
RULE 2004 Preliminary Version

Principles of Chemical Programming

Jean-Pierre Banâtre1, Pascal Fradet2 and Yann Radenac1

1IRISA, Université de Rennes1

Campus de Beaulieu

35042 Rennes Cedex, France

jbanatre@irisa.fr, yradenac@irisa.fr

2INRIA Rhône-Alpes

655, avenue de l’Europe

38330 Montbonnot, France

Pascal.Fradet@inria.fr

Abstract

The chemical reaction metaphor describes computation in terms of a chemical solu-
tion in which molecules interact freely according to reaction rules. Chemical models
use the multiset as their basic data structure. Computation proceeds by rewritings
of the multiset which consume elements according to reaction conditions and pro-
duce new elements according to specific transformation rules. Since the introduction
of Gamma in the mid-eighties, many other chemical formalisms have been proposed
such as the Cham, the P-systems and various higher-order extensions. The main
objective of this paper is to identify a basic calculus containing the very essence of
the chemical paradigm and from which extensions can be derived and compared to
existing chemical models.

Key words: higher-order conditional multiset rewriting, chemical
metaphor, formal calculi

1 Introduction

The chemical reaction metaphor has been discussed in various occasions in
the literature. This metaphor describes computation in terms of a chemical
solution in which molecules (representing data) interact freely according to re-
action rules. Chemical models use the multiset as their basic data structure.
Computation proceeds by rewritings of the multiset which consume elements
according to reaction conditions and produce new elements according to spe-
cific transformation rules.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Banâtre, Fradet and Radenac

To the best of our knowledge, the Gamma formalism was the first “chemical
model of computation” proposed as early as in 1986 [2] and later extended
in [3]. A Gamma program is a collection of reaction rules acting on a multiset
of basic elements. A reaction rule is made of a condition and an action.
Execution proceeds by replacing elements satisfying the reaction condition
by the elements specified by the action. The result of a Gamma program is
obtained when a stable state is reached that is to say when no more reactions
can take place. Figure 1 gives three short examples illustrating the Gamma
style of programming. The reaction max computes the maximum element of

max = replace x, y by x if x > y

primes = replace x, y by y if multiple(x, y)

maj = replace x, y by{} if x 6= y

Figure 1. Examples of Gamma programs

a non empty set. The reaction replaces any couple of elements x and y such
that x > y by x. This process goes on till a stable state is reached, that is to
say, when only the maximum element remains. The reaction primes computes
the prime numbers lower or equal to a given number N when applied to the
multiset of all numbers between 2 and N (multiple(x, y) is true if and only if
x is multiple of y). The majority element of a multiset is an element which
occurs more than card(M)/2 times in the multiset. Assuming that such an
element exists, the reaction maj yields a multiset which only contains instances
of the majority element just by removing pairs of distinct elements. Let us
emphasize the conciseness and elegance of these programs. Nothing had to be
said about the order of evaluation of the reactions. If several disjoint pairs of
elements satisfy the condition, the reactions can be performed in parallel.

Gamma makes it possible to express programs without artificial sequen-
tiality. By artificial, we mean sequentiality only imposed by the computation
model and unrelated to the logic of the program. This allows the program-
mer to describe programs in a very abstract way. In some sense, one can
say that Gamma programs express the very idea of an algorithm without any
unnecessary linguistic idiosyncrasies. The interested reader may find in [3] a
long series of examples (string processing problems, graph problems, geome-
try problems, . . . ) illustrating the Gamma style of programming and in [1] a
review of contributions related to the chemical reaction model.

Later, the idea was developed further into the Cham [4], higher-order mul-
tiset rewriting [13], the hmm-calculus [8], the P-systems [14], etc. Although
built on the same basic paradigm, these proposals have different properties
and different expressive powers. This article is an attempt to identify the
basic principles behind chemical models.

In Section 2, we exhibit a minimal chemical calculus, from which all other

2



Banâtre, Fradet and Radenac

“chemical models” can be obtained by addition of well-chosen features. Basi-
cally, this minimal calculus, incorporates the γ-reduction which expresses the
very essence of the chemical reaction and the associativity and commutativity
rules which express the basic properties of chemical solutions. This calcu-
lus is then enriched in Section 3 with conditional reactions and, further, the
possibility of rewriting atomically several molecules. These extensions give
rise to four possible chemical calculi. Section 4 shows how existing chemical
models relate and compare to the basic calculi presented previously. Section 5
suggests several research directions and concludes.

