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Abstract. We show that the poset of degrees of relative definability in
the Scott model of Unary PCF is non trivial, and that, nevertheless,
the hierarchy of order extensional models of the language is reduced to
a bottom element (the fully abstract model) and a top one (the Scott
model itself).

1 Introduction

Finitary versions of PCF and related languages have been studied in the last
decade, in order to settle the well-known “full abstraction problem” for the full
language. In 1993, A. Jung and A. Stoughton [4] proposed the following crash
test for a solution to that problem to be a “good” one: it should provide an
algorithm for deciding observational equivalences for the finitary fragment of
the language (i.e. the language whose unique ground type is bool, FPCF).

Shortly later, R. Loader proved that the observational equivalence of FPCF
is undecidable [9]. An immediate corollary of this breakthrough result is that the
problem of FPCF-definability in, say, the Scott model of FPCF, is undecidable.
Hence, relative FPCF-definability in that model is also undecidable.

The poset of degrees of relative definability is somehow related to the ex-
istence of hierarchies of (order extensional) models. The idea is the following:
given a big model of FPCF, w.r.t. a natural notion of embedding, defined via
a logical relation (see Sect. 2.4) an undefinable element x of the model, and a
logical relation R, which proves that z is undefinable, one can:

— remove all elements of the model which are not invariant w.r.t. R,
— perform an extensional collapse on the remaining elements,
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hence obtaining a new, smaller, model.

Let us consider, as an example, the following hierarchy of monotone functions
gn : bool™ — bool (generalizing a well-known example of first-order, stable and
non sequential function, due to G. Berry)

9n(T1,.y2n) =tt &Y EG, T >y
where G, is the set of circular permutations of (L, tt,...,tt, ff)
——

n—2
For all n > 3, g, is FPCF-undefinable; moreover g,41 is FPCF-definable
relatively to g,, and the converse does not hold.
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Now, for all n, we define a logical relation R,, such that g, (and hence all the
Jgn—i) is not invariant w.r.t R,, and g,+1 (and hence all the g,;) is invariant
w.r.t. R,. This relation R, is an instance of “sequentiality relation” (see defini-
tion 2), and in Sieber’s terminology R,, = S?;,r.l.,n}{1,..,n+1}7 i.e., R, contains, at
ground type, the set of (n + 1)-tuples which are either constant or does contain
an occurrence of | in one of the first n components.

Performing the two operations described above w.r.t. R,, yields a model
which does not contain g, and contains g,1.

Hence, concerning FPCF, we have that:

— The observational equivalence is undecidable.

The definability problem in the Scott model is undecidable.

The relative definability problem (in the Scott model) is undecidable, and
the poset of degrees of relative definability is infinite.

There exist infinite hierarchies of standard, order extensional models.

Several authors have investigated restrictions on the syntax of FPCF which
make observational equivalence decidable: V. Padovani has shown that this
can be achieved by eliminating all non ground constants (the if-then-else
in FPCF) [12]. Schmidt-Schauss [15] and independently, R. Loader [8], have
proved that observational equivalence is decidable also for the “unary” version
of PCF (a single ground type o with two constants L and T and a “sequential
convergence test” A: o — o0 — 0).

In a recent paper [5], J. Laird shows that Berry’s model of bidomains is
universal for UPCF (using the listing algorithm devised by Schmidt-Shauss).

In this paper, we address the following questions:

— Is the poset of degree of relative definability in the Scott model of UPCF
trivial? (i.e. does it contain just the degree of definable functions, and the
one of functions equivalent to the “parallel convergence test” V7)

— Is the hierarchy of (standard and order extensional) model of UPCF trivial?
(i.e. does it contain just the Scott and the fully abstract model?)

Our first remark was that a positive answer to the first question implies a
positive answer to the second one. Surprisingly enough, it turns out that the
poset of degree is non trivial, and the one of models is triviall.

