
cc
sd

-0
00

03
95

1,
 v

er
si

on
 1

 -
 2

0 
Ja

n 
20

05

SEMILATTICES OF FINITELY GENERATED IDEALS OF

EXCHANGE RINGS WITH FINITE STABLE RANK

F. WEHRUNG

Abstract. We find a distributive (∨, 0, 1)-semilattice Sω1
of size ℵ1 that is not

isomorphic to the maximal semilattice quotient of any Riesz monoid endowed

with an order-unit of finite stable rank. We thus obtain solutions to various
open problems in ring theory and in lattice theory. In particular:

— There is no exchange ring (thus, no von Neumann regular ring and no
C*-algebra of real rank zero) with finite stable rank whose semilattice of
finitely generated, idempotent-generated two-sided ideals is isomorphic
to Sω1

.
— There is no locally finite, modular lattice whose semilattice of finitely

generated congruences is isomorphic to Sω1
.

These results are established by constructing an infinitary statement, denoted
here by URPsr, that holds in the maximal semilattice quotient of every Riesz
monoid endowed with an order-unit of finite stable rank, but not in the semi-
lattice Sω1

.

1. Introduction

The present work originates in the representation problem of distributive (∨, 0)-
semilattices as semilattices of compact (i.e., finitely generated) ideals of von Neu-
mann regular rings, see Section 13 in the chapter “Recent Developments” in [8],
or the survey paper [11]. It is known that the original form of this problem has
a negative solution, obtained by the author in [21, 23]: There exists a distributive

(∨, 0)-semilattice that is not isomorphic to the semilattice of all compact ideals of

any von Neumann regular ring. However, the example thus obtained has size ℵ2.
This cardinality bound turns out to be optimal. More specifically:

— The main result in [24] states that every distributive (∨, 0)-semilattice of
size at most ℵ1 is isomorphic to the semilattice of all compact ideals of
some von Neumann regular (but not locally matricial) algebra.

— By a well-known unpublished note by G. M. Bergman [4], every countable

distributive (∨, 0)-semilattice is isomorphic to the semilattice of all com-
pact ideals of some locally matricial (thus unit-regular) algebra. Two other
proofs of this result are presented in [11], one of them using the following
equivalent form: Every countable distributive (∨, 0)-semilattice is isomor-

phic to the maximal semilattice quotient ∇(G+) of the positive cone G+ of

some dimension group G.
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2 F. WEHRUNG

Although the cardinality gap seems, at first glance, to be filled by the above
works, the stronger representability result obtained by Bergman (locally matricial
algebras are very special sorts of regular rings) leads to the question whether similar
results hold for distributive semilattices of cardinality ℵ1.

It turns out that this problem has already been considered by a number of
researchers.

The ℵ1 nabla problem. Is every distributive (∨, 0)-semilattice of size ℵ1 isomor-

phic to the semilattice of all compact ideals of some locally matricial ring?

To our knowledge, this problem was first published as Problem 10.1 in [11]. It
is also equivalent to Problem 3 in the list of twelve open problems concluding the
survey paper [20].

A very important step towards a solution of the ℵ1 nabla problem is obtained by
P. Růžička in [18], where it is proved, via an ingenious construction, that there exists

a distributive (∨, 0)-semilattice that is not isomorphic to the maximal semilattice

quotient of the positive cone of any dimension group. In size ℵ1, the bridge between
locally matricial rings and dimension groups is obtained by results in [10]. However,
P. Růžička’s counterexample has size ℵ2, thus it does not imply a priori a negative
solution to the ℵ1 nabla problem.

In the present paper, we obtain a full negative solution to the ℵ1 nabla problem,
see Theorems 4.3 and 5.1. Our counterexample Sω1

, introduced at the beginning of
Section 5, is very easy to describe. The idea underlying its proof is a combination
of the ideas of [19, Example 11.1] and [18, Section 3], and it is based on the con-
struction of a certain infinitary semilattice-theoretical sentence URPsr, a so-called
uniform refinement property, that we present in Section 4. This property URPsr

holds for the maximal semilattice quotient ∇(M) of any Riesz monoid M endowed
with an order-unit of finite stable rank (Theorem 4.3). On the other hand, it is a
near triviality to verify that Sω1

does not satisfy URPsr (Theorem 5.1); hence Sω1

is a counterexample to the ℵ1 nabla problem. The negative property established for
this example is stronger than the one considered in [18], both from set-theoretical
(cardinality) and algebraic (strength of the assumptions on M) viewpoints.

In Section 6, we describe some consequences of Theorems 4.3 and 5.1. The
semilattice counterexample Sω1

of Section 5 is not isomorphic to the semilattice
of all compact ideals of any von Neumann regular ring with finite stable rank
(Corollary 6.1), in particular, Sω1

is not isomorphic to the semilattice of all compact
ideals of any unit-regular ring. An extension of this result to exchange rings (a
more general class including von Neumann regular rings and C*-algebras of real
rank zero) is proposed in Corollary 6.2. Furthermore, Sω1

is not isomorphic to the
semilattice of all compact congruences of any modular lattice which is locally finite,
or, more generally, of locally finite length (Corollary 6.3). We also prove that Sω1

is not isomorphic to the semilattice of all compact congruences of any locally finite
“lower bounded” lattice (Proposition 6.5), however, we also prove an apparently
much stronger statement in Corollary 6.7.