2 A minimal chemical calculus

In this section, we introduce a higher-order calculus, the γ0-calculus, that can
be seen as a formal and minimal basis for the chemical paradigm (in much the
same way as the λ-calculus is the formal basis of the functional paradigm).

2.1 Syntax

The fundamental data structure of the γ0-calculus is the multiset (a collection
which may contain several copies of the same element). Elements can move
freely inside the multiset and react together to produce new elements. Compu-
tation can be seen either intuitively, as chemical reactions of elements agitated
by Brownian motion, or formally, as higher-order associative and commutative
(AC) rewritings of multisets.

The syntax of γ0-terms (also called molecules) is given in Figure 2. A γ-

M ::= x ; variable

| (γ〈x〉.M) ; γ-abstraction

| (M1, M2) ; multiset

| 〈M〉 ; solution

Figure 2. Syntax of γ0-molecules

abstraction is a reactive molecule which consumes a molecule (its argument)
and produces a new one (its body). Molecules are composed using the AC
multiset constructor “,”. A solution encapsulates molecules (e.g., multiset)
and keeps them separate. It serves to control and isolate reactions. To avoid
notational clutter, we omit outermost parentheses, parentheses in multisets
and we assume that γ-abstractions associate to the right. For example, the
γ-abstraction (γ〈x〉.(x, (x, (γ〈y〉.y)))) will be written γ〈x〉.x, x, γ〈y〉.y.

The γ0-calculus bears clear similarities with the λ-calculus. They both
rely on the notions of (free and bound) variable, abstraction and applica-

3



Banâtre, Fradet and Radenac

tion. A λ-abstraction and a γ-abstraction both specify a higher-order rewrite
rule. However, λ-terms are tree-like whereas the AC nature of the application
operator “,” makes γ0-terms multiset-like. Associativity and commutativity
formalizes Brownian motion and make the notion of solution necessary, if only
to distinguish between a function and its argument.

2.2 Semantics

The conversion rules and the reduction rule of the γ0-calculus are gathered
in Figure 3. Chemical reactions are represented by a single rewrite rule,

(γ〈x〉.M), 〈N〉 −→γ M [x := N ] if Inert(N) ∨ Hidden(x, M) ; γ-reduction

γ〈x〉.M ≡ γ〈y〉.M [x := y] with y fresh ; α-conversion

M1, M2 ≡ M2, M1 ; commutativity

M1, (M2, M3) ≡ (M1, M2), M3 ; associativity

Figure 3. Rules of the γ0-calculus

the γ-reduction, which applies a γ-abstraction to a solution. A molecule
(γ〈x〉.M), 〈N〉 can be reduced only if

Inert(N): the content N of the solution argument is a closed term made
exclusively of γ-abstractions or exclusively of solutions (which may be
active),

or Hidden(x, M): the variable x occurs in M only as 〈x〉. Therefore 〈N〉 can
be active since no access is done to its contents.

So, a molecule can be extracted from its enclosing solution only when it
has reached an inert state. This is an important restriction that permits the
ordering of rewritings. Without this restriction, the contents of a solution
could be extracted in any state and the solution construct would lose its
purpose.

Consider, for example, the following molecules:

ω ≡ γ〈x〉.x, 〈x〉

Ω ≡ ω, 〈ω〉

I ≡ γ〈x〉.〈x〉

Clearly, Ω is an always active (non terminating) molecule and I an inert
molecule (the identity function in normal form). The molecule 〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x

4



Banâtre, Fradet and Radenac

reduces as follows:

〈Ω〉, 〈I〉, γ〈x〉.γ〈y〉.x −→ 〈Ω〉, γ〈y〉.I −→ I

The first reduction is the only one possible: the γ-abstraction extracts x from
its solution and 〈I〉 is the only inert molecule (Inert(I)∧¬Hidden(x, γ〈y〉.x)).
The second reduction is possible only because the active solution 〈Ω〉 is not
extracted but removed (¬Inert(Ω) ∧ Hidden(y, I))

A molecule is in normal form if all its molecules are inert. We say that two
molecules M1 and M2 are syntactically equivalent (and we write M1 ≡ M2),
if they can be rewritten into each other using α-conversion and AC rules.