The point is that, when applying the “collapsing” technique described above
to the Scott model of UPCF in order to eliminate, say, the degree of V, by picking
up an appropriate logical relation (typically, Sieber’s 5?1,2}’ {1,2’3}) then all the
other degrees collapse too, either in the first phase (elimination of non-invariant
elements) or in the second one (extensional collapse of the invariant elements).

! The fact that the poset of models is trivial has an alternative proof, simpler then
ours, due to J. Laird [6], but less general. In fact we are able to apply our result also
in order to reason about the hierarchy of models of FPCF (Sect. 4.4).
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2 Preliminaries

We introduce the notion of relative definability, the language UPCF and its Scott
model, and logical relations, that we use both to compare degrees of definability
and models.

2.1 Degrees of Definability

Given an applied calculus L, a model M of L, and two elements f € M" and
g € M?, we say that f is smaller than g in the L-definability preorder of M,
f <M g, if there exists an L-term M : 0 — 7 such that [M]Mg = f.

A degree of L-definability in M is an equivalence class of the equivalence
relation associated with the preorder above, and degrees are partially ordered
by <. The poset of degrees always has a smallest element, namely the degree
of definable elements.

Degrees of PCF-definability in the Scott-continuous model, often called de-
grees of parallelism have been studied for instance in [1], while degrees of PCF-
definability in the model of strongly stable function (which could be called degrees
of intensionality) have been investigated in [2,10,11].

Of course, if M has the definability property w.r.t. L (i.e. if any element of
M is the denotation of some L-term), then the poset of degrees of L-definability
in M is reduced to a singleton.

When the language and the model we refer to are clear from the context,
we will omit “L” and “M?”, in the definition and notations above, and we will
speak of ”degrees of definability”, or even, when the model is order extensional,
of “degrees of parallelism”. Moreover, we use the same symbols for the constants
of L and their denotations in M.

In the rest of this section, we focus on Unary PCF. Nevertheless, all the
definitions and results apply to FPCF too, changing appropriately the ground
type and its standard interpretation.

2.2 Unary PCF

Unary PCF is an example of applied A-calculus: its ground constants are L, T : o,
and the only first order constant is A : 0® — o,
Let M be a standard model of UPCF, that is:

— el ={L, T} [T]=Tand [L] =L,
— [o = 7] is a subset of [r]I°].

We can define an extensional order < on M:

— Attypeo, z <,yiff x =L orz =y,
— Attypeo =7, f <o giff Vz € [0 ], fz <; 9.

Definition 1. M is a standard order-extensional model if:
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— M is a standard model,
— All functions are monotonic for the order <.

The Scott model £ of UPCF is the standard, order extensional model where
[o = 7] ={f :[e] = [r] | fis <-monotonic }, each [o] being partially
ordered by <.

2.3 Sequentiality Relations
This definition and the proposition are taken from [14].

Definition 2. If A C B C {1,...,n}, S} p is the set of tuples (1, ...,T,) such
that either 3i € A,x; = 1 orVi,j € B,z; = x;.

A Sieber relation is a logical relation which is an intersection of a number of
S} g at base type.

Proposition 3. The Sieber relations are exactly the relations which contain the
constants of UPCF.

The fundamental lemma of logical relations ensures that the denotation of
any UPCF term, in any model, is invariant w.r.t. all Sieber relations.

2.4 Hierarchies of Models

Definition 4. Given two standard models M and N, the relation Ry n is the
only logical relation which is the identity at the base type.

Definition 5. A logical relation R is functional if
Vo,¥f € [o]".Vg,9' € [0V, fRgA fRy = g=¢

If R is functional and x € [o [M, we write R(z) for the onlyy € [o [V such that
zRy.
A logical relation R is onto if

Vo,Yg € [o]V,3f € [o]™, fRyg

Definition 6. A model M is smaller than a model N if Ry am is functional
and onto. M and N are isomorphic if M is smaller than N and N is smaller
than M.

Lemma 7. Assume R° is functional and onto. Let z,2' € [0]¢, y € [o]M. If
y = R(z) and y = R(z') theny = R(z Az'). If y < R(z) and y < R(z') then
y < R(z Az').

