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Abstract— We present a speed-sensorless tracking controller
for switched reluctance motors with unknown parameters. Our
approach relies on the design of two control loops: an outer
control-loop for the rotor dynamics which is driven by a PID-
type controller where the stator currents are viewed as virtual
control inputs, and an inner tracking control-loop for the stator
currents. We assume that the parameters of the rotor (inertia
and the load torque) are unknown and we establish uniform
global exponential stability. In the case that also the stator
parameters are unknown, we add an adaptation law and we
establish convergence of the tracking errors.

I. INTRODUCTION

Switched Reluctance Machines (SRM) are attractive since

they are reliable, relatively cheap and they produce high

torque at low speed, which makes them suitable for direct-

drive applications. However, even under experimentally-

validated assumptions leading to some simplifications, the

dynamic model is highly nonlinear e.g., the generated elec-

tromagnetical torque is a quadratic function of the elec-

tric currents and rotor positions. In addition, reliable and

accurate indirect sensing methods for the mechanical vari-

ables are fundamental in the development of low-cost, high-

performance SRM drives; on one hand the use of mechanical

sensors increase the cost of the set-up and on the other, ve-

locity sensors are often contaminated with noise. Therefore,

avoiding the use of angular velocity and position sensors

which is well known as sensorless control, is beyond pure

theoretical interest.

There exist a large number of efficient heuristically-based

and experimentally-validated control approaches to reduce

the number of mechanical sensors in the loop –see e.g., [1],

[2], [3], [4], [5]. However, articles on control of switched-

reluctance drives that include a rigorous stability analysis,

especially in a sensorless context, are rare. The main result

in [6] establishes global asymptotic stability for a passivity-

based controller in the case of unknown load however, it uses

both1 mechanical variables. A proportional-derivative-based

controller is proposed in [7] but relying on the knowledge

of the torque load. In [8] the authors consider only the

rotor dynamics that is, it is assumed that the currents are

valid physical control inputs. An adaptive position-feedback

controller is presented. The controller uses a dirty derivatives

filter instead of velocity measurements and it is guaranteed
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1Angular velocity and position measurements

that the tracking errors converge to zero. An interesting

experimental validation is presented as well to compare the

performance against a full-state feedback controller.

In this paper we establish uniform global exponential

stability for the SRM under position-feedback control. We

use the full model, including both the rotor and stator

dynamics and we assume that the rotor inertia and the load

torque are unknown. Then, under the assumptions that the

rest of the physical parameters are unknown we establish

uniform global stability and the convergence of the tracking

errors to zero. Our control approach relies on a minimal pa-

rameterization, a tracking controller for the stator dynamics

and the so-called PI2D controller, introduced in [9] , for the

rotor dynamics. This controller is of a PID type except that

the velocity measurements are replaced by dirty derivatives.

The rest of the paper is organized as follows. In next

section we briefly describe the motor model, in Section III

we discuss the rationale behind our main results, presented

in Section IV. In Section V we show some simulation results

and we conclude with a few remarks in Section VI.

II. THE MOTOR MODEL

After experimental evidence, it is well accepted that the

three stator phases of a switched-reluctance motor may

be assumed to be magnetically decoupled i.e., the mutual

inductance among stator phases is negligible [10]. Further-

more, based on the assumption that the machine operates at

relatively low current levels, it is common practice to express

the inductance of each phase as a strictly positive Fourier

series truncated at the first harmonic that is,

Lj(q) = ℓ0 − ℓ1cj , cj := cos
(

Nrq − (j − 1)
2π

m

)

where q denotes the rotor angular position, ℓ0 > ℓ1 > 0
are inductance values and Nr is the number of poles. Under

these assumptions the dynamic model for the stator currents

is given by

uj = Lj(q)ẋj +Kj(q)ωxj +Rxj (1)

where the index j ∈ {1, . . . ,m} with m is the number of

phases, xj denotes currents,

Kj(q) =
∂Lj

∂q
= Nrℓ1sj , sj := sin

(

Nrq − (j − 1)
2π

m

)

corresponds to the phase-inductance variation, uj is the input

voltage at the stator terminals (and control input) and R is

the stator winding resistance. The rotor dynamics is given by

a simple integrator of the input torques, these are the load

torque τL and the mechanical torque of electromechanical



origin, which based on the assumption that the behavior of

the stator windings is decoupled, is given by

τe(q, x) =
m∑

j=1

Kj(q)x
2
j .