As usual, rules can be applied in parallel as long as they apply to disjoint
redexes. So, there can be several reactions at the same time for disjoint sub-
terms and/or within nested solutions and/or inside γ-abstractions.

2.3 Expressivity

The γ0-calculus is more expressive than the λ-calculus since it can easily ex-
press non-deterministic programs. For example, let A and B two distinct
normal forms:

(γ〈x〉.γ〈y〉.x), 〈A〉, 〈B〉 ≡ (γ〈x〉.γ〈y〉.x), 〈B〉, 〈A〉

↓γ ↓γ

(γ〈y〉.A), 〈B〉 (γ〈y〉.B), 〈A〉

↓γ ↓γ

A 6≡ B

On the other hand, the λ-calculus can easily be encoded within the γ0-
calculus. Figure 4 gives here a possible encoding for the strict λ-calculus
using the function [[·]] which takes a λ-term and returns its translation as a
γ-term. The standard call-by-name λ-calculus can also be encoded but the

[[x]]
def

= x

[[λx.E]]
def

= γ〈x〉.[[E]]

[[E1 E2]]
def

= 〈[[E1]]〉, γ〈f〉.f, 〈[[E2]]〉

Figure 4. Translating λ-terms into γ0-molecules

translation is slightly more involved. This comes from the strict nature of
the γ0-calculus which enforces the argument to be inert/reduced before the
reaction can take place.

5



Banâtre, Fradet and Radenac

As in the λ-calculus, recursion, integers, booleans, data structures, arith-
metic, logical and comparison operators can be defined within the γ0-calculus.
We do not give their precise definitions in this article since they are similar to
their definitions as λ-terms. From now on, we will give our examples assum-
ing that these constructs have been defined. In particular, we will use pairs
(written a:b) and recursive definitions to define n-shot abstractions (which
re-introduce themselves after each reaction). For example, the molecule per-
forming the product of all integers in its solution can be defined as:

pi = γ〈x〉.γ〈y〉.〈x ∗ y〉, pi

The reactive molecule pi takes two integers and replaces them by their product
and a copy of itself. For example:

pi, 〈2〉, 〈3〉, 〈2〉 −→γ . . . −→γ pi, 〈12〉 −→γ γ〈y〉.〈12 ∗ y〉, pi

3 Two fundamental extensions

The γ0-calculus is a quite expressive higher-order calculus. However, compared
to the original Gamma [3] and other chemical models [8,13,14], it lacks two
fundamental features:

• Reaction condition. In Gamma, reactions are guarded by a condition that
must be fulfilled in order to apply them. Compared to γ0 where inertia
and termination are described syntactically, conditional reactions give these
notions a semantic nature.

• Atomic capture. In Gamma, any fixed number of elements can take part in
a reaction. Compared to a γ0-abstraction which reacts with one element at
a time, a n-ary reaction takes atomically n elements which cannot take part
in any other reaction at the same time.

These two extensions are orthogonal and enhance greatly the expressivity of
chemical calculi. Strictly speaking, these features do not permit to express a
larger class of programs (the γ0-calculus is Turing-complete). But, they do
add expressivity in the sense that they are not syntactic sugar and can only
be expressed using a global re-organization of programs.

3.1 Conditional reaction

In the γc-calculus, abstractions hold conditions. The condition of an ab-
straction must be satisfied before the reaction occurs. The syntax of the
γc molecules is given in Figure 5. The reaction condition is modeled by M0

which must evaluate to a special constant true before the reaction occurs.

6



Banâtre, Fradet and Radenac

M ::= x ; variable

| γ〈x〉bM0c.M1 ; conditional γ-abstraction

| (M1, M2) ; multiset

| 〈M〉 ; solution

Figure 5. Syntax of γc-molecules

The γc-reduction is formalized as follows:

Inert(N) ∨ Hidden(x, (M0, M1)) M0[x := N ]
∗

−→c true

(γ〈x〉bM0c.M1), 〈N〉 −→c M1[x := N ]

where the molecule true is a given constant (e.g., γ〈x〉bxc.x).

