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Abstract

In this paper we consider generalized eigenvalue problems for a family

of operators with a polynomial dependence on a complex parameter. This

problem is equivalent to a genuine non self-adjoint operator. We discuss

here existence of non trivial eigenstates for models coming from analytic

theory of smoothness for P.D.E. We shall review some old results and

present recent improvements on this subject.

1 Introduction

The problem considered in this paper has two very different origins. The first,
from the historical point of view, concerns Dissipative Problems in Mechanics.
Let us consider the second order differential equation

Au′′ + Bu′ + Cu = 0, (1.1)

where the unkonwn function u is defined on R with values in some Hilbert space

H and u′ =
du

dt
. Equation 1.1 is a model in mechanics for small oscillations of

a continuum system in the presence of an impedence force [19].
Now looking for stationary solutions of (1.1), that means u(t) = u0e

λt, we have
the following equation

(λ2A + λB + C)u0 = 0 (1.2)

So equation (1.2) is a non linear eigenvalue problem in the parameter λ ∈ C.
Existence of non null solutions for (1.2) is a non trivial problem. For B 6= 0
this problem is equivalent to a true non-selfajoint linear eigenvalue problem
(see section II of this paper) and even the existence of one solution for one
complex number may be a difficult problem. But by adding suitable conditions
on A, B, C several authors, [19, 17, 9, 20] have proved the existence of a total
set of generalized eigenfunctions for (1.2).
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I start working on this subject 25 years ago for a completely different reason.
At that time B. Helffer asked Pham The Lai and me if the following non linear
eigenvalue problem has at least a solution (λ, u) where λ ∈ C and u in the
Schwartz space S(R), u 6= 0,

(

D2
x + (x2 − λ)2

)

u = 0, (1.3)

where Dx =
∂

i∂x
. Equation (1.3) is connected with analytic hypoellipticity for

operators like sum of squares of analytic vector fields X1, · · · , Xr, defined in an
open set of Rn, satisfying the Hörmander’s condition: there exists an integer
N such that the iterated brackets of the fields Xj of length less than N span
a vector space of dimension n at each point. This is a sufficient condition for
C∞-hypoellipticity for operator A =

∑

X2
j [16], i.e if Au is C∞ in the open

set ω then u is also C∞ in the open set ω. When the coefficients of the Xj

are real-analytic in ω, satisfying Hörmander condition, and Au is real-analytic
in ω, is it true that u is real-analytic in ω? This is the analytic-hypoellipticity
problem.
The general answer is no. The first example was given by Baouendi-Goulaouic
[2] with the following system in R3,

X1 =
∂

∂x1
, X2 =

∂

∂x2
, X3 = x1

∂

∂x3
. (1.4)

For this example, Baouendi-Goulaouic have constructed a solution u, non an-
alytic at 0, such that Au = 0, by using non trivial solutions of the equation
(D2

x1
+ x2

1 + λ2)v = 0 which exist for λ = i
√

2j + 1, j ∈ N, as it is well known
for harmonic oscillators.
In 1978, B. Helffer has proposed another example of sum of squares of vec-
tor fields which are hypoelliptic but not analytic-hypoelliptic: A = D2

x1
+

(

x2
1Dx2

− Dx3

)2
. The Baouendi-Goulaouic construction of non analytic solu-

tions at point (0, 0, 0) for A is also possible if (1.3) has a non trivial solution
(for a generalization of this method see [11]). But this problem is less obvious
than for harmonic oscillators. In [25] we have given a positive answer to the
question and we have proved furthermore that there exists a total set of gener-
alized eigenfunctions. Our proof uses pseudodifferential technics (parametrices)
and spectral analysis. Nowadays, two other proofs of this result are known.
M. Christ [5], using O.D.E techniques and Wronskian arguments, has extended
our result to the equation