Thus the complete motor model is given by

L(q)ẋ+K(q)ωx+Rx = u (2a)

Jω̇ = τe(q, x)− τL(q, ω) (2b)

where L := diag{Lj}, K := diag{Kj}, R := diag{Rj} and

x := col[x1, x2, x3]
⊤; for further development, we remark

that there exist constants ℓm, ℓM and kM such that for all

q ∈ [−π, π],

0 < ℓm ≤ |Lj(q)| ≤ ℓM , |Kj(q)| ≤ kM . (3)

Equation (2b) models the rotor dynamics; J denotes the rotor

inertia and ω denotes the angular velocity that is, ω = q̇ .

In spite of the simplifications made for control analysis pur-

poses, this model is adopted in both the electrical-machines

and the control research communities –cf. [11].

We consider a three-phase electric motor that is, m = 3.

The control goal is to design a dynamic controller for (2)

whose output u = [u1 u2 u3]
⊤ depending on the stator

currents and rotor angular positions, such that ω(t) tracks

bounded smooth reference trajectories ω∗. We make the

standing assumption that τL and J are both unknown and

J ∈ [Jm, JM ] with known limits Jm and JM . Furthermore

ω̇∗ is assumed (piecewise) constant.

III. CONTROL STRATEGY

The control approach consists in applying two control

loops; an outer loop to stabilize the rotor dynamics via angu-

lar position measurement and an inner loop to stabilize the

stator dynamics using currents measurement. More precisely,

given desired reference ω∗ we design a desired control input

τd for the mechanical equation (2b), such that τ∗e = τd
implies that ω → ω∗. To that end, we define a reference

mechanical torque

τ∗e (q, x
∗) =

1

2

(

K1(q)x
∗
1

2 +K2(q)x
∗
2

2 +K3(q)x
∗
3

2
)

(4)

where x∗
j is a current reference trajectory for each phase and

which is defined as a solution to

τ∗e = τd (5)

for any given τd. That is, the stator control loop is to ensure

that x→ x∗ so that τe → τd and in turn, ω → ω∗. Next, we

explain in detail both controllers for the rotor and the stator

dynamics.

A. Control of rotor velocity

The complexity of the rotor dynamics equation resides in

the fact that it is non-affine in the (virtual control) inputs

x; such difficulty is overcome by using the torque-sharing

technique –see [7], explained farther below. For the time

being, let us consider that τe is a virtual control input to

(2b) then, (5) implies that

Jω̇ = τd − τL + τe − τ∗e (6)

For the purpose of designing the control law τd for (6) we

see the latter as a simple integrator of the unknown constant

τL and we consider τe − τ∗e as a vanishing perturbation.

The choice of proportional-integral-derivative control (PID)

comes naturally; furthermore, since ω is assumed to be

unmeasurable, we use the PI2D controller, introduced in [9]

for robot manipulators. It corresponds to a modified PID

controller in which the ‘derivative’ term is proportional to a

filtered velocity vector and double integral action, both on

eq and ϑ, is used. The fact that PID control is model-free is

particularly suitable in the context of parametric uncertainty.

The PI2D controller, for the rotor dynamics is defined by

τd = −kpeq − kdϑ+ ν + Ĵ ω̇∗ (7a)

ν̇ = −ki(eq − ϑ) (7b)

q̇c = −a(qc + beq) (7c)

ϑ = qc + beq (7d)

where kp, ki, kd, a, b are positive reals, Ĵ ∈ [Jm, JM ] is a

constant estimate of J and eq = q − q∗ with

q∗(t) =

∫ t

0

q∗(s)ds, q∗(0) = q∗0 ∈ [−π, π].

