar to the symmetric case. We set

f |h = Id|h, f |m+ = jId|m+ and f |m− = j2Id|m−

The endomorphism f satisfies (13) if and only if, for two eigenspaces mλ and mµ corre-
sponding to the eigenvalues λ, µ we have [mλ, mµ] ⊂ mλµ. We already have : [h, h] ⊂ h

(h is a subalgebra) and

[h, m+] ⊂ m+ and [h, m+] ⊂ m+,

because the almost complex structure represented by m+ is invariant. The rest is exactly
(14). �

Conditions involving the Lie bracket might be interpreted, on a reductive homoge-
neous space, as conditions on the torsion and the curvature of the normal connection

∇̂. The latter is defined as the H-connection on G whose horizontal distribution is
G × m ⊂ TG ≃ G × g. Indeed,

Lemma 3.4. The torsion T̂ , and the curvature R̂ of the normal connection ∇̂, viewed
as constant tensors, are respectively the m-valued 2-form and the h-valued 2-form on m

given by

∀u, v ∈ m, T̂ (u, v) = −[u, v]m, R̂u,v = [u, v]h

Proposition 3.5. Let M = G/H be an almost Hermitian homogeneous space. By this
we mean it is equipped with a G-invariant almost Hermitian structure. Suppose it is
furthermore reductive. Then, M is a 3-symmetric space if and only if it is quasi-Khler

and the intrinsic connection ∇ concides with ∇̂.



10

An almost Hermitian manifold is called quasi-Khler if ∀X, Y ∈ TM , (∇XJ)Y +
(∇JXJ)JY = 0. Equivalently, the intrinsic torsion is a section of the first bundle of (5),
isomorphic to [[λ1,0 ⊗ λ

2,0]].

Proof. In terms of the torsion and curvature of the normal connection, equations (14)
become

(15) T̂ (m+, m+) ⊂ m−, T̂ (m−, m−) ⊂ m+, T̂ (m+, m−) = {0}

(16) R̂(m+, m+) = R̂(m−, m−) = {0}

The first line tells us that T̂ belongs to the intersection of Λ2m⊗m with
⊗3(m+)∗ ⊕⊗3(m−)∗. Since the application

Λ1 ⊗ so(m) → Λ2 ⊗ TM

η̃ 7→ {T̃ : (X, Y ) 7→ T̃ (X, Y ) = η̃XY − η̃Y X}
is an isomorphism, we prefer working with η̂ = ∇− ∇̂. Then (15) is equivalent to

η̂ ∈ [[λ1,0 ⊗ λ
2,0]]

In particular η̂ ∈ Λ1 ⊗u(n)⊥ so ∇̂ = ∇ (the normal connection of an almost Hermitian
homogeneous space is always a Hermitian connection) thus η ∈ [[λ1,0 ⊗ λ

2,0]], i.e. the
manifold is quasi-Khler and the converse is true (equations (16) are automatically sat-
isfied on a quasi-Khler manifold by the curvature tensor of the intrinsic connection, see
for example [16]). �

There is also a notion of locally 3-symmetric space, which means that there exists
a family of local isometries (sx)x∈M , the geodesic symmetries of order 3, such that
s3

x = Id and ∀x ∈ M , x is an isolated fixed point of sx (for a 3-symmetric space,
the automorphism s induces such a family on the manifold where the sx are globally
defined). See [18] for details.

Theorem 3.6. An almost Hermitian manifold M of dimension m is a locally 3-symmetric
space if and only if it is quasi-Khler and the torsion and the curvature of the intrinsic
connection ∇ satisfy

(17) ∇T = 0 and ∇R = 0

Proof. Let H be the reduced holonomy group of the intrinsic torsion and h its Lie alge-
bra. If the torsion and curvature of ∇ are parallel, they generate an infinitesimal model
(g, h). Moreover, it is always regular, like in the symmetric case, under the hypothesis
of theorem (3.6) because h is the fixed point set of a Lie algebra automorphism of order
3 : if G be the simply connected group of Lie algebra g, H is a closed subgroup of G.
Then, by the work of Tricerri [28], M is locally isometric to a reductive homogeneous
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space G/H whose normal connection concides with ∇ and since M is quasi-Khler, by
proposition 3.5, G/H is a 3-symmetric space.

Conversely, the normal connection of a reductive homogeneous space always satisfies

∇̂T̂ = ∇̂R̂ = 0 (in fact, every invariant tensor for the action of G on the right is parallel

for ∇̂) and on a 3-symmetric space it concides with ∇. �

The system (17) should be compared to the definition, ∇R = 0, of locally symmetric
spaces. In [11] we showed that it is equivalent to some equations given by Gray [18],
reinterpreted by the intrinsic connection.

Nearly Khler manifolds are quasi-Khler and the condition that M , the 3-symmetric
space, is nearly Khler translates into a structural condition on the homogeneous space.

Definition 3.7. A reductive Riemannian homogeneous space is called naturally reduc-
tive if the scalar product g on m representing the invariant metric satisfies

(18) ∀X, Y, Z ∈ m, g([X, Y ], Z) = −g([X, Z], Y )

Equivalently, the torsion T̂ of the normal connection is totally skewsymmetric.

For a 3-symmetric space, the intrinsic connection coincides with the normal connec-
tion. As a consequence,

Proposition 3.8. A Riemannian 3-symmetric space is nearly Khler if and only if it is
naturally reductive.

Condition (18) is satisfied when g is the restriction of an Ad(G)-invariant scalar
product q on g, representing a biinvariant metric on G. For example, on a compact,
semi-simple Lie group G, the Killing form B is negative definite, so we can take q = −B.

As we shall see in more detail, 3-symmetric spaces are related to twistor geometry :

Proposition 3.9. The twistor space M of a quaternion-Khler (or Einstein, self-dual,
in dimension 4) symmetric space is a 3-symmetric space with canonical almost complex
structure J2 (see theorem 2.9).

This is compatible with the fact [1, 15] that (M, g, J2) is quasi-Khler, for a general
twistor metric g.

4. Twistor spaces and holonomy

Francis Burstall [13] practically resolved the problem of finding twistor spaces (com-
plex manifolds fibring over a real manifold, such that the fibres are complex submani-
folds) over Riemannian manifolds using the holonomy (for the moment, we are talking
about the Riemannian holonomy). Here is a summary of his results that will motivate
our own hypothesis.

For an oriented Riemannian manifold (M, g) of dimension 2n, let π : Z → M be
the bundle whose sections are the almost complex structures on M , compatible with
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the metric g and the orientation. It can be seen as the associated bundle of the metric
structure with fibre

Z(n) = {j ∈ SO(2n) | j2 = −Id} ≃ SO(2n)/U(n)

The manifold Z is itself equipped with an almost complex structure, defined in the fol-
lowing way. First, the fibres have a natural complex structure J v, because SO(2n)/U(n)
is an Hermitian symmetric space. Then, the Levi-Civita connection of M induces a
horizontal distribution H on Z that allows us to complete J v into an almost complex
structure J on the whole TZ, setting

∀j ∈ Z, Jj|V = J v
j , Jj|H = π∗j

where the point j ∈ Z is viewed as a complex structure on TxM , x = π(j). It is a cele-
brated result [2] that J is integrable for a large class of 4-dimensional manifolds, called
the ”self-dual” manifolds. Unfortunately, in higher dimensions 2n ≥ 6, the Riemannian
manifolds M for which Z is a complex manifold are much rarer. In fact they must be
locally conformally flat. We then look for a twistor space on M among the submanifolds
of Z i.e. we look for an almost complex submanifold Z of Z where J is integrable. To
be an almost complex submanifold, Z must verify two conditions :
(i) the fibre Zx must be a complex submanifold of Zx.
(ii) the restriction to Z of the horizontal distribution H associated to the Levi-Civita
connection ∇ must be tangent to Z.
For condition (ii) to be satisfied, it suffices to take a subbundle associated to the holo-
nomy reduction. Consequently, if H ⊂ SO(2n) is the holonomy group of ∇, a natural
idea is to consider the bundle with typical fibre the orbit of j ∈ Z(n) under H . We then
get a well behaved submanifold and condition (i) is equivalent to an algebraic condition
involving H . Secondly, a point j ∈ Z is in the zero set of the Nijenhuis tensor, N , of
J if and only if

(19) Rx(T
+
j , T+

j )T+
j ⊂ T+

j

where x = π(j) and T+
j ⊂ T C

x M is the set of (1,0) vectors at x with respect to j. Of
course, according to the Newlander-Nirenberg theorem, J is integrable on Z if and only
if (19) is satisfied for all j ∈ Z.