In Section 7, we prove a few results, either positive or negative, about the preser-
vation of URPsr and related properties under direct limits of countable sequences.

We conclude the paper in Section 8, with a few open problems.
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2. Basic concepts

We mainly follow the notation and terminology in K. R. Goodearl’s monograph [9].
For elements a, b1, . . . , bn in some partially ordered set P , let a ≤ b1, . . . , bn ab-
breviate the conjunction of the statements a ≤ bi, for 1 ≤ i ≤ n. We put

↓X = {p ∈ P | ∃x ∈ X such that p ≤ x} , for all X ⊆ P,

and we say that X is cofinal in P , if ↓X = P . We also put ↓p = ↓ {p}, for all p ∈ P .
Let ↑X , being ‘coinitial’, and ↑p be defined dually.

For a partially ordered abelian group G, we denote by G+ the positive cone of G.
We put N = Z+ \ {0}. We denote by ω (resp., ω1) the first infinite (resp., uncount-
able) ordinal. Following the usual set-theoretical convention, every ordinal α is the
set of all ordinals less than α. For example, ω \ n = {k < ω | n ≤ k}, for all n < ω.

All our monoids will be denoted additively. Every commutative monoid (M, +, 0)
will be endowed with its algebraic quasi-ordering, defined by x ≤ y iff there exists
z ∈ M such that x + z = y. We define binary relations ∝ and ≍ on M by

a ∝ b ⇐⇒ ∃n ∈ N such that a ≤ nb,

a ≍ b ⇐⇒ a ∝ b and b ∝ a,

for all a, b ∈ M . Thus ≍ is a monoid congruence of M , the quotient ∇(M) = M/≍
is a semilattice, usually called the maximal semilattice quotient of M . We denote
by [a] the ≍-equivalence class of a, for all a ∈ M , and we call the map M ։ ∇(M),
a 7→ [a] the canonical projection from M onto ∇(M); see also [11, 18].

An ideal of M is a subset I of M such that 0 ∈ I and x + y ∈ I iff x, y ∈ I,
for all x, y ∈ M . An element e ∈ M is an order-unit of M , if x ∝ e holds for all
x ∈ M .

We say that M is cancellative, if a + c = b + c implies that a = b, for all a, b,
c ∈ M . We say that M is strongly separative, if a+b = 2b implies that a = b, for all
a, b ∈ M . Of course, every cancellative commutative monoid is strongly separative.

We say that M is a refinement monoid, if a0 + a1 = b0 + b1 in M implies the
existence of ci,j ∈ M , for i, j < 2, such that ai = ci,0 + ci,1 and bi = c0,i + c1,i, for
all i < 2. We say that M is a Riesz monoid, if c ≤ a+ b in M implies that there are
a′ ≤ a and b′ ≤ b in M such that c = a′ + b′. Every refinement monoid is a Riesz
monoid. The converse does not hold; however, the two definitions are equivalent
for M a semilattice. We call a semilattice satisfying these equivalent conditions
distributive, see [12].

Remark 2.1. Let M be a commutative monoid, define an equivalence relation ≡
on M by x ≡ y if x ≤ y ≤ x, for all x, y ∈ M . Then ≡ is a monoid congruence,
and we call the quotient M/≡ the maximal antisymmetric quotient of M . A so-
phisticated counterexample by C. Moreira dos Santos (see [16]) shows that even for

a strongly separative refinement monoid M , the maximal antisymmetric quotient

M/≡ may not have refinement. On the other hand, it is obvious that if M is a
Riesz monoid, then so is M/≡. Observe that ∇(M) ∼= ∇(M/≡).

We say that a partially ordered abelian group G is an interpolation group (see [9]),
if its positive cone G+ is a refinement monoid. We say that G is directed, if G =
G+ + (−G+), and unperforated, if mx ≥ 0 implies that x ≥ 0, for all m ∈ N and
all x ∈ G. A dimension group is an unperforated, directed interpolation group, see
also [6].
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In order to conveniently formulate our next lemma, we shall introduce some
notation.

Notation 2.2. For a commutative monoid M and a family (ai)i∈I of elements of M ,

we denote by 〈ai | i ∈ I〉[∧2] the set of all elements of M of the form
∑

(

xp | p ⊆ I ′, |p| = 2),

for some finite subset I ′ of I and with x{i,j} ≤ ai, aj , for all distinct i, j ∈ I ′. We

also put A[∧2] = 〈a | a ∈ A〉
[∧2]

, for any A ⊆ M .

Lemma 2.3. Let M be a Riesz monoid, let n ∈ N, and let a0, . . . , an−1, b ∈ M . If

ai ≤ b, for all i < n, then there exists x ∈ 〈ai | i < n〉
[∧2]

such that
∑

i<n ai ≤ b+x.