Note that τd is independent on ω. Since the variable to be

controlled is ω, the initial value of q∗0 is innocuous. It is

also important to remark that Ĵ ω̇∗ is (piecewise) constant by

assumption hence, its effect and that of the load torque τL
may be compensated for by integral action, as a matter of

fact ν converges (albeit slowly) to

ν∗ := τL − J̃ ω̇∗ (8)

where J̃ = Ĵ − J . The last two equations in (7) correspond

to the well-known and widely used ‘dirty derivatives’. The

nickname comes from the observation that it is equivalent to

ϑ =
b

s+ a
eω

where s is the Laplace variable. Note that ϑ is not a

converging estimate of the velocity eω that is ϑ 6→ eω , save

in the limit case when the pole is placed at −∞ and the

DC gain b/a = 1. Thus, using (7a) in (6), Ĵ = J̃ + J and

defining

z := ν + J̃ ω̇∗ −
ki

ε
eq − τL, k′p = kp −

ki

ε

we see that the mechanical equation becomes
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0
0







︸ ︷︷ ︸

B

uτ

(9)

where uτ := τe − τ∗e . Note that we can make the matrix A
Hurwitz by properly choosing the gains kp, ki, kd, a and

b without the knowledge of J . Consequently, the mapping

uτ 7→ y1 is input to state stable. Indeed, the Hurwitz property



is equivalent to the existence of P = P⊤ > 0 and γ1 > |PB|
such that Q = −(A⊤P + PA) is positive definite and

V1(y1) =
1

2
y⊤1 Py1 (10)

satisfies

V̇1(y1) =
1

2
y⊤1 (A

⊤P + PA)y1 + y⊤1 PBuτ

≤ −
1

2
y⊤1 Qy1 + γ1 |y1| |τe − τ∗e | . (11)

The control loop of the stator dynamics, explained next, is

responsible for making |τe − τ∗e | → 0.

B. Control of the stator dynamics

We stress that Equation (9) is equivalent to (2b) provided

that (5) holds for τd defined as in (7a); to ensure that

τ∗e (q, x
∗) = τd we need to solve the latter for x∗. To that end,

we employ the so-called torque sharing technique, introduced

in [7] and which leads to the definition of a reference current

trajectory x∗. According to (4) we have for each j ∈ {1, 2, 3}

x∗
j =

[
2τd

Kj(q)

]1/2

however, for x∗
j to be well-posed Kj(q) must be different

from zero and its sign must be the same as that of τd. To

ensure that this is the case, we exploit the physics of the

reluctance machine as in [12], [7] and introduce a current-

switching policy defined by commutation piecewise constant

functions q 7→ mj as follows. Let the sets

Θ+

j = {q ∈ [−π, π] : sj(q) ≥ 0}

Θ−
j = {q ∈ [−π, π] : sj(q) < 0}

and let mj be such that
∑3

j=1
mj(q) = 1,

mj(q) =

{
m+

j (q) if τd ≥ 0,

m−
j (q) if τd < 0.

where

m+

j (q) > 0 ∀q ∈ Θ+, m+

j (q) = 0 ∀q ∈ Θ−,

m−
j (q) > 0 ∀q ∈ Θ−, m−

j (q) = 0 ∀q ∈ Θ+.

Because the functions sj are sinusoids out of phase by 2π/3,

for each q and τd there always exists (at least) one j ∈
{1, 2, 3} such that

2τdmj(q)

Kj(q)
∈ (0,∞).

Furthermore, to smoothen the phase transitions one may use

smooth functions mj as opposed to piecewise constant and

we introduce hysteresis around the switching condition sj =
0 that is, let

x∗
j (σ) =







σ

[
τdmj(q)

sj(q)

]1/2

if |sj(q)| > δK

0 otherwise.

(12)

where δK is the hysteresis design parameter and

σ =

√
2

Nrℓ1
. (13)

Under these conditions, τ∗e (q, x
∗) = τd.