(

D2
x + (xm − λ)2

)

u = 0 (1.5)

for every m ∈ N, m ≥ 2.
Let us remark that if m = 1 , for every λ ∈ C, the equation (1.5) has only the
zero solution because of translation invariance.
Recently Chanillo-Helffer-Laptev [4] have given a proof using a very different and
elegant method involving trace inequalities and the Lidskii theorem concerning
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the trace of operators. In the paper [4] the authors consider a more general
problem, in several real variables (x ∈ Rn). Let us introduce the following
family of differential operators,

LP (λ) = −△ + (P (x) − λ)2 (1.6)

where P is a polynomial of degree m ≥ 2 such that the homogeneous part Pm

of P satisfies Pm(x) > 0 for every x ∈ Rn\{0} (in other words we say that P is
a positive-elliptic polynomial).
In [4] the authors prove existence of non trivial solutions for 1 ≤ n ≤ 3 assuming
that m is large enough.
In January 2003 Bernard Helffer gave in Nantes a lecture concerning the work
[4]. After that, Bernard, Xue Ping (Wang) and me, have improved in [15] the
results of [4] by making a semi-classical analysis of the traces identities coming
from the Lidskii theorem. The main result proved in [15] is the following

Theorem 1.1 Assume that n is even and that P is a positive-elliptic polyno-
mial of degree m ≥ 2.
Then there exists λ ∈ C and u ∈ S(Rn), u 6= 0, such that LP (λ)u = 0.

Remark 1.2 Our proof gives an infinite number of solutions but it is not known,
if the solutions of (1.5) span the whole Hilbert space L2(Rn).
On the other side for n odd, n ≥ 3, the problem of existence of non zero solu-
tions is still open. It seems reasonable to conjecture that such solutions always
exist. It is true for n = 1 and for some cases if n = 3.
Another difficult but interesting problem would be to localize in the complex plane
these possible eigenvalues λ. We shall give a very partial result at the end of
this paper.

In this paper we want to explain in more details some results concerning
these non linear eigenvalue problems and to give the main steps of their proofs.
We also explain an approach to prove the above conjecture in odd dimension,
n ≥ 3 (see also [24]).

2 Functional Analysis approach of the problem

We start here with a more general problem. Let be k ∈ N, n ≥ 1, and a pencil
L(λ) of operators in the Hilbert space H defined by

L(λ) = H0 + λH1 + · · · + λk−1Hk−1 + λk1 (2.7)

Let us assume the following properties:
(P-1) H0 is a self-adjoint, positive operator, with domain D(H0) in H.

(P-2) For every 0 ≤ j ≤ k − 1, HjH
(j−k/)k
0 and H

(j−k)/k
0 Hj are bounded

operators in H.

(P-3) H
−1/k
0 is in some Schatten class Cp for p > 0 ( for the definition of Schatten

classes see [10]).
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Then L(λ), λ ∈ C, is a family of closed operators on the domain D(H0).
Moreover the index of L(λ) is 0 and λ 7→ L(λ)−1 is a meromorphic mapping
from C into the Banach space C(H) of compact operators in H. So λ is a pôle for
L if and only if L(λ) is not injective in D(H0). But according to a well known
trick the poles of L can be identified with the eigenvalues of a non-self-adjoint
operator.
Let us define the k × k matrix of operators

AL =















0 1 0 . . . 0
0 0 1 . . . 0
... 0 0

. . . 0
0 0 0 . . . 1

−H0 −H1 −H2 . . . −Hk−1















. (2.8)

AL is a closed operator in the Hilbert space

K =
∏

1≤j≤k

D
(

H
(k−j)/k
0

)

, (2.9)

with domain
D(AL) =

∏

0≤j≤k−1

D
(

H
(k−j)/k
0

)

. (2.10)

AL is invertible and A−1
L is in the Schatten class Cp. For λ ∈ C, λ 6= 0, we have

{L(λ) is invertible} ⇐⇒ {AL − λ1 is invertible} (2.11)