Proof. By induction on n. The case n = 1 is trivial. For n = 2, let a0, a1 ≤ b
in M . There exists t ∈ M such that a1 + t = b. By a0 ≤ a1 + t and since M is a
Riesz monoid, there exists x ≤ a0, a1 such that a0 ≤ x + t. Therefore, a0 + a1 ≤
a1 + t + x = b + x.

Suppose the result established for some n. Let a0, a1, . . . , an, b ∈ M such
that ai ≤ b, for all i ≤ n. Put a =

∑

i≤n ai and a′ =
∑

i<n ai. Also put Ak =

〈ai | i < k〉
[∧2]

, for all k ≤ n + 1. By the induction hypothesis, there exists x ∈ An

such that a′ ≤ b + x. Since an ≤ b + x and M is a Riesz monoid, there exists
y ≤ a′, an such that a ≤ b+x+y. From y ≤ a′ =

∑

i<n ai and the assumption that
M is a Riesz monoid, it follows that there are a′

0 ≤ a0, . . . , a′
n−1 ≤ an−1 such that

y =
∑

i<n a′
i. From y ≤ an, it follows that a′

i ≤ ai, an, for all i < n. But x ∈ An,
thus x + y ∈ An+1. �

3. Stable rank in commutative monoids

Let M be a commutative monoid, and let k be a positive integer. An element
e ∈ M has stable rank at most k, if ke + a = e + b implies that a ≤ b, for all a,
b ∈ M . Of course, this is equivalent to saying that ke + a ≤ e + b implies that
a ≤ b, for all a, b ∈ M . This definition has at its origin a purely ring-theoretical
notion, the Bass stable rank of a ring, see P. Ara’s survey paper [2]. In particular,
an exchange ring R has stable rank at most k iff the isomorphism class of R has
stable rank at most k in the commutative monoid V (R) of isomorphism classes of
finitely generated projective right R-modules, see [2, Theorem 2.2].

For an element e of M , we denote by srM (e) the least positive integer k such
that e has stable rank at most k in M if it exists, ∞ otherwise.

In any commutative monoid, 2e + a = e + b implies that 2(e + a) = (e + a) + b,
hence, in the presence of strong separativity, e + a = b. In particular, we obtain
the following result.

Proposition 3.1. For any commutative monoid M , the following statements hold:

(i) If M is cancellative, then every element of M has stable rank at most 1.
(ii) If M is strongly separative, then every element of M has stable rank at

most 2.

We put

SR(M) = {(x, y) ∈ M × M | ∀a, b ∈ M, x + a ≤ y + b ⇒ a ≤ b} .
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Obviously, SR(M) is a submonoid of M ×M . Observe that srM (e) ≤ k iff (ke, e) ∈
SR(M). As an immediate consequence of these two simple facts, we observe the
following.

Lemma 3.2. Let e be an element of a commutative monoid M . Then srM (ne) ≤
srM (e), for all n ∈ N.

4. A new uniform refinement property

The negative solutions to other representation problems, either of dimension
groups or distributive semilattices, introduced in [21, 23], were obtained as coun-
terexamples to special infinitary statements called uniform refinement properties.
The reader may consult [20] for a discussion about various such statements defined
for semilattices.

Our new uniform refinement property is significantly different from all previously
known ones. It is inspired by the proof of the counterexample in [19, Example 11.1].
In order to state it, we find it convenient to use Notation 2.2. We say that a partially
ordered set P is ℵ0-downward directed, if every at most countable subset of P lies
above some element of P . We shall use the following straightforward lemma several
times.

Lemma 4.1. Let (Pn)n<ω be a sequence of subsets of a ℵ0-downward directed

partially ordered set P . If
⋃

n<ω Pn = P , then there exists n < ω such that Pn is

coinitial in P .

Now we turn to the most important definition of the paper.

Definition 4.2. Let S be a join-semilattice. For an element e ∈ S, we introduce
the following statements:

• URPsr(e): for all subsets A and B of S such that A is uncountable, B is
ℵ0-downward directed, and

a ≤ e ≤ a ∨ b for all (a, b) ∈ A × B,

there exists a ∈ A[∧2] such that e ≤ a ∨ b for all b ∈ B.
• URP+

sr(e): for all a0, a1 ∈ S and all ℵ0-downward directed B ⊆ S, if

e ≤ ai ∨ b for all i < 2 and all b ∈ B,

then there exists a ≤ a0, a1 such that e ≤ a ∨ b for all b ∈ S.

We say that S satisfies URPsr (resp., URP+
sr), if it satisfies URPsr(e) (resp.,

URP+
sr(e)), for every e ∈ S.

Of course, URP+
sr implies URPsr.

Our main result is the following.

Theorem 4.3. Let M be a Riesz monoid and let e ∈ M . If e has finite stable rank

in M , then the maximal semilattice quotient ∇(M) satisfies URPsr([e]).