Clearly, the γc-calculus embeds the γ0-calculus: the abstractions of γ0 cor-
respond to the abstractions of γc with the condition true. Inert γc-molecules
are molecules where no solution satisfies the reaction condition of any γ-
abstraction. So, as opposed to γ0, inert molecules in the γc-calculus can mix
solutions and abstractions as long as no condition is satisfied. Inertia, as well
as termination, becomes a semantic notion.

Consider the task of ceiling a collection of integers by 9. This can be
expressed in γc by the following recursive molecule:

ceil = γ〈x〉bx > 9c.〈9〉, ceil

and, for example,

ceil, 〈10〉, 〈3〉, 〈11〉
∗

−→γ ceil, 〈9〉, 〈3〉, 〈9〉

Conditions can be used to encode type checking and pattern-matching. For
example, assuming pairs (x:y) (with the access functions Fst and Snd) and a
tag (constant) Int , we can encode typed integers by Int :x. A γ-abstraction
matching an integer as argument can be written as:

γ〈i〉bFst i = Int ∧ M0c.M1

It is easy to define a convenient and expressive pattern language to match inte-
gers, booleans, solutions, γ-abstractions, etc. For example, the γ-abstraction
above could also be written:

γ(Int :x)bM0c.M1

There is no simple and local way to encode γc in γ0. The encoding implies
a global reorganization of γ0 programs. A possible encoding consists in a γ0

program interpreting γc programs. All γc elements are isolated in solutions

7



Banâtre, Fradet and Radenac

with their description (type, value) and γ0-abstractions simulate the semantics
of γc (this can be done since γ0 is Turing-complete). The algorithm must check
that the reaction condition of all γ-abstractions is false before it terminates.

3.2 Atomic capture

In the γn-calculus, abstractions can capture several elements atomically. The
syntax of the molecules is given in Figure 6. The n-ary abstraction can occur

M ::= x ; variable

| γ(〈x1〉, . . . , 〈xn〉).M ; n-ary γ-abstraction

| (M1, M2) ; multiset

| 〈M〉 ; solution

Figure 6. Syntax of γn-molecules

if it finds n solutions, otherwise no reaction takes place. Of course, an element
cannot participate in several reactions simultaneously (mutual exclusion). The
γc-reduction is formalized as follows:

∀ 1 ≤ i ≤ n Inert(Ni) ∨ Hidden(xi, M)

(γ(〈x1〉, . . . , 〈xn〉).M), 〈N1〉, . . . , 〈Nn〉 −→n M [xi := Ni]

For example, the addition and product of a collection of integers can be defined
as binary recursive γ-abstractions:

sigma = γ(〈x〉, 〈y〉).〈x + y〉, sigma

pi = γ(〈x〉, 〈y〉).〈x ∗ y〉, pi

The following example describes one possible execution where one addition and
one multiplication have been performed (many other executions are possible):

sigma, pi, 〈2〉, 〈3〉, 〈4〉
∗

−→n 〈20〉, sigma, pi

Consider the previous example but with sigma and pi defined as unary γ0-
abstractions. When there remains only two elements, sigma and pi could each
take one element and would keep waiting for a second. These conflicts (which
can also be seen as deadlocks) can only be avoided with the ability of taking
several elements atomically.

This feature is not syntactic sugar. As with γc, a possible way to encode
the atomic capture, is to isolate all γn elements in solutions and to emulate
using γ0 reactions the semantics of γn. Abstractions of γn are encoded with
their arity and the emulator should test the presence of enough elements before
triggering the reaction.

8



Banâtre, Fradet and Radenac

4 Chemical calculi and related chemical models

The previous extensions are orthogonal and can be combined. For example,
the γ0-calculus can be extended using reaction conditions and atomicity cap-
ture. We denote the resulting calculus γcn. The γ-calculi are depicted in
Figure 7 where arrows stand for “can be extended into” or “is less expressive
than”. In the following, we relate well-known chemical models to γ0 and γcn.

γcn

γc

� ��
�

�
�

�
�

�
�

�

γn

���
�

�
�

�
�

�
�

�

γ0

���
�

�
�

�
�

�
�

�

� ��
�

�
�

�
�

�
�

�

Figure 7. γ-calculi.