The rationale to solve the tracking control problem xj →
x∗
j builds upon the observation that under the action of the

tracking control law

u = L(q)ẋ∗ + ω∗K(q)x+Rx− kpxex, kpx > 0 (14)

where ex := x− x∗, the origin of the closed-loop equation

L(q)ėx + kpxex = −K(q)xeω, eω := ω − ω∗ (15)

is globally exponentially stable provided that eω ≡ 0. Indeed,

the system is reminiscent of a perturbed linear system with

stable drift; to see this, note that L(q) is positive definite

and bounded uniformly in q therefore, exponential stability

of the origin of

L(q)ėx = − [R+ kpx] ex

is equivalent to that of the origin of

ėx = − [R+ kpx] ex

which holds for any positive value of the control gain kpx.

Furthermore, the system may be rendered input to state stable

from the input eω provided that the gain kpx dominates over

the input “gain” function K(q)x; note that this is feasible as

q and x are measured states.

Although simple and appealing, the control law (14) is not

implementable since ẋ∗ depends on the unmeasured velocity.

Indeed,

ẋ∗
j =

{
σαjρj + σαjδjeω if |sj(q)| > δK

0 otherwise.
(16)

where α = diag {α1, α2, α3} is a diagonal matrix, ρ =
[ρ1 ρ2 ρ3]

⊤ and δ = [δ1 δ2 δ3]
⊤ are defined as

αj =
1

2

[
mjτd
sj

]−1/2

ρj =
1

sj

[

(kda+ ki)mjϑ− kimjeq +
∂mj

∂q
τdω

∗
]

−
Nrcj

s2j
τdω

∗

δj =
1

sj

[

−mj(kp + kdb) +
∂mj

∂q
τd

]

−
Nrcj

s2j
τd.

Notice that α, ρ and δ are functions of known parameters

and measurable variables. Since eω is not measurable, we

introduce the following control law which is reminiscent of

u defined in (14) except that we drop the term αδjeω in the

definition of ẋ∗ that is,

u = L(q)σαρ+ ω∗K(q)x+Rx∗ − kpxex, (17)

where ex := x − x∗. Note that, in view of (16), (17) is

equivalent to

u = L(q)ẋ∗+ω∗K(q)x+Rx∗−kpxex−σL(q)αδeω (18)

then, the closed-loop equation (2a) with (18) yields

L(q)ėx = − [R+ kpx] ex −
[

K(q)x+ σL(q)αδ
]

eω (19)

which is also reminiscent of a perturbed linear system with

stable drift; in this case, the input gain

g(t, x, ξ) :=
[

K(q(t))x+ σL(q(t))α(t, ξ)δ(t, ξ)
]



depends on known quantities and measured the states ξ :=

[eq ϑ z]⊤ and since L, K, mj ,
∂mj

∂q
and ω∗ are uniformly

bounded, there exists a non-decreasing function γ2 : R≥0 ×
R≥0 → R≥0 such that

|g(t, x, ξ)| ≤ γ2 (|ξ| , |x|) .

Therefore, it may be established that (19) is input-to-state

stable with respect to the input eω , for an appropriate choice

of the gain kpx dependent on γ2, hence on |ξ| and |x|.

IV. MAIN RESULTS

The developments in the previous section indicate that the

closed-loop system (9), (19) consists in the interconnection

of two input-to-state stable systems for which the feedback

gains may be adjusted to ensure global exponential stability.

The proof of this claim constitutes our first contribution.

Then, we show that in the case that all parameters are

unknown, a certainty-equivalence adaptive controller ensures

the convergence of the tracking errors to zero.

A. Robust control and system parameterization

Let C(q) := diag{cj(q)}, S(q) := diag{sj(q)} then,

L(q) = ℓ0I − ℓ1C(q) and K(q) = ℓ1NrS(q). With this

notation, the control law (17) may be written as

u = ℓ0σαρ− ℓ1C(q)σαρ+ ω∗ℓ1NrS(q)x+Rx∗ − kpxex

which is linear in the physical parameters ℓ0, ℓ1 and R
therefore,

u = Ψ(t, ξ)⊤Θ− kpxex, (20)

Ψ⊤ := [σαρ ω∗NrS(q)x− C(q)σαρ x∗] ,

Θ :=
[

ℓ0 ℓ1 R
]⊤

.