Starting from Berger’s list of holonomy representations of irreducible Riemannian
manifolds [5], F. Burstall investigates all cases. The case of symmetric spaces is very
interesting and studied in details in the book [12] and the article [14]. Indeed, symmetric
spaces often admit several flag manifolds as twistor spaces. Concerning the non locally
symmetric spaces, only the case where H = Sp(q)Sp(1) (n = 2q) gives fully satisfactory
results : all quaternion-Khler manifolds admit a complex twistor space with fibre CP (1).
In fact, they can be viewed as an analog, in dimension 4q, q ≥ 2, of Einstein, self-dual
manifolds in dimension 4. For U(n), i.e. for Khlerian manifolds, there is still a large
class of manifolds having a twistor space with fibre CP (n − 1), the Bochner-flat Khler
manifolds (see [23]). Finally, the method gives no new results for H being Spin(7),
SU(n) or Sp(q) (the manifold has to be conformally flat in order to admit an integrable
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twistor space). Of course the representation of G2 is odd (seven) dimensional so it is
not to be considered.

Consequently, we shall now interest ourselves to H-structures with torsion. But in
this case ∇ is not the appropriate connection anymore since it is not a H-connection.
Let ∇̃ be a H-connection. We construct a new almost complex structure J̃ on Z using

the horizontal distribution of ∇̃ and a submanifold Z of Z, as before :

Definition 4.1. Let M be a H-manifold of dimension 2n, j ∈ Z(n). The H-twistor
space associated to j is the associated bundle Z of the H-structure with fibre the H-orbit
O of j in Z(n).

Remark 4.2. We shall talk also of the H-twistor space associated to O, or to a point
j ∈ Z, identifying TxM to R2n – and thus Zx to Z(n) – by means of a frame p ∈ Hx(M).
This is independent on the choice of p, because we consider H-orbits.

Since Z is an associated bundle of the H-structure, the horizontal distribution of ∇̃
on Z is tangent to it. Then, Z is an almost complex submanifold of (Z, J̃ ) if and only

if the vertical distribution is also stable by J̃ , i.e. O is a complex submanifold of Z(n).

Proposition 4.3. Let j ∈ Z(n). Let H be a subgroup of SO(2n) acting on Z(n) with
stabilizer K at j. Then the orbit of j, isomorphic to H/K, is a complex submanifold of
Z(n) if and only if j belongs to N(H), the normalizer of H in SO(2n).

Proof. We can always assume U(n) is the stabilizer of our fixed j. Let so(2n), u(n) be
the Lie algebra of SO(2n), U(n), respectively.

so(2n) = u(n) ⊕ z

where z represents the tangent space of Z(n) ≃ SO(2n)/U(n). Moreover, so(2n) may
be identified with the space of 2-forms on R2n and if we complexify :

so(2n)C = u(n)C ⊕ z2,0 ⊕ z0,2

where u(n)C is identified with the space of complex (1,1)-forms on R2n and z2,0 (resp.
z0,2) is identified with the space of 2-forms of type (2,0) (resp. (0,2)). This is also the
eigenspace decomposition, for the eigenvalues 0, 2i, −2i, of j, acting as an element of
the Lie algebra. The natural complex structure on Z(n) is defined to be the invariant
almost complex structure on the homogeneous space represented by z2,0 ⊂ zC. It is
integrable because j acts on [z2,0, z2,0] with eigenvalue 2i + 2i = 4i so this space can
only be {0}. Now, if j ∈ N(H), it preserves H or h, so there is a decomposition into
eigenspaces :

(20) hC = kC ⊕ v2,0 ⊕ v0,2

where kC = u(n)C ∩ hC, v2,0 = z2,0 ∩ hC, v2,0 = z2,0 ∩ hC (K ⊂ U(n) because it is the
stabilizer of j in H). Consequently H/K is a complex submanifold of SO(2n)/U(n).

Conversely, if H/K is a complex submanifold of SO(2n)/U(n), (20) holds so j pre-
serves h, i.e. belongs to N(H). �
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The following corollary will be of considerable importance in the sequel.

Corollary 4.4. Assume H is a semi-simple subgroup of SO(2n). If O ≃ H/K is a
complex submanifold of Z(n), then K is the centralizer of a torus in H.

Equivalently, K preserves an element j0 ∈ h or O is isomorphic to an adjoint orbit of
H .

Proof. Let C(H) be the centralizer of H in SO(2n) :

C(H) = {g ∈ SO(2n) | ∀h ∈ H, ghg−1 = h}
Denote by c(h) its Lie algebra and by n(h) the Lie algebra of N(H), we have

(21) n(h) = [h, h] ⊕ c(h)

The proof of this fact is given in [24], p15 and uses an Ad(H)-invariant scalar product
on n(h).

Now, if H/K is a complex submanifold of SO(2n)/U(n), by proposition 4.3, j belongs
to N(H), or n(h). Thus, it can be decomposed according to (21) :

j = j0 + j1

where j0 ∈ h and j1 ∈ c(h). Moreover an element h ∈ H stabilizes j if and only if it sta-
blizes j0 because it always stabilizes j1 by the definition of the centralizer. Consequently
K is the centralizer of j0 ∈ H ∩ h, or of the torus generated by j0. �

In this article we are mainly concerned with the case where H is a subgroup of U(n).
Then M is an almost Hermitian manifold (M, g, J) and the necessary condition 4.3
becomes :

Corollary 4.5. Let H be a subgroup of U(n) such that N(H) ⊂ U(n). Let Z be the
H-twistor space over a H-manifold M associated to j ∈ Z(n). Suppose that O = H.j is

a complex submanifold of Z(n) and so Z is an almost complex submanifold of (Z , J̃ ),

where J̃ is the almost complex structure associated to a H-connection ∇̃. Then, ∀j ∈ Z,
j commutes with Jx on TxM , x = π(j).

Proof. It is important to understand that in the hypothesis H ⊂ U(n) of corollary 4.5,
U(n) is not the stabilizer of j anymore (otherwise Z would be trivial) but of another
j0 ∈ Z(n). Now, if H/K is a complex submanifold, j ∈ N(H) ⊂ U(j0) so it commutes
with every element of the center and in particular with j0 itself. In the geometrical
background, this translates exactly into corollary 4.5. �

Remark 4.6 (Structure of the reduced twistor space). An important example is H =
U(n) itself. Then N(H) = U(n) and H/K being a complex submanifold is equivalent

to j commuting with j0. This is why we considered, in [13], the ”reduced twistor space”
Y ⊂ Z of an almost complex manifold (M, g, J) whose fibre at x ∈ M is exactly the set
of complex structures j : TxM → TxM commuting with Jx. More precisely, let j ∈ Y,



15

x = π(j). We diagonalize j and Jx simultaneously i.e. we find 4 subspaces R+
j , R−

j , S+
j

and S−
j of T C

x M such that the eigenspaces of j for the respective eigenvalues i, −i are

T+
j = R+

j ⊕ S+
j , T−

j = R+
j ⊕ S+

j

and the eigenspaces of Jx :

T+
x M = R+

j ⊕ S−
j , T−

x M = R−
j ⊕ S+

j

Thus R−
j = R+

j and S−
j = S+

j . Equivalently, if we denote

Rj = TxM ∩ (R+
j ⊕ R−

j ) and Sj = TxM ∩ (S+
j ⊕ S−

j ),

the endomorphisms j and Jx coincide on Rj but have opposite signs on Sj. Then j is
determined by R+

j or Rj and the connected components of Y are characterized by the
(complex) dimension of R+. Denote

(22) Yr = {j ∈ Z | j ◦ Jx = Jx ◦ j, dimCR+
j = r}, r = 1, . . . n − 1

The group U(n) acts transitively on each fibre of Yr which is thus an U(n)-almost com-
plex twistor space over M , with fibre the complex Grassmannian Grr(C

n) ≃ U(n)/U(r)×
U(n − r).