Proof. If 0 = o, R is the identity. Assume o is a functional type, and let a be an
argument of z and z'. R(za) = yR(a) = R(z'a). By hypothesis, R(za A z'a) =
yR(a) so R((z A z')a) = yR(a). Finally, we get R(z A z') = y. The proof is the
same for <. O
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Lemma 8. If R is functional and onto, there exists a total monotonic map R~!
such that Vz € [a]M,z = R(R™(z)).

Proof. Lemma, 7 allows us to define R=!(y) as the smallest z such that R(z) =
y. R~! is monotonic: if z < y, # < R(R (z)) and z < R(R (y)). With
lemma 7, we get z < R(R 1(z) A R 1(y)), and the monotonicity of R gives
R(R™(z)) > R(R'(z) A R™'(y)). This yields 2 = R(R™'(z) A R™}(y)), so
R~Y(z) < R7'(z) A R7(y), and finally R~!(z) < R71(y). O

Proposition 9. If M and N are standard order-extensional models of UPCF
and N is fully abstract, N is smaller than M

Proof. We write R = Raq,n- At ground type, R is a bijection. Assume that R
is functional and onto at types o and 7.

Assume fR°7"gand fR”77g'. Let z € [o ]V. Since R’ is onto, there exists
y € [0 ] such that R(y) = z. We get gz = g(R(y)) = R(fy) = ¢'(R(y)) = g'z,
which entails g = ¢': R°™7 is functional.

Let g € [o — 7]V. Since N is fully abstract, there exists a closed term G
such that [G]V = g. By the fundamental lemma of logical relations

[GTMRTIGTY

This yields [G]MR*~7g: R is onto. o

3 Some Degrees in the Big Model of UPCF

We know that the poset of degrees of UPCF-definability in the Scott model has a
smallest element L4, (the degree of definable elements). A biggest degree Tgeq
(the degree of the “parallel convergence test” Azy. x V ), also exists:

Lemma 10. All elements of the Scott model of UPCF are definable relatively
to Axy. TV y.

Proof. We make an induction on the types.

Let f 101 = ... > op — 0. Let (a:ﬂ,...,xm)
smallest tuples such that f yields T).

If x : 05, the function <, mapping y to T if x < y and to L otherwise is
definable: if (a;1, ..., ai1),_;  is the trace of z, and a;; = [A4;; ] (by hypothesis),
then \y.(yA11...A1) A oo A (yAg1...Agr) defines <.

One easily checks that f is defined by

be the trace of f (the

i=1l...m

M1 Yn-((Sazny Y1) A e A (g Yn)) Voo V (Szy Y1) A e A (L Yn))
O

In the Scott model of Unary PCF, one can easily show that any first order
function belongs either to the smallest degree (i.e. it is definable), or to the
biggest one (i.e. it allows to (UPCF-)define any other element of the model).
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Lemma 11. If ¢ : o™ — o is undefinable, then there exists ui,...,u, where
u; € {z,y, T, L}, such that [Afzy.(fur...un)]yp = V.

Proof. By hypothesis, 1 is not a constant function. Suppose there is a unique
minimal sequence ¢ € {T, L}" such that ¢(c) = T. Take u; = T if ¢; =1, x;
otherwise. Then [Az1 ...2,.u1 A ... Auy, ] =, a contradiction.

Let c',c? € {T,L}" be minimal distinct sequences such that ¥ (c!) =
Y(e?) = T. Take u; = z if (¢},c?) = (T,1), y if (¢j,¢?) = (L,T), d if

¢! = 2 = [d]. Check that [Afzy.(fuy ... up)]¢ = V. 0

In other words, all first order types possess the 2-DEG property. We show
that 2-DEG is not preserved at higher types, by constructing two intermediate
degrees.

Let ¢ € £(c°=0)=(0"=0) he the function defined by

S(f) = Azyz.xVyVzif f=Azyz. zVy
“\f otherwise

Proposition 12. Lgeg< ¢ < T gey.