Proof. Put S = ∇(M) and e = [e] ∈ S. Let A and B be subsets of S such that A is
uncountable, B is ℵ0-downward directed, and a ≤ e ≤ a∨b for all (a, b) ∈ A×B.
It is convenient to write these sets as

A = {ai | i ∈ I} and B = {bj | j ∈ J} ,

where i 7→ ai is one-to-one, J is a ℵ0-downward directed partially ordered set, and
j 7→ bj is order-preserving. Pick ai ∈ ai for all i ∈ I and bj ∈ bj for all j ∈ J . For
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all i ∈ I, there exists mi ∈ I such that ai ≤ mie. Since I is uncountable, there are
m ∈ N and an uncountable subset U of I such that mi = m for all i ∈ U . Thus
ai ≤ me for all i ∈ U . But me has finite stable rank in M (see Lemma 3.2), thus
we may replace e by me, so that we obtain

ai ≤ e, for all i ∈ U. (4.1)

For all (i, j) ∈ I×J , since e ≤ ai∨bj , there exists ni,j ∈ N such that e ≤ ni,j(ai+bj).
Put Ji,n = {j ∈ J | ni,j = n}, for all (i, n) ∈ I × N. For all i ∈ I, the equality
J =

⋃

n∈N
Ji,n holds. Thus, by Lemma 4.1, there exists ni ∈ N such that Ji,ni

is
coinitial in J . Since U is uncountable, there are n ∈ N and an uncountable subset V
of U such that ni = n for all i ∈ V . Observe that, by construction,

e ≤ n(ai + bj), for all i ∈ V and j ∈ Ji,n. (4.2)

Put k = srM (e). We pick a subset X ⊂ V with exactly nk + 1 elements. By (4.1),
the fact that X is a subset of U , and Lemma 2.3, it follows that

∑

i∈X

ai ≤ e + a, for some a ∈ 〈ai | i ∈ X〉
[∧2]

. (4.3)

Observe that the element a = [a] of S belongs to 〈ai | i ∈ X〉
[∧2]

, thus (since i 7→ ai

is one-to-one) to A
[∧2]. Let j ∈ J . For all i ∈ I, the subset Ji,n = Ji,ni

is coinitial
in J , thus there exists ϕ(i) ∈ Ji,n such that ϕ(i) ≤ j. It follows from (4.2) that
e ≤ n(ai + bϕ(i)). Therefore, adding together all those inequalities for i ∈ X and
using (4.3), we obtain that

(nk + 1)e ≤ n
∑

i∈X

ai + n
∑

i∈X

bϕ(i) ≤ ne + na + n
∑

i∈X

bϕ(i),

thus, since srM (ne) ≤ k (see Lemma 3.2),

e ≤ na + n
∑

i∈X

bϕ(i).

By applying to this inequality the canonical projection from M onto ∇(M) and by
using the fact that bϕ(i) ≤ bj for all i ∈ X , we obtain the inequalities

e ≤ a ∨
∨

i∈X

bϕ(i) ≤ a ∨ bj .

Hence the element a ∈ S is as required. �

Remark 4.4. Although the assumptions made in the statement of Theorem 4.3 are
not the weakest possible, they are probably the weakest that can be stated conve-
niently while meeting an application range as wide as possible within mathematical
practice. Nevertheless, since one can never be sure about future applications, we
list here some possible weakenings of the assumptions of Theorem 4.3 that lead to
the same conclusion.

— Refinement assumption: for all m ∈ N and all a0, . . . , am−1, b ∈ M , if

ai ≤ b for all i < m, then there are n ∈ N and x ∈ 〈nai | i < m〉
[∧2]

such
that

∑

i<m ai ≤ b + x.
— Stable rank assumption: for all m ∈ N, there exists k ∈ N such that for all

a, b ∈ M , if kme + a ≤ me + b, then a ∝ b.

Corollary 4.5. Let M be a strongly separative Riesz monoid. Then ∇(M) satisfies

URPsr.
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5. The example

We first recall some constructions used in [18]. For an infinite cardinal κ, we
denote by Bκ the interval algebra of κ, that is, the Boolean subalgebra of the
powerset of κ generated by all intervals of κ. Then we put

Iκ = {x ∈ Bκ | ∃α < κ such that x ⊆ α} ,

Fκ = {x ∈ Bκ | ∃α < κ such that κ \ α ⊆ x} ,

Dκ = {x ⊆ κ | either x is finite or x = κ} .

Observe that Dκ is a distributive lattice with zero. We again use the notation
D− = D \ {∅}, and we put

Sκ = ({∅} × Iκ) ∪ (D−
κ × Fκ) (thus Sκ ⊆ Dκ × Bκ),

endowed with its componentwise ordering. This is a particular case of a construction
introduced in [18]. Observe that Sκ is not a lattice (the meet of two elements
of D−

κ may be empty), however, it is a distributive (∨, 0, 1)-semilattice (see [18,
Lemma 3.3]). Observe also that Sκ has size κ.

Theorem 5.1. The distributive (∨, 0)-semilattice Sω1
does not satisfy URPsr(e),

where we put e = (ω1, ω1), the largest element of Sω1
.

Proof. We put A = {aξ | ξ < ω1} and B = {bξ | ξ < ω1}, where we put

aξ = ({ξ} , ω1) and bξ = (ω1, ω1 \ ξ), for all ξ < ω1.