Now, let Ñ be the Nijenhuis tensor of J̃ , the conditions for the vanishing of Ñj are
more complicated in this case. In fact (19) is only a particular case of a more general
system established by O’Brian, Rawnsley [23] :

Proposition 4.7 (O’Brian & Rawnsley). Let M be a Riemannian manifold and J̃ the

almost complex structure on Z associated to a metric connection ∇̃. Let T̃ , R̃ be the

torsion and curvature of ∇̃. A point j ∈ Zx lies in the zero set of the Nijenhuis tensor

Ñ of J̃ if and only if

(23) T̃x(T
+
j , T+

j ) ⊂ T+
j

(24) R̃x(T
+
j , T+

j )T+
j ⊂ T+

j

where T+
j ⊂ T C

x M is the set of (1,0) vectors with respect to j : TxM → TxM .

5. Fibration of degree 3

Let M , in this section, be a homogeneous space G/H , where G is a connected Lie
group and H is a closed subgroup of G. Assume that G/H is reductive and let g be an
Ad(H)-invariant scalar product on m (so that H ⊂ SO(n)), inducing an invariant metric
on M denoted the same way. Just like the theory of twistor spaces of inner symmetric
spaces is simpler than in the outer case, we shall make here the simplification that the
groups G and H have same rank. We also assume that G is compact, semi-simple.

The theory of twistor spaces of ”inner” homogeneous spaces relates to the study of
flag manifolds :
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Definition 5.1. A flag manifold is a homogeneous space G/K where K is the centralizer
of a torus in G.

Proposition 5.2. Let M = G/H be a homogeneous space such that rank G = rank H.
Let Z be the H-twistor space associated to j ∈ Z(n). Suppose that Z is an almost

complex manifold of (Z , J̃ ). Then Z is a flag manifold.

Proof. For a homogeneous space, the H-structure is identified to G itself, and the orbit
of j is isomorphic to H/K, where K is the stabilizer of j in H , so

Z = G ×H H/K ≃ G/K

Now, if H/K is a complex submanifold of Z(n), K is the centralizer of a torus in H by
corollary 4.4. In particular, it is a subgroup of maximal rank of H . But G and H have
same rank so K is a subgroup of maximal rank of G. Then, by the work of Wolf [29],
8.10, it is also the centralizer of a torus in G. �

Remark 5.3. In this homogeneous context we will talk of H-twistor spaces associated
to n+, instead of j ∈ Z(n), where n+ is a maximal isotropic subspace of mC, representing
a complex structure on m compatible with g. Indeed, we see an element ϕ of G as a
frame ϕ : m ≃ ToM → Tπ(g)M , identifying ϕ with the differential of the left action
[ϕ′] 7→ [ϕϕ′] on M . Thus, to work directly with G as a H-structure on M , it is more
appropriate to replace R2n by m in the definition of Z(n).

In other words, let j be a complex structure on TxM , compatible with gx. We transport
j or T+

j by ϕ ∈ G, where x = [ϕ], to obtain a complex structure n+ on ToM ≃ m.
Another choice of representant of x, ϕ′ = ϕh, h ∈ H would give a different complex
structure n′+ ⊂ mC but related to n+ via

n′+ = Adhn
+.

So to be precise we should refer to the H-twistor space associated to an orbit Ad(H)n+

of complex structures on m.

Moreover we can choose for the H-connection ∇̂, the normal connection of the reduc-

tive homogeneous space. We denote by Ĵ the almost complex structure on Z associated

to it. Then, since the torsion and curvature of ∇̂ are G-invariant, integrability conditions

for Ĵ reduce to conditions on n+ :

Proposition 5.4. Let M ≃ G/H be a reductive homogeneous space. Let Z be the H-
twistor space on M associated to n+. The following conditions are equivalent :

(i) Ĵ is integrable on Z.

(ii) ∃j ∈ Z such that N̂j = 0, where N̂j is the Nijenhuis tensor of Ĵ .
(iii) The subset n+ satisfies

(25) [n+, n+]m ⊂ n+, [ [n+, n+]h, n+] ⊂ n+

where superscript m, h stand for the projections on the appropriate subspace.
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Proof. As we said, equivalence between (i) and (ii) comes from the invariance of T̂ , R̂.

As for (25), this is nothing else than (23), (24), using the expressions of T̂ , R̂ given in
lemma 3.4. �

Thus, we will now interest ourselves to flag manifolds. Let T be a maximal torus of
G and S a subtorus of T . Denote by t, s their Lie algebras and by B a choice of simple
roots for the root system R associated to T .

Let A be the subset of B whose complement is

A = {α ∈ B | ∀X ∈ s, α(X) = 0}
Lemma 5.5. The centralizer K of S is the subgroup of G with Lie algebra k = kA.

Proof. Recall the definition (3). Equivalently, kC

A is the sum of all root spaces gα where
α is a sum of simple roots β ∈ A. Let X ∈ T , Y ∈ gα. The commutator [X, Y ] is given
by

ad(X)Y = 2πiα(X) = 2πi
∑

β∈B
nβ(α)β(X),

where all nβ have same sign. It is zero for all X ∈ S, and thus Y ∈ k if and only if
nβ = 0 whenever β ∈ A. �

Conversely, for each subset A of B, kA is the centralizer of s = {X ∈ t | ∀α ∈
A, α(X) = 0}.

Now, there is also a parabolic subalgebra pA (and a parabolic subgroup PA) associated

to the subset A as in (1). Denote, as in the preliminaries, l+A its nilradical, l−A = l+A and

lA = g ∩ (l+A ⊕ l−A)

so that l+A is a complex structure on lA,

g = kA ⊕ lA, [kA, lA] ⊂ lA

and

[kA, l+A] ⊂ l+A.

Then lA is an Ad(K) complement of k in g, l+A represents an invariant almost complex
structure on G/H . Moreover, by lemma 2.5, l+A is a subalgebra so this almost complex
structure is in fact integrable, corresponding to the isomorphism

(26) G/KA ≃ GC/PA

Conversely, let p be parabolic subalgebra corresponding to a parabolic subgroup P .
Then, GC/P is a flag manifold since p might be written pA, for a base B and a subset
A ⊂ B according to theorem 2.4 and the decomposition (2) is still valid.

Note that the isomorphism (26) depends on the choice B of simple roots. It is only
in this second form, GC/P , that the flag manifold reveals as the twistor space of a
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symmetric space, as shown by Burstall and Rawnsley, but also of a 3-symmetric space,
as we will now see.

We fix now such a complex structure – or such a p – on our flag manifold G/K and
denote pA, lA, l+A, l−A simply by p, l, l+ and l−.