Moreover, if we write down the resolvent of AL as a matrix operator,

(AL − λ1)−1 = {rj,ℓ(λ)}0≤j,≤ℓ≤k−1 (2.12)

then we have L(λ)−1 = −r0,k−1(λ).
Let us denote by sp[L] the set of eigenvalues of L and if λ0 ∈ sp[L], Eλ0

[L]
denotes the generalized eigenspace for the eigenvalue λ0, defined by Keldysh
[17], as the linear space span by the solutions u0, u1, · · · , uℓ of the following
system of equations (ℓ ∈ N),

L(λ0)u0 = 0 (2.13)

L(λ0)uℓ +
dL(λ0)

dλ
uℓ−1 + · · · + dℓL(λ0)

dλℓ
u0 = 0. (2.14)

The following result is proved in [17, 25]

Lemma 2.1 If the linear space
⊕

λ∈C

Eλ[AL] is dense in H then
⊕

λ∈C

Eλ[L] is dense

in K.

This lemma is useful because we can apply known results for non self-adjoint
operator to our non linear eigenvalues problem.
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Theorem 2.2 (Dunford-Schwartz, [8]) Assume that there exist rays Ξj, 1 ≤
j ≤ J in the complex plane C, starting from the origin, such that the angle be-
tween two consecutive rays is strictly smaller than π/p and there exist positive
real numbers ρ, R, such that

‖L(λ)‖L(H) = O(|λ|ρ), for |λ| ≥ R, λ ∈ ∪1≤j≤JΞj . (2.15)

Then
⊕

λ∈C

Eλ[L] is dense in H.

Following [25], we can apply the above functional analysis result to quadratic
pencils Lm(λ) = D2

x + (xm − λ)2, for m ∈ N, m even, m ≥ 2.

Proposition 2.3 Lm(λ) has a complete system of generalized eigenfunctions
in L2(R). These functions are in the Schwartz space S(R).

Sketch of Proof:
We have here L(λ) = D2

x + x2m − 2λxm + λ2 and H
−1/2
0 is in Cp for every

p >
m + 1

m
. So the angle condition of the Dunford-Schwartz Theorem is here

θ <
mπ

m + 1
. Let us denote Ξα = {reiα, r ≥ 0}. Then proposition 2.3 is a

consequence of the following result:

Lemma 2.4 L(λ)−1 exists on Ξ0 and on Ξα for every α ∈]π/2, π]∪ [−π,−π/2[
and satisfies the estimates

‖L(λ)−1‖ = O
(

|λ|1/2m
)

for λ ∈ Ξ0, (2.16)

‖L(λ)−1‖ = O
(

|λ|−2
)

for λ ∈ Ξα, α ∈]π/2, π] ∪ [−π,−π/2[. (2.17)

Sketch of Proof of the Lemma 2.4
The estimate on Ξ0 comes from a direct computation. Estimate on Ξα can be
proved by pseudodifferential technics (cf [25]) or also by direct estimates.

The angle condition is more difficult to check in higher dimension n. The
reason is the following. For LP (λ) = −△ + (P (x) − λ)2 we have H0 = −△ +
P 2(x), where P (x) is like |x|m. Because of eigenvalue asymptotics (see for

exemple [26]) we have H
−1/2
0 is in Cp for every p >

n(m + 1)

m
, this is optimal, so

the angle condition to apply the Dunford-Schwartz theorem is θ <
mπ

n(m + 1)
.

