inria-00552267, version 3
Sparsity regret bounds for individual sequences in online linear regression
Journal of Machine Learning Research 14 (2011) 729-769
Résumé : We consider the problem of online linear regression on arbitrary deterministic sequences when the ambient dimension d can be much larger than the number of time rounds T. We introduce the notion of sparsity regret bound, which is a deterministic online counterpart of recent risk bounds derived in the stochastic setting under a sparsity scenario. We prove such regret bounds for an online-learning algorithm called SeqSEW and based on exponential weighting and data-driven truncation. In a second part we apply a parameter-free version of this algorithm to the stochastic setting (regression model with random design). This yields risk bounds of the same flavor as in Dalalyan and Tsybakov (2011) but which solve two questions left open therein. In particular our risk bounds are adaptive (up to a logarithmic factor) to the unknown variance of the noise if the latter is Gaussian. We also address the regression model with fixed design.
- 1 : Département de Mathématiques et Applications (DMA)
- CNRS : UMR8553 – Ecole normale supérieure de Paris - ENS Paris
- 2 : CLASSIC (INRIA Paris - Rocquencourt)
- Ecole normale supérieure de Paris - ENS Paris – INRIA
- Domaine : Statistiques/Machine Learning
Statistiques/Autres
Mathématiques/Statistiques
Statistiques/Théorie
Informatique/Apprentissage
- Mots-clés : sparsity – online linear regression – individual sequences – adaptive regret bounds
- Versions disponibles : v1 (05-01-2011) v2 (18-03-2012) v3 (12-04-2013)
- inria-00552267, version 3
- http://hal.inria.fr/inria-00552267
- oai:hal.inria.fr:inria-00552267
- Contributeur : Sébastien Gerchinovitz
- Soumis le : Vendredi 12 Avril 2013, 12:10:25
- Dernière modification le : Mardi 16 Avril 2013, 14:58:51