It is obvious that A is uncountable, B is ℵ0-downward directed, and a ≤ e ≤ a ∨ b

(in fact, e = a∨ b) for all (a, b) ∈ A×B. For any a ∈ 〈aξ | ξ < ω1〉
[∧2]

, there exists
an ordinal α < ω1 such that a ≤ (∅, α). Hence a∨bα+1 ≤ (ω1, ω1 \{α}) < e, which
completes the proof. �

Thus, by using Theorem 4.3, we obtain the following.

Corollary 5.2. Let M be a Riesz monoid in which there is an order-unit of finite

stable rank. Then Sω1
is not isomorphic to ∇(M).

Also, by using Corollary 4.5, we obtain the following.

Corollary 5.3. There exists no strongly separative refinement monoid M such that

∇(M) ∼= Sω1
. In particular, there exists no interpolation group (thus, no dimension

group) G such that ∇(G+) ∼= Sω1
.

6. Consequences in ring theory and lattice theory

In this section we shall reap some consequences of Theorem 4.3 and Theorem 5.1,
thus answering a few open questions in ring theory and lattice theory. Throughout
this section, we shall denote by Sω1

the semilattice constructed in Section 5.

6.1. Ideal lattices of von Neumann regular rings. For a von Neumann regular
ring R, the monoid V (R) of isomorphism classes of finitely generated projective
right R-modules is a refinement monoid (see [8, Chapter 2]); it is, in addition,
conical, that is, it satisfies the quasi-identity x + y = 0 ⇒ x = y = 0. Furthermore,
the lattice of (two-sided) ideals of R is isomorphic to the lattice of ideals of V (R),
see [11, Proposition 7.3].

We say that R is strongly separative, if the monoid V (R) is strongly separative.
This notion is the monoid-theoretical translation of a purely ring-theoretical notion,
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see [3]. We observe, for a given von Neumann regular ring R, that the following
implications hold:

locally matricial ⇒ unit-regular ⇒ strongly separative ⇒ finite stable rank.

Corollary 6.1. There is no von Neumann regular ring R with finite stable rank

such that Sω1
is isomorphic to the semilattice of all compact ideals of R.

Corollary 6.1 implies immediately that Sω1
is not isomorphic to the semilattice of

all compact ideals of any strongly separative (resp., unit-regular, locally matricial)
ring. By contrast, we recall that every countable distributive (∨, 0)-semilattice is
isomorphic to the semilattice of all compact ideals of some countable dimensional
locally matricial ring (over any given field), see [4, 11].

We can even formulate an extension of Corollary 6.1 to more general rings called
exchange rings. Recall (see the survey paper [2]) that every von Neumann regular
ring or every C*-algebra with real rank zero is an exchange ring. For an arbitrary
exchange ring R, the canonical map from the ideal lattice of R to the ideal lattice of
V (R) is surjective, and the inverse image of a singleton {I} is the interval [J0, J1],
where J0 is the ideal generated by all idempotents e ∈ R such that [eR] ∈ I, and J1

is the intersection of all primitive ideals containing J0 (see [17, Teorema 4.1.7]). In
particular, the maximal semilattice quotient of V (R) is isomorphic to the semilattice
of all compact idempotent-generated ideals of R. Hence we obtain the following.

Corollary 6.2. There is no exchange ring R with finite stable rank such that Sω1

is isomorphic to the semilattice of all compact idempotent-generated ideals of R.

6.2. Congruence lattices of modular lattices. We say that a lattice K has
locally finite length, if every finitely generated sublattice of K has finite length.
In particular, all locally finite lattices and all direct limits of finite-dimensional
projective geometries have locally finite length.

Corollary 6.3. There is no modular lattice K of locally finite length such that the

semilattice Conc K of all compact congruences of K is isomorphic to Sω1
.

Proof. Suppose that Sω1

∼= Conc K, for a modular lattice K of locally finite length.
It follows from [22, Corollary 2.3] that Sω1

is isomorphic to ∇(M), for M = Dim K,
the so-called dimension monoid of K. However, the dimension monoid of a modular
lattice of finite length is a finitely generated free commutative monoid (see [22,
Proposition 5.5]), and the dimension monoid functor preserves direct limits (see
[22, Proposition 1.4]). Hence, since K is modular with locally finite length, the
monoid Dim K is a direct limit of free commutative monoids, and thus it is the
positive cone of a dimension group G. Hence,

Sω1

∼= ∇(Dim K) = ∇(G+),

a contradiction by Corollary 5.3. �

In contrast, we recall that every distributive (∨, 0)-semilattice of size at most ℵ1

is isomorphic to the semilattice of all compact congruences of some locally finite
relatively complemented lattice with zero (see [13]), and also isomorphic to the
semilattice of all compact ideals of some von Neumann regular algebra, and to the
semilattice of all compact congruences of some sectionally complemented, modular
(but not locally finite) lattice (see [24]).
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6.3. Congruence lattices of lower bounded lattices. For lattices K and L, a
lattice homomorphism f : K → L is lower bounded, if {x ∈ K | a ≤ f(x)} is either
empty or has a least element, for every a ∈ L. As in [1], we say that a lattice L
is lower bounded, if every homomorphism from a finitely generated lattice to L
is lower bounded. There are many equivalent definitions of lower boundedness
for finite lattices, the simplest of them being that L has as many join-irreducible
elements as its congruence lattice ConL, see [7, Lemma 2.40]. Every lower bounded
lattice is join-semidistributive, that is, it satisfies the quasi-identity

x ∨ y = x ∨ z =⇒ x ∨ y = x ∨ (y ∧ z).