Then we need resolvent estimates on closer and closer rays when n increases.
It is the reason why the approach proposed by Chanillo-Helffer-Laptev is very
useful. The basic idea is the following. Let us recall the Lidskii Theorem [10].
Let H be an Hilbert space and T an operator in H in the Schatten class C1.
Then we have

Tr (T ) =
∑

λ∈sp[T ]

λ (2.18)
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where sp[T ] is the set of eigenvalues of T , with their multiplicities.
So to prove that L(λ) has a non empty spectrum it is sufficient to prove that

Tr (AL)−ℓ 6= 0 for some ℓ ≥ p (2.19)

The property (2.19) is the core of the method of [4]. For simplicity let us explain
this method in more details in the one dimension case, for Lm (m ≥ 2). For
the computations it is more convenient to conjugate AL by a unitary operator
such that we get an operator ÃL acting in the Hilbert space L2(R)×L2(R). For
L = Lm we denote Am = ÃLm

and we easily have

Am =

(

0 H
1/2
0

−H
1/2
0 −H1

)

, (2.20)

where H0 = D2
x + x2m and H1 = −2xm.

So we have

A−2
m =

(

B2 − C2 −BC
CB −C2

)

(2.21)

where C = H
−1/2
0 , B = −H

−1/2
0 H1H

−1/2
0 . Hence we have

Tr
(

A−2
m

)

= Tr
(

B2 − 2C2
)

. (2.22)

By scaling we have, for every γ > 0,

Tr
(

D2
x + γx2m

)−1
= γ1/(m+1) Tr

(

D2
x + γx2m

)−1
. (2.23)

Then, computing the derivative at γ = 1 on each side, using the Cauchy-Schwarz
inequality, | Tr (M2)| ≤ Tr (MM∗) for M = H−1

0 H1, we get

Tr (B2) ≤ 4

m + 1
Tr (C2). (2.24)

So the conclusion follows, for m ≥ 2, with

Tr
(

A−2
m

)

≤
(

4

m + 1
− 2

)

Tr
(

H−1
0

)

< 0. (2.25)

In [4] the authors have used the same method for n = 2, 3, by computing
Tr
(

A−4
L

)

. The proof is much more tricky and give the expected conclusion for
m ≥ 6. We shall see in the next section that by adding some semiclassical ingre-
dients in the Chanillo-Helffer-Laptev approach as we did in [15], it is possible
to improve their result in the even dimension case.

3 A Semiclassical Analysis of the problem

Let us consider first the quadratic pencil LP where P is a positive-elliptic poly-
nomial of degree m ≥ 2 in R

n, n ≥ 2. For simplicity we assume that P is homo-

geneous. By the scaling transformation x = τy with ~ = τ1−m and µ =
λ

τm
+ 1
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we can see that LP (λ) is unitary equivalent to the semiclassical Hamiltonian
Ĥ(µ) where

Ĥ(µ) = −~
2△y + (P (y) + 1 − µ)

2
(3.26)

So Ĥ(µ) is the ~-Weyl operator with the symbol H(µ, y, η) = η2+(P (y) + 1 − µ)
2
.

For semiclassical analysis tools and ~- Weyl quantization we refer to [27] for
scalar symbols and to [18] for matrix symbols. Here we use the notation Ĥ for
the ~-Weyl quantization of the symbol H .
As above, to the semiclassical quadratic pencil Ĥ(µ) is associated a non self-
adjoint matricial operator ÂP in L2(Rn) × L2(Rn),

ÂP =

(

0 Ĥ
1/2
0

−Ĥ
1/2
0 −Ĥ1

)

(3.27)

where Ĥ0 = −~2△y + (P (y) + 1)
2
. The ~-symbol AP (y, η) of ÂP has two

eigenvalues
µ±(y, η) = P (y) + 1 ± i|η| (3.28)

So using standard methods in semiclassical and spectral analysis adapted from
R. Seeley [29] and [26], the authors get the following result

Theorem 3.1 For every real number s < −n(m + 1)

m
, in the semiclassical

regime ~ ց 0, we have,

Tr
(

Âs
P

)

≍
∑

j≥0

cj,s~
j−n (3.29)

with

c0,s = (2π)−n

∫

R2n

ℜ (µ+(x, ξ))
s
dxdξ, (3.30)

c1,s = 0, (3.31)

c2,s = << something computable >> (3.32)

So using Lidskii Theorem to prove that LP (λ) has a non empty spectrum, it is

enough to prove that there exist s < −n(m + 1)

m
and j ∈ N such that cj,s 6= 0.