From the nilradical of p, we define a finite series :

Definition 5.6. The first canonical series associated to p is the central descending
series (li)i≥1 of l+ given by :

l1 = l+, l2 = [l1, l1], l3 = [l1, l2], . . .

Then, the second canonical series (gi)i≥1 is defined by gi = li ∩ l⊥i , where the orthogonal
is taken with respect to the Killing form of G. Finally, we put g0 = kC and for i ≤ 0,
gi = g−i.

First, by definition

gC =
∑

i∈Z

gi, p =
∑

i≥0

gi, l+ =
∑

i>0

gi

Then, the gi have the following fundamental property,

Theorem 5.7 (Burstall, Rawnsley). Let G be a compact semi-simple Lie group, p a
parabolic subalgebra of g. The second canonical series associated to p satisfies

∀i, j ∈ Z, [gi, gj] ⊂ gi+j

Moreover g1 generates the series in the sense that

(27) gr = [g1, [g1, [. . . , g1] . . .]],

g1 appearing r times in the last formula.

The proof is by exhibiting an X ∈ k, that they called the canonical element of p, such
that gk is the eigenspace for the eigenvalue k.i of ad(X).

We will now construct another homogeneous space using the second canonical series.
Let

(28) h =
∑

i∈N

[[g3i]], m+ =
∑

i∈Z

g3i+1, m− =
∑

i∈Z

g3i+2

so that m+ = m−, because −(3i + 1) = −3(i + 1) + 2 and if we put m = g∩ (m+ ⊕m−),
m+ represents a complex structure on m.

First, h is a subalgebra because 3i+3j = 3(i+j) for all i, j ∈ Z so [g3i, g3j ] ⊂ g3(i+j) ⊂
h by theorem 5.7. Let H be the subgroup of G corresponding to h. In particular, k = [[g0]]
is contained in h so K is a subgroup of H .

Definition 5.8. The fibration GC/P ≃ G/K → G/H is called fibration of degree 3 of
the (complex) flag manifold.
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Furthermore,
[h, m+] ⊂ m+ and [h, m−] ⊂ m−

because 3i + (3j + 1) = 3(i + j) + 1 and 3i + (3j + 2) = 3(i + j) + 2, for all i, j ∈ Z, and
as a consequence,

[h, m] ⊂ m.

We also have
hC =

∑

i∈Z

g2i, gC = hC ⊕ m+ ⊕ m−, g = h ⊕ m

so m is an Ad(H)-complement of h in g and m+ defines an invariant almost complex
structure on the reductive homogenous space G/H .

Proposition 5.9. The homogeneous space G/H is a 3-symmetric space with canonical
almost complex structure represented by m+ ⊂ mC.

Proof. We easily verify the equations (14), using theorem 5.7. �

Remark 5.10. This is very similar to the construction of the canonical fibration by
Burstall, Rawnsley, going from a flag manifold to a symmetric space. We should think
of the canonical fibration as a ”fibration of degree 2” : let f =

∑
i∈N

[[g2i]] and q =∑
i∈N

[[g2i+1]]. By theorem 5.7, f is a subalgebra, corresponding to a subgroup F of G ; q

is an Ad(H)-invariant complement of f in g and [q, q] ⊂ f (∀i, j ∈ Z, (2i+1)+(2j+1) =
2(i + j + 1)) so G/F is a symmetric space.

Since G is compact, semi-simple, the Killing form B is negative definite so the re-
striction of −B to m is an Ad(H)-invariant scalar product that makes M a naturally
reductive, strictly nearly Khler, homogeneous space.

Moreover, p gives a complex structure on m :

(29) n+ = p ∩ mC =
⊕

i≥0

g3i+1 ⊕
⊕

i≥0

g3i+2

Proposition 5.11. The space GC/P is the H-twistor space on G/H associated to n+,
with integrable complex structure associated to the intrinsic connection.

Proof. The fibre H/K of the fibration of degree 3 is a complex submanifold of GC/P .
Indeed, an Ad(K)-complement of k in h is a =

∑
i>0[[g2i]] and the subspace

∑
i>0 g2i of

aC is a subalgebra of l+, so it defines a complex structure on H/K which concides with
the restriction of l+. Consequently G/K → G/H is a twistor fibration. �

We will soon prove a partial converse of proposition 5.11. Even if our main goal
are the nearly Khler 3-symmetric spaces, the first results are more general. We shall
assume that M ≃ G/H is a Riemannian, reductive homogeneous space such that m is
the orthogonal of h for q = −B, where B is the Killing form of G, and g equals the
restriction to m of q. As a consequence, M is naturally reductive. We also assume
as before that G and H have same rank. Then, if Z ≃ G/K is an almost complex
manifold, it is a flag manifold by proposition (5.2). But if Z is a complex manifold we
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have more : a complex structure on G/K, i.e. an identification of G/K with GC/P , for
some parabolic subgroup P of GC.

Theorem 5.12. Let n+ be a maximal isotropic subspace of mC. Then n+ satisfies (25)
if and only if [n+, n+] + n+ is the nilradical of a parabolic subalgebra p ⊂ gC. As a
consequence, the twistor space associated to n+ is integrable, isomorphic to GC/P where
P denotes the parabolic subgroup of GC corresponding to p.

Proof. We were very much inspired by the proofs of Theorem 4.8, p44 and Lemma 5.1,
p64 of [12].

Let

l+ = [n+, n+] + n+ = [n+, n+]h ⊕ n+

where the second decomposition respects the sum g = h⊕m. Firstly, [n+, n+] ⊂ [l+, l+] is
contained in l+ (which has thus a chance to be a subalgebra) if and only [n+, n+]m ⊂ n+.
This corresponds to the first part of (25). Secondly, [h, m] ⊂ m so [[n+, n+]h, n+] ⊂ l+

if and only if it is contained in n+ and this corresponds to the second part of (25).
Moreover, this is equivalent to [[n+, n+], n+] ⊂ l+ provided that [n+, n+]m ⊂ n+. It
remains to show that (25) implies

[[n+, n+], [n+, n+]] ⊂ [n+, n+] + n+

By the Jacobi identity,

[[n+, n+], [n+, n+]] ⊂ [[[n+, n+], n+], n+]

⊂ [n+, n+] + [[n+, n+], n+]

⊂ [n+, n+] + n+

Finally, l+ is a subalgebra if and only if n+ satisfies (25).

Let K be the stabilizer of n+ and let k be its Lie algebra. An element X ∈ h belongs
to k if and only if

[X, n+] ⊂ n+

Since [h, m] ⊂ m and n+ is a maximal isotropic subset of mC with respect to g, this is
equivalent to

g([X, n+], n+) = 0

But g is the restriction of q, which is Ad(G)-invariant, so X ∈ k if and only if

q(X, [n+, n+]h) = 0

Consequently, denoting l− = l+, we have

gC = kC ⊕ l+ ⊕ l−

We want to prove that

p = kC ⊕ l+

is a parabolic subalgebra. To do this, we need to find a base B of a root system, and a
subset A of B such that p = pA.
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Before that, we prove that p is a subalgebra. By the Jacobi identity :

[kC, [n+, n+]] ⊂ [[kC, n+], n+] ⊂ [n+, n+] ⊂ l+

We also prove that l+ is isotropic. Let v+ = [n+, n+]h. Since n+ is maximal isotropic,
the second part of (25) is equivalent to

g([v+, n+], n+) = 0

But g is the restriction of an Ad(G)-invariant scalar product q, and hC, mC are q-
orthogonal so this is equivalent to

q(v+, v+) = 0.

The last equation tells exactly that v+ is isotropic and so, so is l+ = v+ ⊕ n+.