Both properties of lower boundedness and join-semidistributivity are antithetical
to modularity, as, for example, every join-semidistributive modular lattice is dis-

tributive. This antithesis also explains why results proved for modular lattices are
often worth investigating for join-semidistributive, or lower bounded, lattices.

Congruence lattices of finite lower bounded lattices are fully characterized in [14].
In particular, not every finite distributive lattice is isomorphic to the congruence
lattice of some finite lower bounded lattice, the three-element chain 3 being the
simplest such example. On the dimension side, the following result is a consequence
of [25, Corollary 6.3].

Proposition 6.4. The dimension monoid DimL of any finite lower bounded lat-

tice L is strongly separative.

Since the Dim functor preserves direct limits, the result of Proposition 6.4 ex-
tends immediately to locally finite lower bounded lattices. Hence, from the iso-
morphism ∇(Dim L) ∼= Conc L and by Corollary 5.3, we immediately obtain the
following.

Proposition 6.5. There is no locally finite, lower bounded lattice L such that

Conc L ∼= Sω1
.

On the other hand, a much more striking negative conclusion can be reached by
totally different means, via the following result.

Proposition 6.6. Let L be a lower bounded lattice. If Con L is finite, then so is L.

Proof. It is proved in [5] that every finite lower bounded lattice L satisfies the
following Day-Pudlák-T̊uma property (DPT):
[

Θ(a′, a) = Θ(b′, b) and a′ < a and b′ < b
]

⇒ a ∧ b � a′, b′, for all a, a′, b, b′ ∈ L,

where Θ(x, y) denotes the congruence of L generated by the pair (x, y). By [1,
Theorem 2.1], this result can be extended to arbitrary lower bounded lattices.
Now suppose that ConL is finite, put n = |ConL| − 1. If there exists a chain
x0 < x1 < · · · < xn+1 in L, then there are i < j such that Θ(xi, xi+1) = Θ(xj , xj+1).
Thus, by (DPT), xi+1 = xi+1 ∧ xj+1 � xj , a contradiction. Hence L has length
at most n, but it is lower bounded, thus join-semidistributive, hence, by a classical
result of B. Jónsson and J.E. Kiefer, see [15] (also [7, Theorem 5.59]), |L| ≤ 2n. �

The upper bound |L| ≤ 2n is rather crude. Indeed, since L is finite lower
bounded, there exists (see [7, Lemma 2.40]) a bijection between the set J(L) of
join-irreducible elements of L and J(ConL). In particular, |L| ≤ 2| J(Con L)|.

Corollary 6.7. There is no lower bounded lattice L such that ConL ∼= 3.
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Proof. If Con L ∼= 3, then, by Proposition 6.6, L is finite. However, there is no such
finite lower bounded lattice L, see [14]. �

Observe that no assumption of local finiteness is necessary in Proposition 6.6 and
Corollary 6.7. On the other hand, unlike Sω1

, the (∨, 0)-semilattice 3 is the maximal
semilattice quotient of a strongly separative refinement monoid M—in fact, by
Bergman’s Theorem, M may be chosen as the positive cone of some dimension
group. See the related Problem 2.

7. Preservation under countable direct limits

The following easy result introduces another class of distributive semilattices
with URPsr, defined in a completely different way.

Proposition 7.1. Let S be a distributive join-semilattice such that ↓a0 ∩ ↓a1 has

an at most countable cofinal subset, for all a0, a1 ∈ S. Then S satisfies URP+
sr.

Proof. Let e, a0, a1 ∈ S and let B be a ℵ0-downward directed subset of S such that
e ≤ ai ∨ b for all i < 2 and all b ∈ B. By assumption, there exists an increasing
cofinal sequence

{

a(n) | n < ω
}

in ↓a0 ∩ ↓a1. Suppose that for all n < ω, there

exists bn ∈ B such that e � a(n) ∨ bn. By assumption, there exists b ∈ B such that

b ≤ bn for all n < ω; hence e � a(n) ∨ b for all n < ω. On the other hand, e ≤ ai ∨ b
for all i < 2, thus, since S is distributive, e ≤ x∨ b for some x ≤ a0, a1. Pick n < ω
such that x ≤ a(n), then e ≤ a(n)∨b, a contradiction. So we have proved that there
exists n < ω such that e ≤ a(n) ∨ b for all b ∈ B. �

Observe the following immediate corollary of Proposition 7.1.

Corollary 7.2. Every direct limit of a countable sequence of distributive lattices

and join-homomorphisms satisfies URP+
sr (thus also URPsr).

Compare with [20, Proposition 2.11].
We shall see soon (Proposition 7.7) that the class of all semilattices satisfying

URPsr is not closed under direct limits of countable sequences. However, the fol-
lowing related positive result holds.