The main result in [15] is that this can be checked if n is even.

Lemma 3.2 If m ≥ 2 and n is even then for every s < −n(m + 1)

m
, c0,s 6= 0.

Proof
We have

∫

R2n

µ+(x, ξ)sdxdξ =

∫

Rn

(P (x) + 1)
s+n

∫

Rn

(1 + i|η|)sdη (3.33)
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So we have to compute fs(i) where

fs(α) =

∫

Rn

(1 + α|η|)sdη. (3.34)

By scaling and analytic extension we easily get fs(α) = α−nf(1) for α ∈ C,

α /∈] −∞, 0]. Then ℜfs(i) = cos
(nπ

2

)

fs(1) and fs(1) > 0. So the conclusion

follows.

Remark 3.3 We conjecture that for n odd, n ≥ 3, there always exists j ≥
1 and s < −n(m + 1)

m
such that cj,s 6= 0. To check this it is necessary to

perform algebraic computations which are under investigation in [1]. A similar
method was used in [24] to prove existence of resonances for matrix Schrödinger
operators.

The above lemma gives much more than existence of at least one eigenstate.
We shall see that there exists an infinite number of eigenstates and give an
estimate of their density. It is known that existence of resonances can be proved
as a consequence of a trace formula [31, 24]. The same method can be applied
here, in an easier way, to estimate the number of eigenvalues. Let us write the
generalized eingenvalues {λj}j≥1 of LP by increasing order of their modulus,
repeated according their mutiplicities. Let us introduce the counting function

NL(r) = #{j ≥ 1, |λj | ≤ r}. (3.35)

Proposition 3.4 Under the assumption of Theorem 3.1 and Lemma 3.2, there
exists a constant C > 0 such that for every r ≥ 1 we have

rn(m+1)/m

C
≤ NL(r) ≤ Crn(m+1)/m (3.36)

Proof

Let us denote θ =
n(m + 1)

m
and fix an integer k > θ. By a change of parameter,

it results from Theorem 3.1 that we have

∑

j≥1

(t + λj)
−k = c0t

θ−k + O
(

tθ−k−(m+1)/m
)

(3.37)

where c0 6= 0.
To find an upper bound we apply the Weyl-Ky Fan inequality [10]

∑

j≥1

(t + |λj |)−k ≤
∑

j≥1

(t + sj)
−k (3.38)
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where {sj}j≥1 is the set of eigenvalues of (A∗
LAL)1/2. But we also have a trace

formula for (A∗
LAL)1/2, so we have

∑

j≥1

(t + |λj |)−k = O(tθ−k) (3.39)

which gives easily (taking t = r) the upper bound:

NL(r) ≤ Crn(m+1)/m (3.40)

For the lower bound, we first remark that for t ≥ t0, t0 large enough, we have

|t + λj | ≥
|λj | + t

8
. This is true because, for every ε > 0, we have arg(λj) ∈

[−π/2− ε, π/2 + ε] for j large enough [25]. Then there exists c1 > 0 such that

∑

j≥1

(t + |λj |)−k ≥ c1t
θ−k (3.41)

It is convenient to write the above inequality with Stieljès integral

∫ ∞

0

(t + r)−kdNL(r) ≥ c1t
θ−k (3.42)

Let γ > 1 be a large constant to be chosen later. We have, using the upper
bound and an integration by part,

∫ ∞

γt

(t + r)−kdNL(r) ≤ kC

(∫ ∞

γ

(1 + u)−k−1uθdu

)

tθ−k (3.43)

So we can choose γ large enough such that

∫ γt

0

(t + r)−kdNL(r) ≥ c1

2
tθ−k (3.44)

which easily gives the lower bound:

NL(γt) ≥ c1

2
tθ. (3.45)