By proposition 5.2, if Z is an almost complex manifold, K is the centralizer of a torus.
Thus, it contains a maximal torus T ⊂ G. We consider the root system R associated
to T . We define a subset S of R by

l+ =
∑

α∈S
gα

This subset has the following two properties :
(i) S ∩ −S = {0}.
Indeed l+ is isotropic so we can’t find α ∈ R such that gα ⊂ l+ and gα ⊂ l+. And :
(ii) If α, β belong to S, then α + β /∈ R or α + β ∈ S (S is closed).
This comes from l+ being a subalgebra.

By a result of [6] cited in [12], p27, if a roots subset satisfies (i) and (ii) then we
can find a base B such that S ⊂ R+, the set of positive roots. With this choice of
simple roots, there exists A ⊂ B such that k = kA (cf lemma 5.5). Of course, if α ∈ S,
nA(α) ≥ 0 because it is a positive root so

l+ ⊂
∑

nA(α)≥0

gα

and finally we must have l+ = l+A. �

Remark 5.13. It would be enough to assume that g is the restriction of any Ad(G)-
invariant scalar product on g, i.e. G/H is normal. However, this is equivalent to our
assumption as soon as G is simple.

Remark 5.14. The fibration we obtain is trivial if and only if [n+, n+]h = {0} and
[n+, n+] ⊂ n+ i.e. n+ is already the nilradical of a subalgebra and G/H is a flag manifold.

The demonstration of theorem 5.12 gives us an explicit way to find n+ satisfying (25)
and so construct a complex twistor space over G/H . Indeed, we needed to show that
l+, and so n+, are included in the sum of all positive root weight spaces, for a given
base B. Conversely, we have :
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Proposition 5.15. Let G/H be a homogeneous space such that rank H = rank G. Let
T ⊂ H ⊂ G be a maximal torus. For a choice of simple roots B, denote by n+ the
complex structure on m given by

(30) n+ = mC ∩
⊕

α∈R+

gα

Then n+ satisfies (25), i.e. the H-twistor space associated to n+ is complex.

Proof. The subset l+B =
⊕

α∈R+ gα is a subalgebra of gC so [n+, n+] ⊂ l+B , [n+, n+]m ⊂ n+

and [[n+, n+]h, n+] ⊂ n+, by the definition of n+. �

Remark 5.16. In particular, suppose that M = G/H is a 3-symmetric space with
canonical complex structure given by m+. If there exists a fibration of degree 3 with base
M , then this is one of the fibrations described in theorem 5.12 for the subset n+ of mC

given by (29). Indeed by (27), ∀i ≥ 0, [g1, g3i+2] = g3(i+1) (with equality and not just
inclusion) so

[n+, n+]h =
⊕

i≥1

g3i, [n+, n+]h ⊕ n+ = p

However a fibration of degree 3 has the additional property, for the second canonical
series associated to p,

(31) g1 ⊂ m+.

Note that, if GC/P → G/H is one of the fibration described in theorem 5.12, we always
have g1 ⊂ n+ because l1 = l+ = n+ + [n+, n+] and so l2 contains [n+, n+].

Proposition 5.17. Let M ≃ G/H be a strictly nearly Khler 3-symmetric space such
that G is semi-simple and the naturally reductive metric on M is given by the restriction
of −B. Let GC/P be a complex H-twistor space over M . Suppose moreover that the
second canonical series associated to p and the canonical almost complex structure m+

satisfy (31). Then, GC/P → G/H is the fibration of degree 3 associated to p.

Proof. Once we have g1 ⊂ m+, we easily get, by (14),

g2 = [g1, g1] ⊂ [m+, m+] ⊂ m−, g3 = [g1, g2] ⊂ [m+, m−] ⊂ hC, g4 = [g1, g3] ⊂ m+, . . .

So h, m+, m− are like in the definition (28) of the fibration of degree 3. �

Finally we can replace condition (31) by another, perhaps easier to apply :

Lemma 5.18. Let B be a base of simple roots such that p = pA ⊂ ⊕
α∈R+ gα, A ⊂ B.

Then g1 ⊂ m+ if and only if

∀β ∈ A, gβ ⊂ m+
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Proof. To show this, we first make the following simple remark that, since l1 = l+A is
given by (3), the roots α whose weight spaces compose l2 = [l1, l1] all have nA(α) ≥ 2,
etc., and so, for all r ∈ Z,

(32) gr =
⊕

nA(α)=r

gα

In particular, for β ∈ A, nA(β) = 1 so gβ ⊂ g1 ⊂ m+.

Conversely, let α ∈ R such that nA(α) = 1. Then there exists a simple root β ∈ A
such that α = α0 + β where nA(α0) = 0. Consequently,

gα = [gα0
, gβ]

where gα0
⊂ kC

A ⊂ hC and gβ ⊂ m+. But m+ represents an invariant almost complex
structure on G/H thus it is Ad(H)-invariant. Then gα ⊂ [hC, m+] ⊂ m+ for all α such
that nA(α) = 1. �

6. Examples

In this section we shall number the positive roots B = {β1, β2, . . .} and replace A
in pA, kA or l+A by the corresponding number : for example p{β1,β3,β4

} becomes p134.
Also, for a root α written (a1, . . . , ak), in standard coordinates, we abreviate gα into
[a1, . . . , ak] and [[gα]] into [[a1, . . . , ak]].

6.1. Twistor space of a Wolf space. Here, we treat a particular case where K = H .
Let t ⊂ g be a Cartan subalgebra and let R be the corresponding root system. We choose
a scalar product 〈 , 〉 on t∗, invariant by the Weyl group (the group of automorphisms
of T coming from inner automorphisms of G). We define the following quantity, for
α, β ∈ R :

(α/β) = 2
〈α, β〉
〈β, β〉

According to [7], p198, this is an integer, ranging between -3 and 3, that gives informa-
tion on the relative positions of α, β. Now, let γ be the highest weight, for a choice of
simple roots B : ∀α ∈ R, 〈γ, γ〉 ≥ 〈α, γ〉. Moreover 〈γ, γ〉 = 〈α, γ〉 if and only if α = γ.
Finally (α/γ) takes the values −1, 0 and 1 if α 6= γ, and 2 (resp. −2) if α = γ (resp.
−γ).

The Cartan subalgebra t is identified with its dual via the scalar product 〈 , 〉 so that
we can see γ as an element of t. Let K be the centralizer in G of the 1-dimensional
abelian subalgebra generated by γ. With the description made of the parabolic subal-
gebras and centralizers of torus (cf theorem 1 and lemma 5.5), this corresponds to

A = {α ∈ B | (α/γ) = 1}
and so

k = kA = t ⊕
⊕

(α/γ)=0

[[gα]]
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We calculate the first canonical series associated to pA :

l1 = l+A =
⊕

(α/γ)>0

gα = gγ ⊕
⊕

(α/γ)=1

gα, l2 = gγ , l3 = {0}.

Indeed, for α, α′ such that (α/γ) = (α′/γ) = 1, (α + α′/γ) = 2 so α + α′ /∈ R or
α + α′ = γ. Then

g0 = kC, g1 =
⊕

(α/γ)=1

gα, g2 = gγ, g3 = {0}

and the canonical fibration of Burstall and Rawnsley (the ”fibration of degree 2”) is

GC/PA → G/F

where F is the subgroup of G with Lie algebra

f =
⊕

i≥0

[[g2i]] = k ⊕ [[gγ ]]

Thus, the fibre is 2-dimensional, isomorphic to CP (1) (see p132 of [27] for details),
inducing a quaternionic structure on G/F and G/K is the twistor space of a Wolf space
that is, of a quaternion-Khler, compact, symmetric space.

As for the fibration of degree 3, g3 = {0} so

h = [[g0]] = k.