Proof. First of all, ¢ is monotone since there is no element of £ (6°—=0) strictly in
between Azyz. x Vy and Azyz. xVyV z.

Concerning 1 4.4< ¢, we are going to show that ¢ is non-invariant w.r.t. a
particular UPC F-relation: 5%1,2}{1,2,3}‘ Let f = Azyz. x Ay, g = Axyz. x V y,
and let us use S as a shorthand for 5?1’2}{1,273}.

First of all, it is easy to see that (f,g,9) € S, since whenever (z1,z2,23),
(y1,92,93), (21,22,23) € S aresuch that f 21 y1 21 = T and g 22 y2 22 = T,
then either ;1 = 2 = T or y; = y2 = T. In the former case we conclude that
x3 = T, in the latter that y3 = T; in both cases, g x3 y3 23 = T, and hence
(f.9,9) € S.

Next we prove that the ¢-image of (f,g,9) is not in S, and hence that ¢ is
not definable.

Let h = Azyz. x Vy V z. The ¢-image of (f,g,9) is (f,h, h); the following
diagram shows that (f, h,h) & S:

fhh
T1L1leS
T1L1leS
1TLeS
TTLgS

In order to show that ¢ < T geg, we show that Tg4.4 A ¢. We prove by induc-
tion on (n,m) that there is no normal 7-long term M with n free occurrences of
f, m occurrences of A, such that [Afzy.M]¢ = V:

— Mfoyz] o, Noyylo# Vv,
—if M= M1 A MQ, then:
o either [Afzy.M1]¢ L1=T and [Afzy.Mi]od =V,
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o or [Afey.My]¢ L1=T and [Afzy.M2] ¢ =V.
— if M = (f(Az12223.w)) v1 v2 v3 where a [Afzy.v; | ¢ is undefinable, then the
latter equals the only undefinable of type o — (0 — o), that is, V.
— if M = (f(Az12223.w)) N1 N» N3 where no N; contains an occurrence of
f and [(Afzyzi2223.w)] ¢ is undefinable, then by lemma 11 there exists
(t1,t2,u1,us2,u3) € {z,y, T, L}® such that:

[(Afrywlt:/z,t2/y,u1/21,u2/22,u3/23])] = V

Since all substituted terms are of ground type, the term in the left-hand side
is in normal, n-long form, and contains n — 1 occurrences of f.

— if M = (f P Ny Ny N3) where P, N1, N5, N3 contain no occurrences of f,
then for all (t,u) € {T,L}? and for P’ = P[t/z,u/y], N} = N[t/z,u/y], we

have:
Aoy M] o[t][ul = ¢[P' TIN{ TIN5 ][N: ]

=[P JTINT ][N, ] [Ns ]

= [(P" Ni N3 N3)]

= [Azy.(P N1 Na N3)] [t ] [u]
In other words [Afzy.M ] ¢ = [Afzy.(P N1 N2 N3)] ¢ = V where the normal
form of (P N1 Ny N3) contains no occurrence of f.

O

By using ¢, we are now able to define a new degrge, repregented by a function
@ which moreover is S-invariant: let ¢ € £((e"20)=(0"20))=(0"=0) he the function
defined by

Ary. T ify > ¢
P() = Ay Vyif ¢ =¢
Ary. L ifypF o

Proposition 13. The degrees of ¢ and & are incomparable.

Proof. First of all, it is easy to see that & is actually an element of &, i.e. a
monotone function.

Concerning ¢ A ¢, it is enough to remark that, if & < ¢, then Azxy. zVy < ¢.

In order to show that ¢ A &, we prove that & is invariant w.r.t. 5%1,2}{1,2’3} =
S (and we conclude using the fundamental lemma, of logical relations, since ¢ is
not S-invariant).

This amounts to showing that whenever

d & P
¢1¢2¢3
.’L'1.’L'2£L'3€S
Y1 Y2 Y3 €S
T T L

one has (¢1,’¢2,’¢3) g S, i.e. that ¢1;¢2 > ¢ and 1/)3 )‘ ¢ entail (¢1,¢2,1/)3) ¢ S.