4.1 The γ0-calculus and related models

Our minimal chemical calculus is quite close to Berry and Boudol’s concurrent
λ-calculus (referred to here as the γbb-calculus) introduced after the chemical
abstract machine (Cham) in [4]. The γbb-calculus relies also on variables, ab-
stractions, an AC application operator and solutions. However, to distinguish
between the γ-abstraction and its argument, it adds the notion of positive ions
(denoted M+). The γ-abstractions are negative ions (denoted x−M) which
can react only with positive ions:

β-reaction: (x−M), N+ → M [x := N ]

In fact, no reaction can occur within a positive ion and so arguments are
passed unchanged to abstractions. Furthermore, an additional reduction law,
the hatching rule, extracts an inert molecule M from a solution 〈M〉:

hatching: 〈W 〉 
 W if W is inert

In the γ0-calculus, these two notions are replaced by the strict γ-reduction. In
particular, hatching can be written explicitly as

(γ〈x〉.x), 〈M〉

which extracts M from its solution when it becomes inert. Even if the γ0-
calculus looks simpler than the γbb-calculus, it seems that they cannot be
translated easily into each other (e.g., by a translation defined on the syntax
rules). They appear to be call-by-value (γ0) and call-by-name (γbb) versions of
similar ideas.

9



Banâtre, Fradet and Radenac

4.2 The γcn-calculus and related models

In the γcn-calculus, abstractions have a reaction condition and the ability to
take several molecules atomically. Their syntax becomes:

γ(〈x1〉, . . . , 〈xn〉)bM0c.M1

The associated reduction rule mixes γc-reduction and γn-reduction :

∀ 1 ≤ i ≤ n Inert(Ni) ∨ Hidden(xi, (C, M)) C[xi := Ni]
∗

−→cn true

(γ(〈x1〉, . . . , 〈xn〉)bCc.M), 〈N1〉, . . . , 〈Nn〉 −→cn M [xi := Ni]

The γcn model cumulates the expressive power of γc and γn. For example,
the dining philosophers problem can be expressed in γcn as follows:

Eat = γ(〈Fork:f1〉, 〈Fork:f2〉)bf2 = f1 + 1 mod Nc.〈Phi:f1〉,Eat

Think = γ(〈Phi:f〉)btruec.〈Fork:f〉, 〈Fork:(f + 1 mod N)〉,Think

Initially the multiset contains only forks and the two recursive molecules. The
Eat reaction looks for two adjacent forks 〈Fork:fi〉 and “produces” an eating
philosopher 〈Phi:f〉. This reaction needs the expressive powers of γn and
γc: the two forks have to be adjacent (reaction condition of γc) and should
be taken simultaneously (atomicity of γn) to prevent deadlocks. The Think
reaction “transforms” an eating philosopher into two available forks.

Most of the existing chemical models have reaction conditions and the
ability to take several molecules atomically. They are closely related to γcn

even when they are first-order languages. We present here two first-order
models (Gamma and the Cham) and higher-order extensions (higher-order
multiset rewriting and the hmm-calculus).

4.2.1 Gamma

To the best of our knowledge, Gamma [2,3] is the first chemical model. It
consists in a single multiset containing basic inactive molecules and external,
conditional and n-ary reactions. Reactions are n-shot: they are applied until
no reaction can take place. They are first-order: they are not part of the mul-
tiset and cannot be taken as argument or returned as result. Moreover, there
is no nested solutions. Even if sub-solutions can be encoded, there is no notion
of inertia in Gamma (only global termination). A standard Gamma program
is easily expressed as a γcn-molecule made of a solution (inert because with-
out any abstraction) representing the multiset and a collection of recursive
γ-abstractions representing the reactions. Gamma has inspired many exten-
sions (e.g., composition operators [12]) and other chemical models. Most of
these extensions and models remain related to γcn.