Consequently, G/K = G/H is equipped not only with a Khlerian, but also with a
3-symmetric strictly nearly Khler structure given by

m+ = g−γ ⊕
⊕

(α/γ)=1

gα

This almost complex structure J2 is obtained from the complex structure J1, represented
by l+, by reversing the sign of J1 along the fibre of G/K → G/F . Indeed, the vertical
subspace is identified with [[gγ ]]. This is another proof, for a Wolf space, of theorem 2.9
but also of proposition 3.9.

6.2. G2-spaces. Take G = G2. The roots may be written

(0, 2
√

3) (0,−2
√

3)

(3,
√

3) (−3,−
√

3)

(−3,
√

3) (3,−
√

3)

(1,
√

3) (−1,−
√

3)

(−1,
√

3) (1,−
√

3)
(2, 0) (−2, 0)
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Make the choice of simple roots β1 = (−3,
√

3), β2 = (2, 0). Then, the roots in the left
row are the positive roots :

(−1,
√

3) = (−3,
√

3) + (2, 0)

(1,
√

3) = (−3,
√

3) + 2(2, 0)

(3,
√

3) = (−3,
√

3) + 3(2, 0)

and

γ = (0, 2
√

3) = 2(−3,
√

3) + 3(2, 0)

is the highest weight. We already know two G2-3-symmetric spaces (and by the classifi-
cation of Gray and Wolf, see [30] or [18], these are the only ones). Firstly, by the previous
example, the twistor space G2/U(2) of the exceptionnal Wolf space G2/SO(4) is Khler
but also nearly Khler, 3-symmetric. Secondly, the 6-dimensional sphere S6 ≃ G2/SU(3)
is also a 3-symmetric space. There are 3 types of complex flag manifolds of the form
GC

2 /P , corresponding to

k1 = 2R⊕ [[2, 0]]

k2 = 2R⊕ [[−3,
√

3]]

k12 = 2R

The first two, GC

2 /P1 and GC

2 /P2 constitute two distinct realizations of G2/U(2) as a
complex flag manifold. The first one corresponds to the twistor space of the exceptionnal
Wolf space because 〈(2, 0), (0, 2

√
3)〉 = 0, for the canonical scalar product, so K1 is the

centralizer of the torus generated by γ. For the second one, we have

g1 = [−1,
√

3] ⊕ [2, 0], g2 = [1,
√

3], g3 = [0, 2
√

3] ⊕ [3,
√

3], g4 = {0}
(we can first compute li, i = 1, 2, 3, 4 and then use the definition 5.7 of gi or apply (32)).
Thus,

h = 2R⊕ [[−3,
√

3]] ⊕ [[0, 2
√

3]] ⊕ [[3,
√

3]], m+ = [−1,
√

3] ⊕ [2, 0] ⊕ [−1,−
√

3]

Finally, G/H = G2/SU(3) ≃ S6. Indeed, we showed in [10] that the 6-dimensional
sphere admits an integrable twistor space with fibre isomorphic to CP (2). This is the
”reduced twistor space” Y described above or more precisely one of its connected com-
ponents. The two components Y1 and Y2, see (22), are isomorphic and the fibrations
G2/U(2) ≃ Y1 → S6 and G2/U(2) ≃ Y2 → S6 are obtained one from the other by
composing with the antipodal map of Z , j 7→ −j or in the present setting by exchang-
ing the roles of m+ and m− in the definition of the fibration of degree 3. Moreover,
we can not construct another twistor space on S6 with our method because SU(3) acts
transitively on the fibres of Y1, Y2.

What is the fibration of degree 3 associated with p12, with total space G2/S
1 × S1 ?

This time, the second canonical fibration is

g1 = [2, 0] ⊕ [−3,
√

3], g2 = [−1,
√

3], g3 = [1,
√

3]

g4 = [3,
√

3], g5 = [0, 2
√

3], g6 = {0}
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So

h = 2R⊕ [[1,
√

3]], m+ = [2, 0] ⊕ [−3,
√

3] ⊕ [1,−
√

3] ⊕ [3,
√

3] ⊕ [0,−2
√

3]

The resulting 3-symmetric space is GC

2 /P1 ≃ G2/U(2), the twistor space of G2/SO(4).
To see this, we must make another choice of simple roots : β ′

1 = (0,−2
√

3), β ′
2 = (1,

√
3).

Then

(3,−
√

3) = 2(0,−2
√

3) + 3(1,
√

3)

is the highest weight, (1,
√

3) satisfies 〈(1,
√

3), (3,−
√

3)〉 = 0 and all the roots whose
weight spaces compose m+, except (−3,

√
3) = −(3,−

√
3), are positive roots as required.

6.3. Special features associated with SU(4). The roots of SU(4) are

(1, 0, 0,−1) (−1, 0, 0, 1)
(1, 0,−1, 0) (−1, 0, 1, 0)
(1,−1, 0, 0) (−1, 1, 0, 0)
(0, 1, 0,−1) (0,−1, 0, 1)
(0, 1,−1, 0) (0,−1, 1, 0)
(0, 0, 1,−1) (0, 0,−1, 1)

Let β1 = (1,−1, 0, 0), β2 = (0, 1,−1, 0), β3 = (0, 0, 1,−1) be the simple roots. The
other positive roots are (1, 0,−1, 0) = β1 + β2, (0, 1, 0,−1) = β2 + β3 and the highest
weight γ = (1, 0, 0,−1) = β1 + β2 + β3.

There are 7 = 23 − 1 types of flag manifolds built up from SU(4). The associated
fibrations of degree 3 are all trivial, in the sense that, ∀A ⊂ B, H = KA (we will not
reproduce all the calculations because they are quite lengthy), except when A = B
where the fibration of degree 3 is

(33) SU(4)C/P123 ≃ SU(4)/S1 × S1 × S1

−→ SU(4)C/P13 ≃ SU(4)/S(U(1) × U(1) × U(2))

The last space is the twistor space of the quaternion-Khler Grassmannian of complex
planes in C4, (as in the previous example with G2/S

1×S1, it will appear when changing
the basis of the root system into β ′

1 = (−1, 0, 1, 0), β ′
2 = (1, 0, 0,−1), β ′

3 = (0,−1, 0, 1)).

In the other cases, we obtain one, and perhaps several different 3-symmetric structures
on the flag manifold SU(4)/KA. For example, SU(4)/S(U(1)×U(1)×U(2)) has three
different realizations as a complex flag manifold : SU(4)C/P13, but also SU(4)C/P12 and
SU(4)C/P23. As we said, the first one is the twistor space of a Wolf space, Gr2(C

4) (in-
deed K13 is the centralizer of γ). The others are more interesting because the canonical
fibration has rank 4, the fibre being isomorphic to CP (2), so the base is a symmet-
ric space but not a Wolf space. Indeed this is CP (3). Nevertheless the fibration still
has complex, totally geodesic fibres thus the conditions are satisfied to perform the
same modification of the Khler structure as in the quaternion-Khler situation by [21].
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Consider, for example SU(4)C/P12 (the other case is similar). We calculate the second
canonical series :

g1 = [1,−1, 0, 0]⊕ [0, 1,−1, 0]⊕ [0, 1, 0,−1], g2 = [1, 0, 0,−1]⊕ [1, 0,−1, 0], g3 = {0}
Consequently the canonical fibration is SU(4)/K12 → SU(4)/F where the Lie algebra
of F is

f = k12 ⊕ [[1, 0, 0,−1]] ⊕ [[1, 0,−1, 0]]

Thus, F = S(U(1)× U(3)) and the symmetric space SU(4)/F is isomorphic to CP (3).
Now the fibration of degree 3, SU(4)/K12 → SU(4)/H is characterized by H = K12

and

m+ = [1,−1, 0, 0] ⊕ [0, 1,−1, 0] ⊕ [0, 1, 0,−1] ⊕ [−1, 0, 0, 1] ⊕ [−1, 0, 1, 0]

so m+ is obtained from l+12 by changing the sign along the vertical subspace of the
canonical fibration, represented by [[1, 0, 0,−1]] ⊕ [[1, 0,−1, 0]].