Now, we decompose 13 # ¢ in two (not mutually exclusive) cases, and prove
(1, %2,v3) € S for both of them:
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— case 1: Y3(Azyz. xVy) < Azyz. zVyV z.

let f=Azyz. x ANy, g = Azyz.

z V y, as before.

Y1 P2 Y3

f g9 €S
T 1L 1 eS
T 1L 1 eS§
1 T 1L €S

TTLES

— case 2: there exist fo € £97°7°7° 14, Y0, 20 € £° such that 13 fo To Yo 20 =L
and fo 2o yo 20 = T (remark that if both (case 1) and (case 2) do not hold,
then 15 > ¢). Let f' € £°7°7°7° be the function defined by

f'a:yz:{

Tifzx >xzg, y>yo and 2z > 2o
1 otherwise

Remark that f' is definable and f' < fo. Showing that (f', f', fo) € S is

trivial. We can now conclude:

¢1¢2¢3

f 1 foes
To To Lo €S
Yo Yo Yo €S
20 Z0 %9 €S

T T LES

O

We can summarize the results of this section by the following diagram, show-
ing a fragment of the poset of degrees:

Tdeg

[¢]/ \[451
\ /

J—deg

4 Standard Order-extensional Models

In this section, we state a theorem about a fragment of the hierarchy of standard
order-extensional models: all the models strictly greater than the bidomains
model contain a weak version of the parallel or. We apply this result to UPCF,

and give some clues about FPCF.
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4.1 Bidomains

Definition 14. We write x 1y if x and y are bounded. A dI-domain (D,C, 1)
is a Scott domain such that:

— FEach compact element has finitely many lower bounds,
—Vz,y,z€Dyytz=2xN(yUz)=(xNy)U(xNz).
A stable function between two dI-domains X and Y is a Scott-continuous
function f such that
Ve,ye X,z ty = feNy) = f(z) N f(y)
Definition 15. (D, <,C, 1) is a bidomain if:

— (D,<, 1) is a Scott domain,

- (D,C, 1) is a dI-domain,

— the identity between (D, <, 1) and (D,C, 1) is continuous,
— if x and y are bounded in (D,C, 1) thenzx Ay =z My.

Proposition 16. The category of bidomains is cartesian closed.
Proof. We define D = D':

— f € D= D'if f is stable for C and continuous for < and C
- f<giftVz e D, fx < gz
~ fCygiffiVe,ye D,x Cy= fr= fyNgz

Definition 17. Lett € [a1 — az = ... = o[M. Tr(t) is the set of ((z1, ...,Tn),y) €
([ea M X ... x [an JM) x [o]M such that:

—y#FL
— tx1..2n, = Y,
— For any @, € [a; [™, if Vi, o}, C z; and tz}...x!, =y, then Vi, = z;.

Note that Tr(t) C Tr(u) entails t C u.

4.2 Bidomains and VvV~
V™ is a parallel function smaller than the usual parallel or:

Definition 18. Let T # L be an element of the base domain. V7 is the function
defined by:

- | Tifz=Tory=T
Vray = {J_ otherwise

Note that if a model of FPCF contains Vg or V; , it contains them both. Thus
we speak of V™ meaning “any V_”. For UPCF, V™ = Azy.z V y.

First, we state a useful lemma:
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Lemma 19. If domains of M and B are isomorphic for types smaller or equal
toa— B, and f: [a]™ — [B]M, is <-monotone and C-stable, then f € [a —

BIM.

Proof. We write R = Ry g. If a,b € [a]™, we define a C b <= R(a) C R(b)
Let us now assume that f is <-continuous and C-stable. Since the domains

of B are isomorphic to the domains of M, we can define a function f between

domains of B. f is also <-continuous and C-stable: f is an element of [a — B]R.
As R*™P is a bijection, we can use R~'. By definition of R*#,

Vz € [a], (R_l(f)m,fR(x)) e R’

By definition of f ,
Vz € [a], (fz, fR(z)) € R®

Since R? is a bijection, Vz € [a], fz = R~'(f)z. We get f = R~'(f), which
means that f € [a — S]M. O

We can now proceed with the theorem:

Theorem 20. If a standard order-extensional model is strictly greater than the
bidomains model B, then it contains V™.