Proposition 7.3. Let (Sn)n<ω be an increasing sequence of join-subsemilattices

of a join-semilattice S such that S =
⋃

n<ω Sn. If all Sn-s satisfy URPsr (resp.,

URP+
sr), then so does S.

Proof. We provide a proof for URPsr; the proof for URP+
sr is similar. Let e ∈ S and

let A and B be subsets of S, where A is uncountable, B is ℵ0-downward directed,
and a ≤ e ≤ a ∨ b for all (a, b) ∈ A × B. By Lemma 4.1, there exists n < ω
such that Bn = B ∩ Sn is coinitial in B—in particular, it is ℵ0-downward directed;
furthermore, we may assume that An = A∩Sn is uncountable. Since a ≤ e ≤ a∨ b

for all (a, b) ∈ An × Bn and Sn satisfies URPsr, there exists a ∈ An
[∧2] such that

e ≤ a∨ b for all b ∈ Bn. So a ∈ A[∧2] and, since Bn is coinitial in B, the inequality
e ≤ a ∨ b holds for all b ∈ B. �

Denote by C the class of all distributive (∨, 0)-semilattices without any decreas-
ing ω1-chain. Observe that any nonempty ℵ0-downward directed subset of any
member S of C has a least element. Hence the following result holds.

Proposition 7.4. Every member of C satisfies URP+
sr.
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Denote by Cω the class of all direct limits of countable sequences of members
of C, and by fin the Fréchet filter on ω. Furthermore, for a set X and a sequence
x = 〈xn | n < ω〉 in Xω, we denote by [xn | n < ω] the equivalence class of x
modulo fin in Xω.

Lemma 7.5. Let S and C be distributive (∨, 0)-semilattices with C ∈ C. If S
embeds into the reduced power Cω/fin, then S belongs to Cω.

Proof. Let f : S →֒ Cω/fin be a (∨, 0)-embedding. Denote by S′ its image. For all
n < ω, let πn : Cω\n ։ Cω/fin be the map defined by

πn(〈xk | n ≤ k < ω〉) = [xk | k < ω], where we put x0 = · · · = xn−1 = 0.

It is not hard to verify that Sn = π−1
n [S′] is a distributive (∨, 0)-subsemilattice of

Cω\n. Put

ρn = f−1 ◦ πn ↾Sn
.

Furthermore, for m ≤ n < ω, it is possible to define a (∨, 0)-homomorphism
ρm,n : Sm → Sn by the rule ρm,n(x) = x↾ω\n, for all x ∈ Sm.

It is routine to verify that S = lim
−→n<ω

Sn, with transition maps ρm,n : Sm → Sn

and limiting maps ρn : Sn → S. The semilattice Sn is a distributive subsemilattice
of Cω\n, for all n < ω, and C ∈ C, thus Sn ∈ C. �

Now we shall present a construction which proves that the semilattice Sω1
of

Section 5 belongs to Cω. For maps f , g from ω to ω +1, let f <∗ g be the following
statement:

f <∗ g ⇐⇒ {n < ω | f(n) ≥ g(n)} is finite.

It is well-known that there exists a ω1-sequence (fα)α<ω1
of maps from ω to ω such

that α < β implies that fα <∗ fβ , for all α, β < ω1. Let fω1
: ω → ω + 1 denote

the constant function with value ω. Observe that

α < β =⇒ fα <∗ fβ, for all α, β ≤ ω1. (7.1)

Every element x ∈ Bω1
has a unique normal form,

x =
⋃

i<n

[αi, βi), where n < ω and α0 < β0 < · · · < αn−1 < βn−1 ≤ ω1. (7.2)

Observe that the [αi, βi)-s are exactly the maximal subintervals of x. For x ∈ Bω1

written in normal form as in (7.2), we put

gk(x) =
⋃

i<n

[fαi
(k), fβi

(k)), for all k < ω, (7.3)

where, of course, an interval [x, y) is empty if x ≥ y. Observe that for all large
enough k, the following inequalities hold:

fα0
(k) < fβ0

(k) < · · · < fαn−1
(k) < fβn−1

(k).

Hence, for such values of k, (7.3) is an expression of gk(x) in normal form.
For an element x ∈ Dω1

and k < ω, we define uk(x) ∈ Dω by

uk(x) =

{

{fα(k) | α ∈ x} , if x is finite,

ω, if x = ω1.

Finally, we put

h(x, y) = [(uk(x), gk(y)) | k < ω], for all (x, y) ∈ Sω1
.
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We leave to the reader the easy but somehow tedious proof of the following lemma.
The main reason why it works is that containments between elements x and y of Sκ,
for an infinite cardinal κ, can be expressed by inequalities between the endpoints
of the maximal subintervals of x and y. But then, inequalities between ordinals in
ω1 + 1 can be “projected on” ω + 1 by using (7.1).

Lemma 7.6. The map h is a (∨, 0)-embedding from Sω1
into (Sω)ω/fin.

Observe that Lemma 7.6 does not hold “trivially”, in the following sense. Al-
though it is easy to prove that all the maps uk, for k < ω, are join-homomorphisms,
this is not the case for the gk-s. However, this seemingly irregular behavior disap-
pears “at the limit”, as k goes to infinity.