However this 3-symmetric structure coincides with the 3-symmetric structure on the
twistor space of a quaternion-Khler manifold. To see this we must take the basis β ′′

1 =
(−1, 0, 1, 0), β ′′

2 = (0, 0,−1, 1) and β ′′
3 = (0, 1, 0,−1), so that the highest weight is

γ′′ = (−1, 1, 0, 0). The centralizer of the torus generated by γ′′ has Lie algebra

k′′13 = 3R⊕ [[0, 0, 1,−1]] = k12,

l′′+13 = [−1, 1, 0, 0] ⊕ [0, 1,−1, 0] ⊕ [0, 1, 0,−1] ⊕ [−1, 0, 0, 1] ⊕ [−1, 0, 1, 0]

and finally the 3-symmetric structure, as in example 1, is represented by

m′′+ = [1,−1, 0, 0] ⊕ [0, 1,−1, 0] ⊕ [0, 1, 0,−1] ⊕ [−1, 0, 0, 1] ⊕ [−1, 0, 1, 0] = m+

So even if M = SU(4)/S(U(1) × U(1) × U(2)) has three distinct invariant complex
structures, corresponding to three distinct realizations as a complex flag manifold, or
equivalently to three twistor fibrations on a symmetric space with total space M , the
corresponding 3-symmetric nearly Khler structures concide. In other words, there are
several J1 but only one J2, in terms of proposition 2.9. This fact was already noticed
by Salamon in [26], section 6.

The other feature associated with SU(4) we found interesting is a kind of counter
example of proposition 5.17, i.e. a complex twistor space on a 3-symmetric space,
not coming from a fibration of degree 3. Again, the 3-symmetric space we consider is
the twistor space of a Wolf space, here Gr2(C

4), with the corresponding 3-symmetric
structure as in paragraph 6.1 given by :

h = 3R⊕ [[0, 1,−1, 0]]

m+ = [−1, 0, 0, 1] ⊕ [1, 0,−1, 0] ⊕ [1,−1, 0, 0] ⊕ [0, 1, 0,−1] ⊕ [0, 0, 1,−1]

In view of proposition 5.15, we make a change of base B 7→ B′′ = {β ′′
1 , β ′′

2 , β ′′
3} as above.

Then the positive roots are :

(−1, 0, 1, 0) (0, 0,−1, 1) (0, 1, 0,−1) (−1, 0, 0, 1) (0, 1,−1, 0) (−1, 1, 0, 0)

We compute n+ as in (30) :

n+ = [−1, 0, 0, 1] ⊕ [−1, 0, 1, 0] ⊕ [−1, 1, 0, 0] ⊕ [0, 1, 0,−1] ⊕ [0, 0,−1, 1]
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We remark that n+ contains all the weight spaces associated to a simple root β ′′
i . Thus

[n+, n+] + n+ = l′′+123

In particular n+ satisfies (25) so the H-twistor space associated to n+ is integrable,
isomorphic to SU(4)/(S1)3 ≃ SU(4)C/P123. However, the first term of the second
canonical series associated to l′′+,

g′′1 = [−1, 0, 1, 0] ⊕⊕[0, 1, 0,−1] ⊕ [0, 0,−1, 1],

is not included in m+ (nor in m−) thus it can’t be the fibration of degree 3 by our remark
5.16. Yet, the total space and the base M ≃ SU(4)/S(U(1) × U(1) × U(2)), equipped
with its nearly Khler structure, are the same. Only the inclusion of SU(4)/(S1)3 into
Z, the Riemannian twistor space of M , changes.

6.4. The complex projective space CP (2q + 1). The odd dimensional projective
space appears, in this subsection, as

(34) CP (2q + 1) ≃ Sp(q + 1)/S1 × Sp(q)

The properties of this homogeneous realization are very different from those attached
to the other realization :

(35) CP (n) ≃ SU(n + 1)/S(U(1) × U(n)),

appearing in the previous example. For example, it is from (34) that CP (2q+1) reveals
the twistor space of HP (q) ≃ Sp(q + 1)/Sp(1)Sp(q). On the other hand, it can be seen
on (35) that CP (n) is a symmetric space.

Among all the Wolf spaces, the interest of HP (q) is that its Riemannian holonomy
is generic, equal to Sp(1)Sp(q) so it can be used as a model for the study of non
locally symmetric, irreducible, quaternion-Khler manifolds. Then, the holonomy of ∇
on CP (2q+1), equal to S1×Sp(q) (recall 3.5 that the normal connection coincides with
the canonical Hermitian connection on a 3-symmetric space) is also generic among the
nearly Khler manifolds constructed on the twistor space of a quaternion-Khler manifold
with positive scalar curvature.

To simplify we will set q = 2, the situation for q = 1 being perhaps too singular. The
other cases q ≥ 3 easily deduce from this one.

The roots of Sp(3) are, in standard coordinates,

(2, 0, 0) (0, 2, 0) (0, 0, 2) (1,−1, 0) (1, 0,−1) (1, 0,−1)
(1, 1, 0) (1, 0, 1) (0, 1, 1) (−2, 0, 0) (0,−2, 0) (0, 0,−2)
(−1, 1, 0) (−1, 0, 1) (−1, 0, 1) (−1,−1, 0) (−1, 0,−1) (0,−1,−1)

We choose β1 = (1,−1, 0), β2 = (0, 1,−1) and β3 = (0, 0, 2) so that γ = (2, 0, 0). The
twistor space of HP (3) is CP (5) ≃ Sp(3)C/P23 with complex structure

l+ = [2, 0, 0] ⊕ [1,−1, 0] ⊕ [1, 0,−1] ⊕ [1, 1, 0] ⊕ [1, 0, 1],

and 3-symmetric structure

m+ = [−2, 0, 0] ⊕ [1,−1, 0] ⊕ [1, 0,−1] ⊕ [1, 1, 0] ⊕ [1, 0, 1].
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In general we would have, for CP (2q′ + 1),

(36) l+ = [2, 0, . . . , 0] ⊕ [1,−1, 0, . . . , 0] ⊕ [1, 0,−1, 0, . . . , 0] ⊕ . . . ⊕ [1, 0, . . . , 0,−1]

⊕ [1, 1, 0, . . . , 0] ⊕ [1, 0, 1, 0, . . . , 0] ⊕ . . . ⊕ [1, 0, . . . , 0, 1]

Let

n+ = [2, 0, 0] ⊕ [−1, 1, 0] ⊕ [1, 0,−1] ⊕ [1, 1, 0] ⊕ [1, 0, 1]

We have

[n+, n+]m = [2, 0, 0] ⊕ [1, 1, 0], [n+, n+]h = [0, 2, 0] ⊕ [0, 1,−1] ⊕ [0, 1, 1]

so n+ satisfies

[n+, n+]m ⊂ n+, and [ [n+, n+]h, n+] = [1, 1, 0] ⊂ n+

It is not difficult to remark that [n+, n+]h is isomorphic to (36) for q′ = q − 1 = 1
(it suffices to remove the zero in the first place). Since h = k ⊕ [n+, n+]h we have
H/K ≃ CP (3). This observation is to be made for all q. In conclusion, ∀q ≥ 1,
CP (2q + 1) has a complex twistor space with fibre isomorphic to CP (2q − 1).

7. Twistors spaces of 3-symmetric spaces

The classification of Gray and Wolf [30] differentiates between three types of compact,
simply connected, 3-symmetric spaces M ≃ G/H .