Proof. Let M be a standard order-extensional model such that B is strictly
smaller than M. Let w be a smallest type (for the type depth) such that R
does not define an isomorphism between [w [™ and [w 7.

Since B is smaller than M and [w JM # [w]?, there is a ¢ € [w]™ such that
By € [w]?, ¢Ra - As the argument and result domains are isomorphic, we
can write ¢ & [o — 7]5. Of course, w # o. Let us write w = o — 7. Since ¢ is
continuous for <, we have that ¢ is not stable for C. Either ¢ is not monotone
for C, or there exist f and g bounded in ([o ], E) such that ¢(f A g) # &f A ¢g.
We prove that VvV~ is definable in each case.

Let us assume that ¢ is not C-monotone. We choose f and g such that
f Egand ¢f Z ¢g. f 7 = 0, we have ¢f = T and ¢g = L. But, since
f C g entails f < g, ¢ is not <-monotone. Thus, 7 is functional: let us write
T=T = ..= Tp > o0.

As ¢f € ¢g, Tr(¢f) € Tr(¢g). We choose ((y1.--yn), T) € Tr(of)\Tr(¢g)
(where T can be any element in o] except L) Since ¢ is <-monotone, f < g,
and ¢fy1..yn = T, dgy1...yn = T. Therefore, there is a ((1...x,), T) € Tr(dg)
such that Vi,z; C y;. Since ((y1,.-,yn), T) & Tr(¢g), there is an i such that
x; C y;, which entails ¢fx;...x,, = L. We have chosen f, g, x; and y; such that:

- (ZSfZUl.CL'n = J_,
- ¢g9T1.. Ty =T,
- ofyr-yn=T.



hal-00149559, version 1 - 26 May 2007

As f C g, and by lemma 19, the function m : 0 — ¢ defined by mL = f and
mT =g isin M. As z; C y;, and by lemma 19, the function x; : 0 — o defined
by x;L = z; and x; T = y; is in M. One easily checks that

Aab.¢(Ya)(x1d)...(xnb) = V1

Let us now assume that ¢ is C-monotone, and that there exist f, g, h such
that f C h, g C h, and ¢(fg) # (6£)11(¢g). Since ¢ is C-monotone, ¢(fg) C
(¢f) N (¢g), and we get ¢(f Mg) T (4f) M (¢g). This yields:

o(f M g) < (¢f) N (49)

We can choose ...z, (where n can be 0) and T € [o] (T # L) such that
o(f N g)r1...xp, = L and ((¢f) N (¢g9))x1...xz, = T. We can define a stable
function ¢ by:

_¢J-J-:f|_|ga
_¢TJ-:fa
_¢J-T:ga
— YTT =h.

Being <-continuous and C-stable, ¢ is in M. One easily checks that

Aab.¢(ab)zy..x, = VT

4.3 Unary PCF
We apply the theorem to the case of UPCF.

Proposition 21. Any standard order-extensional model of UPCF is smaller
than the Scott model £.

Proof. Let M be a standard order-extensional model. We write R for Rg ag.
At type o, R is a bijection. Assume that R and R" are functional and onto,
and let us prove that R°~7 is also functional and onto. Seeing R as a partial
function, we write R(z) for the only y such that 2Ry. R~ is the function defined
in lemma 8 at types o and 7.
Let f € [o = 7]%, 9,9' € [o = 7]™ such that fR°™"g and fR°™"g'. Let
z € [o ]M. By definition of R7™7,

gz = g(R(R™'(2))) = R(f(R™'(2)) = ¢'(R(R""(2))) = g'z

Thus, R°77 is functional.
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Let g € [o — 7M. If z has an image by R, we define f(z) = R~ (g(R(z))).
Since the domains of £ are lattices?, we can define

f@y= "\ J@®R®)

R-(y)<z

The monotonicity of R and R~! yields the monotonicity of f. If z € [o]¢,
R(fz) = g(R(z)). As R = {(z,R(z))}, fR°77g: R°7 is onto. m|

Theorem 22. The model B of bidomains of UPCF is fully abstract.