By using Lemmas 7.5 and 7.6, we obtain the following.

Proposition 7.7. The semilattice Sω1
belongs to Cω.

By Theorem 5.1, Proposition 7.4, and Proposition 7.7, the class of all semilattices
satisfying URPsr is not closed under direct limits of countable sequences. Compare
with Corollary 7.2 and Proposition 7.3.

Remark 7.8. Let h : Sω1
→֒ (Sω)ω/fin be the previously constructed (∨, 0)-em-

bedding. It follows from Lemma 7.5 that Sω1
is the direct limit of the lattices

Tn = π−1
n h[Sω1

], for n < ω, and all Tn-s belong to C. Furthermore, the map
ρn = h−1 ◦ πn : Tn ։ Sω1

is a surjective homomorphism of a very special kind:
namely,

ρ0(x) ≤ ρ0(y) ⇐⇒ ∃u ∈ S(ω)
ω such that x ≤ y ∨ u, for all x, y ∈ T0,

where we denote by S
(ω)
ω the ideal of (Sω)ω that consists of all sequences with finite

support. Hence,

Sω1

∼= T0/S(ω)
ω . (7.4)

It follows from this that T0 is not isomorphic to ∇(G+), for any interpolation

group G. Indeed, otherwise, by (7.4), Sω1
would be isomorphic to ∇((G/I)+),

where I is the ideal of G generated by all elements of G+ such that [x] belongs

to S
(ω)
ω . However, it follows from Corollary 5.3 that this is not possible. So we

have obtained the following negative result: There exists a distributive (∨, 0, 1)-se-
milattice without descending ω1-chains that cannot be isomorphic to ∇(G+) for an

interpolation group G.
This implies, in turn, the following negative result: URPsr is not sufficient to

characterize all distributive (∨, 0, 1)-semilattices of the form ∇(G+) for G an in-

terpolation group.

8. Open problems

Our most intriguing open problem is related to the following known results:

— Every (∨, 0)-semilattice of the form lim
−→n<ω

Dn, with all Dn-s being dis-

tributive lattices with zero and all transition maps being (∨, 0)-homomor-

phisms, is isomorphic to the semilattice of all compact congruences of some

relatively complemented lattice with zero (see [26]).
— Every distributive lattice with zero is isomorphic to ∇(G+), for some di-

mension group G (see [11]).

Is it possible to unify these results? We can, for example, ask the following.
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Problem 1. Let S = lim
−→n<ω

Dn, with all Dn-s being distributive lattices with zero

and all transition maps being (∨, 0)-homomorphisms. Does there exist a dimension
group G such that S ∼= ∇(G+)?

The uniform refinement property URPsr is of no help to solve Problem 1 nega-
tively: indeed, by Corollary 7.2, S does satisfy URPsr.

Problem 2. Let M be a strongly separative refinement monoid. Does there exist
an interpolation group G such that ∇(M) ∼= ∇(G+)?

As in [18], we say that a partially ordered abelian group G is weakly Archimedean,
if for all a, b ∈ G+, if na ≤ b holds for all n ∈ N, then a = 0. By using one
of the main results in [19], P. Růžička proves in [18] the following result: Every

countable distributive (∨, 0)-semilattice is isomorphic to ∇(G+), for some weakly

Archimedean dimension group G, see [18, Theorem 3.1].
We say that a partially ordered abelian group G is Archimedean, if for all a,

b ∈ G, if na ≤ b for all n ∈ N, then a ≤ 0.

Problem 3. For a countable distributive (∨, 0)-semilattice S, does there exist an
Archimedean dimension group G such that ∇(G+) ∼= S?

Another problem, inspired by Bergman’s Theorem, Corollary 6.3, and some open
questions in [20], is the following.

Problem 4. For a countable distributive semilattice S, does there exist a modular
lattice K, generating a locally finite variety, such that Conc K ∼= S?

The statement that K generates a locally finite variety is stronger than the mere
local finiteness of K. It is equivalent to saying that for every n ∈ N, the cardinalities
of all n-generated sublattices of K are bounded by a positive integer.

Our next problem asks about lifting not semilattices, but diagrams of semilat-
tices. We say that a diagram of semilattices, indexed by a partially ordered set I, is
finite (resp., countable, dismantlable), if I is finite (resp., countable, dismantlable).
It is proved in [19] that every finite dismantlable diagram of finite Boolean semilat-
tices can be lifted, with respect to the ∇ functor, by a diagram of (positive cones
of) dimension groups.

Problem 5. Can every countable dismantlable diagram of countable distributive
(∨, 0)-semilattices be lifted, with respect to the ∇ functor, by a diagram of (positive
cones of) dimension groups?

Acknowledgment

I thank the anonymous referee for his thoughtful report, which brought additional
life and openness to the topics discussed in the paper.

References

[1] K.V. Adaricheva and V.A. Gorbunov, On lower bounded lattices, Algebra Universalis 46

(2001), 203–213.
[2] P. Ara, Stability properties of exchange rings, International Symposium on Ring Theory

(Kyongju, 1999), Trends Math., Birkhäuser Verlag, Boston, MA, 2001, 23–42.
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