In the paper [15] we also consider the following quadratic pencils

LP,Q(λ) = −△+ (P (x) − λ)2 + Q(x)2 (3.46)

where we assume that P, Q are homogeneous polynomials of degree m ≥ 2,
P ≥ 0, P 2 + Q2 is elliptic and Q is not identically 0 if n is odd. Then we can
extend Proposition 3.4 to the corresponding counting function NLP,Q

(r).
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Proposition 3.5 The following estimates are satisfied

1

C
rn(m+1)/m ≤ NLP,Q

(r) ≤ Crn(m+1)/m, (3.47)

if one of the following condition is satisfied
(i) m ≥ 2, n = 1, 3,
(ii) n = 2, m ≥ 3,
(iii) n = 2, m = 3 and the following technical condition

(P + 1)2

(P + 1)2 + Q2
− 3 −

√
2

4
(3.48)

is everywhere non negative, or everywhere non positive, on Rn.

Sketch of Proof (see [15] for details).
We prove that the leading coefficient c0,s in the trace formula is not 0.

Remark 3.6 The same results holds if P, Q are polynomials such that the as-
sumptions are satisfied for their homogeneous part of degree m. Furthermore we
can replace the homogeneity condition by a quasi-homogeneity condition like in
the example P (x1, x2) = x2

1 + x4
2.

4 Localization of some eigenvalues

We revisit here an example coming from a question that G. Métivier asked me
twenty years ago. Let us consider the following quadratic pencil depending on
a large parameter η > 0.

Lη(λ) = −△x + (P (x) − λ)2 + η2. (4.49)

Assuming as before that P is an elliptic-positive homogeneous polynomial of de-
gree m ≥ 2. Lη(λ) is conjugate to a semiclassical operator where ~ = η−(m+1)/m

and µ =
λ

η
. More precisely, we have

Lη(λ) = η2
(

−~
2△y + (P (y) − µ)2 + 1

)

. (4.50)

The analogue of the trace Theorem 3.1 gives here for the leading coefficient

c0,s = (2π)−n

∫

R2n

2ℜ
(

P (x) + i
√

1 + ξ2
)s

(4.51)

A direct computation, as we did in the proof of Lemma 3.2, gives

cs,o = γs cos

(

(n + sm)π

2m

)

, (4.52)

where γs 6= 0. So, for every n ≥ 1, there exists s < −n(m + 1)

m
, such that

c0,s 6= 0. So we get



11

Proposition 4.1 There exists η0 > 0, large enough, such that, for every η ≥ η0,
Lη(λ) has a non empty spectrum.

Let {λj(η)}j≥1 be the sequence of eigenvalues of Lη, ordered by increasing
modulus. So λ1(η) is a generalized eigenvalue of minimal modulus. The question
of G. Métivier was about the behaviour of λ1(η) as η → +∞. The answer is

Proposition 4.2 [28]

lim
ηր+∞

λ1(η)

η
= ±i (4.53)

(We have ±i because λ is eigenvalue if and only if λ̄ is eigenvalue).

Sketch of the Proof
On the semiclassical side we have to prove

lim
~ց0

µ0(~) = ±i (4.54)

where µ0(~) is an eigenvalue of minimal modulus of L̂(µ) = −~
2△y + (P (y) −

µ)2 + 1. If Â is the non self-adjoint matricial operator associated with L̂(µ), let
us introduce the family of complex variable functions

F~(z) = (2π~)n Tr
(

Â − z
)−N

(4.55)

where N is chosen large enough. Let us denote Ωr = {z ∈ C, |z| < r}. The ~

principal symbol of Â has the eigenvalues µ±(x, ξ) = P (x) ± i
√

1 + ξ2. So, by
standard parametrix construction, for every α > 0, there exits ε > 0 such that
for ~ < ε, F~(z) is holomorphic in the set Bα = {z ∈ C, ℜz < 1 − α} ∪ {z ∈
C, |ℑz| < 1−α}. In particular F~(z) is holomorphic in Ωr := {z ∈ C, |z|z < r}
for r < 1, and we have

lim
~ց0

F~(z) = Fcℓ(z) (4.56)

where

Fcℓ(z) =

∫

R2n

[(µ+(x, ξ) − z)
−N

+ (µ−(x, ξ) − z)
−N

]dxdξ (4.57)