10



Banâtre, Fradet and Radenac

4.2.2 The Chemical Abstract Machines

The chemical abstract machine [4] (Cham) is a chemical approach introduced
to describe concurrent computations without explicit control. It started from
Gamma and added many features such as membranes, (sub)solutions, inertia
and airlocks. Like Gamma, reactions are n-ary and n-shot rewrite rules which
are not part of the multisets. The selection pattern in the left-hand side of
rewrite rules can include constants which is a form of reaction condition. For
example, in [4], the description of the operational semantics of the TCCS and
CCS calculi contains a cleanup rule (0 ⇀) which removes molecules equal to
0. The Cham would be equivalent to γcn if it was higher-order.

4.2.3 Higher-order extensions

A first higher-order extension of Gamma has been proposed in [13]. The
definition of Gamma involves two different kinds of terms: the program (set
of rewrite rules) and multisets. The main extension of higher-order Gamma
consists in unifying these two categories of expression into a single notion of
configuration. A configuration contains a program and a list of named multi-
sets. It is denoted by [Prog, V ar1 = Multiset1, . . . , V arn = Multisetn]. The
program Prog is a rewrite rule of the multisets (named V ari) of the config-
uration. This model is an higher-order model because any configuration can
handle other configurations through their program. It includes reaction con-
ditions and n-ary rewrite rules. However, reactions are not first-class citizens
since they are kept separate from multisets of data.

The hmm-calculus [8] (for higher-order multiset machines) is described as
an extension of Gamma where reactions are one-shot and first-class citizens.
An abstraction denoted by λx̃.M1 ⇐ M0 describes a reaction rule: it takes
several terms denoted by a tuple x̃, the term M1 is the action and the term
M0 is the reaction condition. Like γbb, the hmm-calculus uses a call-by-name
strategy. It needs an hatching rule to extract an inert molecule from its
solution. Any reaction can occur within solutions and within abstractions.
The hmm-calculus can be seen as a lazy version of the γcn-calculus, or as an
extension of the γbb-calculus with conditional and n-ary reactions.

4.2.4 P-systems

P-systems [14] are computing devices inspired from biology. It consists in
nested membranes in which molecules react. Molecules can cross and move
between membranes. A set of partially ordered rewrite rules is associated to
each membrane. These rules describe possible reactions and communications
between membranes of molecules. These features can be expressed in γcn by
introducing two new notions. They do not add additional expressive power
but they are convenient and interesting in themselves.

• The first needed notion is universally quantified conditions. Intuitively, a
reaction condition C can be read “if it exists a solution that satisfies C

11



Banâtre, Fradet and Radenac

. . . ”. Another kind of condition could also be considered: “if all solutions
satisfy C . . . ”. This universally quantified condition can be expressed in
γc. It amounts to testing the absence of a molecule satisfying ¬C. Using
this mechanism, it is possible to specify a partial order between reactions
as priorities. A high priority reaction should react before one with a lower
priority. To encode priority, an abstraction should check that no abstraction
with a higher priority can react, i.e., that there is no elements in the solution
that satisfy the conditions of the abstractions with a higher priority.

• The second notion is porous solutions. It is possible to define porous so-
lutions which can be manipulated by γ-abstractions even when they are
active. A porous solution made of the active molecule X1, . . . , Xn can be
encoded by 〈γ〈x〉.X1, . . . , Xn〉. The body of the γ-abstraction is active but
can be accessed by extracting it from its inert enclosing solution and by
applying it to an argument. This feature can be used to represents the
porous membranes of P-systems. This capability is also useful for example
when modeling non-terminating reactive systems which interacts continu-
ously with their environment. The reactive system is therefore represented
by an always active porous solution and the environment by reactions adding
(sending) and removing (receiving) elements in that solution.

4.2.5 Other models

Our list of comparisons is not exhaustive and other models could have been
considered. For example, Linda and its variants (particularly Bauhaus Linda [7])
are close to Gamma. Other work has been carried out about concurrent λ-
calculus according to a chemical metaphor such as [11], or, for example, models
from [9].

5 Conclusion

In this article, we have studied the fundamental features of the chemical pro-
gramming paradigm. The γ0-calculus embodies the essential characteristics
(AC multiset rewritings) in only four syntax rules. Terms are multisets (built
with the AC application operator “,”) which can be nested (inside solutions).
This minimal calculus has been shown to be expressive enough to express the
λ-calculus and a large class of non-deterministic programs. However, it does
not reflect closely existing chemical languages such as Gamma. Two extensions
must be considered to achieve a comparable expressive power: reaction condi-
tions and atomic capture. With appropriate syntactic sugar (recursion, con-
stants, operators, pattern-matching, porous solutions, etc.), the γcn-calculus
closely models most of the existing chemical programming models.