Proof. See[5] |
The following is an easy consequence of lemma 10:

Lemma 23. If Vv~ is in M, then M = £.

Corollary 24. There are only two standard order-extensional models of UPCF:
B and £.

Proof. Combine these results with theorem 20. O

4.4 Finitary PCF

We show that there are infinitely many degrees above [V~] and infinitely many
models smaller than £ that contain V™.

Let us call V™ the function of type o™ — o defined by:

t if n of n — 1 of the x; are equal to ¢
Vizy...xp, = fifey=...=2,=f
1 otherwise

We write z Ay = if x then (if y then t else L) else (if y then L else f).
One easily checks that V® = Azy...z,,. V" ! (21 A 22)x3...7,,, which entails V" <
V7L, Let us prove that V* < V?~! with the n-ary relation S™ defined by

S" =50 apqrmy N ﬂ SA A
AC{l...n—1}

As one can check, the tuples (21, ...,2,) in S™ are exactly such that:

— there is no i,j < n such that ; =t and z; = f
— the tuple is not tt...tf nor ff...ft.

First, V" is not invariant by S™*! as shown by:

2 Apart from this, the proof would be valid for FPCF
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VARV RV VLRV
Lt t ...t f
t Lt t f
t ot L t f

t t ... L f
t ¢t t ...t f

Let us now prove that V" is invariant by S™. Then we conclude with the
fundamental lemma of logical relations. Let z; ; and y; such that:

\i \i
11 ... Tpl

Tin «-- Tpn
Yr -+ Yn

and (y1,...,yn) € S™.

— If there exist 4,4’ < n such that y; = t and y; = f then for all j but one,
Tij = t and Tirg = f, which entails (.’1:1]'...:6”]') ¢ S™.

— IfVi<mn,y; =t and y,, = f, one can check that there exists a jo such that
Vi < n,x;5, = t. Since for all j, xp; = f, (1jos -+, Tnjo) € S™-

—If Vi <n,y; = f and y, = ¢, for all j but one that Vi < n,z;; = f and
Zn; = t, which entails (z1j, ..., 2n;) € S™.

Note that for n > 3, V™ = Axy.V™tt. .. txy, hence we have defined a sequence
of undefinable elements of £:
Vo< =<VvEVvi<vi=y

These elements being first-order functions, they cannot vanish with an ex-
tensional collapse. Thus, we have defined an infinite hierarchy of standard order
extensional models of FPCF:

..cé&tcece

These models are not greater than B, but there might be corresponding
models above B.

5 Conclusion

We have shown that the poset of degrees of parallelism in the Scott model of
UPCEF is non-trivial, and that the poset of extensional models of the language
is reduced to the fully abstract and the Scott ones.

Some open questions arise naturally:
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— Decidability of the definability (and relative definability) problem in the
Scott model of UPCF.

— Existence of infinitely many degrees of relative definability in the Scott mod-
els of UPCF.

A broader framework for this work is the study of the three related issues
below?® for a given extensional, finitary applied A-calculus L, in order to explore
the boundary decidable/undecidable with respect to the set of constants of L.

(a) Decidability of the definability (and relative definability) problem in the
Scott model.

(b) Existence of a (finitary and “non-syntactic”) fully abstract model.

(c) Decidability of the observational equivalence.

For FPCF, we know that (c), and hence (a) and (b), are false [9].

For UPCF, (b) is true [5] and (a) open.

For the simply typed A-calculus without constants (replacing “Scott model”
with “full set-theoretic model”) (c) is true [12], (a) false [7, 3], (b) open.

For finitary, parallel PCF, (a) is true [13].
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