Now we shall complete the proof of the proposition by contradiction. Assume
that there exists a sequence ~j , limj→+∞ ~j = 0, such that Â has no eigenvalues
in a neighborhood of ±i. It follows that Fj(z) := F~j

(z), is holomorphic in a disc
Ωr1

for some r1 > 1. Using Weyl-Ky Fan inequalities [10], we can see that Fj is
a uniformly bounded sequence of holomorphic functions in Ωr1

. Using Montel’s
Theorem, by taking a subsequence, we can assume that limj→+∞ Fj = F∞

exists and is holomorphic in Ωr1
. Then Fcℓ has an holomorphic extension in

Ωr1
. Hence we get a contradiction by computing

lim
s<1,s→1

|Fcℓ(is)| = +∞ (4.58)

We can apply the above result to improve a little bit a result of [15]
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Corollary 4.3 Let us assume that P (x′) and Q(x′′) are elliptic polynomials
in Rn′

of degree m′, respectively in Rn′′

of degree m′′. Then for every n′, n′′,
m′ ≥ 2, the quadratic pencil L(λ) = −△x′,x′′ + Q2(x′′) + (P (x′) − λ)

2
has an

infinite number of eigenvalues

Proof
Let us remark that the self-adjoint operator K := −△x′′ + Q2(x′′) has a basis,
{ϕj}, of eigenfunctions in L2(Rn′

), with eigenvalues ηj such that limj→+∞ ηj =
+∞. So the corollary is a consequence of Proposition 4.2

We can get also estimates on the number of eigenvalues for the pencil Lη(λ),
in every dimension, for η large enough. Let us introduce Nη(R) = #{j ≥
1, |λj(η)| ≤ R}.

Proposition 4.4 There exist C > 1, R0 > 0, η0 > 0 such that, for R ≥ R0,
η ≥ η0 we have

(ηR)n(m+1)/m

C
≤ Nη(R) ≤ C(ηR)n(m+1)/m. (4.59)

Sketch of Proof
We follow the same method as for proving Proposition 3.4. For convenience, we
work in the semiclassical side. Le us denote Ñ~(R) = #{j ≥ 1, |µj(~)| ≤ R}.
We prove first the upper bound. If sj(~) denotes the eigenvalues of (Â∗Â)1/2,
spectral and semiclassical analysis [27, 18] gives, that for some constants K > 0,
ε0 > 0, we have

∑

j≥1

(sj(~) + t)−k ≤ K~
−ntθ−k (4.60)

for ~ ≤ ε0, t ≥ 1. Then using Weyl-Ky Fan’s inequality, we get as in Proposi-
tion3.4,

Ñ~(R) ≤ K~
−nRθ. (4.61)

For the lower bound, we first remark that from the trace formula (Theorem 3.1)
we get for some c0 > 0,

∑

j≥1

(|µj(~)| + t)−k ≥ c0~
−ntθ−k (4.62)

So, for ~ small enough, we have

∫ +∞

1/2

(r + t)−kdÑ~(r) ≥ c0~
−ntθ−k. (4.63)

Using the upper bound, we can choose γ > 0 large enough, such that, for
R ≥ R0, we have

∫ +∞

γR

r−kdÑ~(r) ≤ c0

2
~
−nRθ−k, (4.64)
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which gives easily the lower bound

Ñ~(γR) ≥ 2−k−1c0~
−nRθ. (4.65)
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[22] G. Métivier. Une classe d’opérateurs non-hypoelliptiques analytiques. In-
diana Univ. Math. J., Vol. 29, p. 823-860, (1980).
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