This work suggests several research directions. First, we should prove for-
mally that our extensions really improve the expressive power of our minimal
chemical calculus. The comparison of the expressive power of languages has
been formally studied by Felleisen in [10]. He formalizes the intuitive notions

12



Banâtre, Fradet and Radenac

of “syntactic sugar” and “expressive power”. A new construct is considered
as enhancing expressivity if its expression using the other constructs needs
“a global reorganization of the entire program”. A formal comparison of ex-
pressive power of different coordination languages has been carried out in [5].
This work compares different variants of Linda [6] with different models à

la Gamma and with models featuring communication transactions. A simi-
lar approach could be taken to establish formally the pre-order of Figure 7.
Our work could also be completed by providing formal translations of existing
chemical models into the corresponding γ-calculus.

Another direction is to propose a realistic higher-order chemical program-
ming language based on the γcn-calculus. It would consist in defining the
already mentioned syntactic sugar, a type system, as well as expressive pat-
tern and module languages.

References

[1] Banâtre, J.-P., P. Fradet and D. Le Métayer, Gamma and the chemical reaction

model: Fifteen years after, in: Multiset Processing, LNCS 2235 (2001), pp. 17–
44.

[2] Banâtre, J.-P. and D. Le Métayer, A new computational model and its discipline

of programming, Technical Report RR0566, INRIA (1986).

[3] Banâtre, J.-P. and D. Le Métayer, Programming by multiset transformation,
Communications of the ACM (CACM) 36 (1993), pp. 98–111.

[4] Berry, G. and G. Boudol, The chemical abstract machine, Theoretical Computer
Science 96 (1992), pp. 217–248.

[5] Brogi, A. and J.-M. Jacquet, On the expressiveness of coordination models, in:
P. Ciancarini and A. Wolf, editors, Proc. 3rd Int. Conf. on Coordination Models

and Languages, LNCS 1594, 1999, pp. 134–149.

[6] Carriero, N. and D. Gelernter, Linda in Context, Communications of the ACM
32 (1989), pp. 444–458.

[7] Carriero, N., D. Gelernter and L. Zuck, Bauhaus Linda, in: Object-Based Models

and Languages for Concurrent Systems, LNCS 924 (1994), pp. 66–76.

[8] Cohen, D. and J. Muylaert-Filho, Introducing a calculus for higher-order

multiset programming, in: Coordination Languages and Models, LNCS 1061,
1996, pp. 124–141.

[9] Dittrich, P., J. Ziegler and W. Banzhaf, Artificial chemistries – a review,
Artificial Life 7 (2001), pp. 225–275.

[10] Felleisen, M., On the expressive power of programming languages, in: 3rd

European Symposium on Programming, ESOP’90, LNCS 432, Springer-Verlag,
New York, N.Y., 1990 pp. 134–151.

13



Banâtre, Fradet and Radenac

[11] Fontana, W. and L. Buss, The arrival of the fittest: Toward a theory of biological

organization, Bulletin of Mathematical Biology 56 (1994).

[12] Hankin, C., D. L. Métayer and D. Sands, A calculus of Gamma programs, in:
Languages and Compilers for Parallel Computing, 5th International Workshop,
LNCS 757 (1992), pp. 342–355.

[13] Le Métayer, D., Higher-order multiset programming, in: A. M. S. (AMS), editor,
Proc. of the DIMACS workshop on specifications of parallel algorithms, Dimacs
Series in Discrete Mathematics 18, 1994.

[14] Păun, G., Computing with membranes, Journal of Computer and System
Sciences 61 (2000), pp. 108–143.

14


	1 Introduction
	2 A minimal chemical calculus
	2.1 Syntax
	2.2 Semantics
	2.3 Expressivity

	3 Two fundamental extensions
	3.1 Conditional reaction
	3.2 Atomic capture

	4 Chemical calculi and related chemical models
	4.1 The g0-calculus and related models
	4.2 The gcn-calculus and related models

	5 Conclusion
	References