(i) First, the case where H is already the centralizer of a torus. Then rankG = rankH
and we can write h = kA. More precisely, there are two subcases :
a) A is a singleton : A = {δ} where nδ(γ) = 1 or 2.
b) A has two distinct elements δ1, δ2 with nδ1(γ) = nδ1(γ) = 1
Then the construction of Burstall, Rawnsley [12] applies and M is the twistor space of
a symmetric space.

(ii) The two groups G and H have same rank but H is not the centralizer of a torus.
Then, by [30], H is a maximal subgroup of G and there exists a simple root δ such that
nδ(γ) = 3 and (B − {δ}) ∪ {−γ} constitutes a simple root set for h which thus equals

(37) hδ = t ⊕
⊕

nδ(α)=0
α∈R+

[[gα]] ⊕
⊕

nδ(α)=3

[[gα]]

(iii) The third case corresponds to rankH < rank G. This includes two exceptionnal
homogeneous spaces Spin(8)/G2 and Spin(8)/SU(3) and an infinite family defined by
G = H × H × H and H stands in G as the diagonal subgroup, the fixed point set of
the permutation of order 3.

Thus our assumption that the automorphism of order 3 is inner, or equivalently
rank G = rank H , appears not too restrictive, since only the spaces in the last group
fail to satisfy it.
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It is not hard to understand with our formalism what is the 3-symmetric structure

on the flag manifolds in (i). Recall (32) : gr =
⊕

nA(α)=r

gα. But nA(γ) = 1 or 2, for the

highest weight γ, so we can’t have nA(α) ≥ 3. Consequently g3 = {0}, H = K i.e. the
fibration of degree 3 is trivial and G/H is itself equipped with a 3-symmetric structure
that consists in changing the sign of l+ along the vertical subspace, represented by [[g2]]
(see examples 1 and 3).

The three classes (i)-(iii) can be characterized in a geometrical way by the holonomy
representation of the intrinsic connection ∇. This clue observation has a history that
starts with Reyes Carrión [24], carries on with Belgun, Moroianu [4] and ends up with
the two articles of Nagy [21, 22]. In our case, since all manifolds are homogeneous and
the intrinsic connection of a nearly Khler 3-symmetric space concides with the normal
connection by proposition 3.5, this is also the isotropy representation.

(i) The decomposition

(38) m = [[g1]] ⊕ [[g2]]

is preserved by h so ∇ preserves the horizontal and vertical distributions. Moreover s,
the automorphism of order 3, is an inner automorphism, for 3-symmetric spaces of type
(i) or (ii). Consequently, the invariant subspaces of Ad(H) are stable by s∗ and from
(10), by the canonical almost complex structure J . Finally, the isotropy representation
of G/H in this case is complex reducible (we see tangent spaces as complex vector spaces,
identifying i with J at each point).

(ii) On the other hand, the manifolds in (ii) are exceptional homogeneous spaces known
to be isotropy irreducible. In fact these are the only non symmetric isotropy irreducible
homogeneous spaces G/H such that rankG = rankH (see corollary 8.13.5 of [29]).

(iii) Finally the isotropy, or the holonomy representation of ∇ on the spaces of type (iii)
is real reducible i.e. there exists an invariant distribution V such that TM = V ⊕ JV.

We want to construct twistor spaces over the manifolds of the first two types such
that the fibration G/K → G/H is a fibration of degree 3. According to section 5, this
consists, for (i), in a change of base such that the new base satisfies 5.18. Examples are
given in section 6. They are G2/S

1 × S1 → G2/U(2) and (33).

As for the manifolds of type (ii), H still has maximal rank so 5.2 applies and we must
look for H-twistor spaces over M among the flag manifolds. In view of the description
made of h, there is a natural candidate, G/Kδ.

Proposition 7.1. Let M = G/H be an isotropy irreducible 3-symmetric space where
G is a simple Lie group. There exists a simple root δ such that nδ(γ) = 3 and the Lie
algebra of H is (37), i.e. H = Hδ. Then G/H is the base of the fibration of degree 3
associated to pδ. Consequently M has a complex twistor space with fibre Hδ/Kδ.

Proof. By (32),

hδ = kδ ⊕ [[g3]],
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for the second canonical series associated to pδ. The next term is g4 = {0} because
nδ(γ) = 3. Finally h =

⊕
i∈N

[[g3i]] as required. �

8. Conclusion

In the classification mentionned in the introduction (see [22]), we only treated the
case of 3-symmetric spaces. However our study might be of some help for the remaining
two cases. Indeed, we can see the odd-dimensional complex projective space CP (2q+1)
considered in paragraph 6.4 as a model for nearly Khler manifolds M built on the twistor
space of a quaternion-Khler manifold N , just like one uses HP (q), the quaternionic
projective space, as a model for the geometry of non locally symmetric quaternion
Khler irreducible spaces themselves. This is because their holonomy is Sp(q)Sp(1), the
isotropy of HP (q), from Berger’s classification [5]. Thus, the holonomy of ∇ on M is
S1×Sp(q) and equals the isotropy of CP (2q+1). The study of M gives informations on
the quaternion-Khler manifold N . For example, if M is 3-symmetric, N is a symmetric
space. Another interesting fact (see [26]) is that minimal surfaces in N are projections
of holomorphic curves in M with respect to the nearly Khler almost complex structure.

In the same manner, we can think of manifolds of the third class (i.e. non locally
3-symmetric 6-dimensional nearly Khler manifolds) as modelled on S6 ≃ G2/SU(3).
Indeed, let M be a 6-dimensional complete nearly Khler manifold. It was shown by
Belgun, Moroianu [4] that if the holonomy representation of the intrinsic connection
∇ is complex reducible, i.e. if the holonomy group is a subgroup of U(1) × U(2), M
is isomorphic to CP (3) or F3, the space of complex flags in C3, and by Nagy [22]
that if the holonomy representation is real reducible, M is isomorphic to S3 × S3. In
particular, M is 3-symmetric in both cases. Thus the holonomy representation of non
locally 3-symmetric, 6-dimensional, nearly Khler manifolds is irreducible. Equivalently,
the holonomy group of ∇ is SU(3), like for the sphere S6. However, twistor spaces over
6-dimensional nearly Khler manifolds have no compatible complex structure, except for
S6 (see [10]).

It was noticed several times that dimension 6 is crucial, in the study of nearly Khler
manifolds (for instance, nearly Khler manifolds in dimension 6 are Einstein, see [19], and
their cone has holonomy G2, see [3]). In the context of the present article we make the
remark that it is already representative of Gray and Wolf’s classification of 3-symmetric
spaces revisited in section 7. Indeed it supplies examples for the three classes : S6 is
isotropy irreducible, CP (3), F3 are the twistor spaces of 4-dimensional symmetric spaces
S4 and CP (2), and finally S3×S3 ≃ SU(2)×SU(2)×SU(2)/SU(2) is a representative
of the third class.

The first example of a generalization of the theory of twistor spaces on four dimen-
sional manifolds involving G-structures is due to Salamon [25] for G = Sp(q)Sp(1). It
already makes place for G-manifolds with torsion. Indeed, to admit a complex twistor
space with fibre CP (1), an Sp(q)Sp(1)-manifold need not be quaternion-Khler, it is
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enough to be quaternionic, i.e. 3 only of the 6 components of the intrinsic torsion
(the tensor that measures the failure, for the holonomy, to reduce to G, or for the
G-structure to be 1-flat, in the terminology of [8]) vanish. Thus, quaternionic man-
ifolds are Sp(q)Sp(1)-manifolds with torsion. However these 3 components represent
the intrinsic torsion of the underlying GL(q,H)Sp(1)-manifold (see [27], chapter 9) so
”quaternionic” means also that the GL(q,H)Sp(1)-structure is 1-flat and the existence
of a complex twistor space depends again on the existence of a torsion-free connection,
which doesn’t seem to be the case here.
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