We stress that Ψ is a function of t and the measured closed-

loop states ξ; indeed, one should read q(t) and x(t) in place

of q and x while α, ρ and x∗ are functions of t and ξ.

Proposition 1 Consider the system (2) in closed loop with

the controller (20), –see also (12) and (7). Let a, b, kp, kd,

ki and ε > ki be positive real numbers such that A in (9) is

Hurwitz. Then, there exist a real number k′px > 0 and a non-

decreasing function k′′px : R3
≥0 → R≥0 such that defining

kpx = k′px + k′′px
(
|ξ| , |x| , |x∗|

)
, (21)

the origin of the closed-loop system
{

[y1, ex] = [0, 0]
}

is

uniformly globally exponentially stable.

Proof: The rotor dynamical equation is equivalent to

(6) for any τ∗e , for the purpose of proof let τ∗e = τ∗e (q, x
∗)

that is,

τ∗e :=
1

2

3∑

j=1

Kj(q)
∣
∣x̂∗

j

∣
∣
2

so (5) holds in view of the definition of x∗, this implies in

turn that (6) is equivalent to (9). Now, a direct computation

shows that,

|τe − τ∗e | ≤
kM

2

∣
∣e⊤x (x+ x∗)

∣
∣ . (22)

On the other hand, substituting u from (20) in (2a) we obtain

the closed-loop equation

L(q)ėx = − [R+ kpx] ex − g(t, x, ξ)eω. (23)

Next, let Q = Q1 + Q2 where Q1 is positive definite,

Q2 = Q⊤
2 ≥ 0 and there exists qm > 0 such that qm |y1|

2
≤

1

2
y⊤1 Q1y1 and y⊤1 Q2y1 ≥ ε1(b − 1)e2ω . Let the Hurwitz

assumption on A generate for such matrix Q, a positive

definite matrix P and reals pM ≥ pm > 0 such that V1

in (10) satisfies

pm |y1|
2
≤ V1(y1) ≤ pM |y1|

2

and the derivative of V1 satisfies (11). Then, from (11) and

(22) we obtain

V̇1(y1) ≤ −qm |y1|
2
+

kMγ1

2
|y1|

∣
∣e⊤x (x+ x∗)

∣
∣−ε1(b−1)e

2
ω.

Next, consider the function V2 : R≥0 × R
3 → R≥0 defined

by

V2(t, ex) =
1

2
e⊤x L(q(t))ex

which is positive definite and radially unbounded since

|L(q)| is uniformly bounded and positive definite actually,

in view of (3),

ℓm

2
|ex|

2
≤ V2(t, ex) ≤ ℓM |ex|

2
.

The total derivative of V2 along the trajectories of (23)

satisfies

V̇2(t, ex) ≤− e⊤x

[(
kpx − γ2

2λ1 −
kM

2
ω∗)I

−
λ3

2
e⊤x K(q)exK(q)

]

ex +
( 1

λ1

+
1

λ3

)
e2ω

for which we used
˙︷ ︷

L(q) = K(q)[eω + ω∗], e⊤x K(q)exeω ≤

(1/λ3)e
2
ω + λ3

[
e⊤x K(q)ex

]2
and e⊤x geω ≤ λ1γ

2
2 |ex|

2
+

(1/λ1)e
2
ω . Thus, the total derivative of the Lyapunov function

V3 := V1 + V2 along the closed-loop trajectories satisfies

V̇3 ≤ −
[

ε1(b− 1)−
( 1

λ1

+
1

λ3

)]

e2ω −
[

qm −
λ2kMγ1

2

]

|y1|
2

−
[

kpx − λ1γ
2
2 −

kM

2

(
ω∗ + λ3kM |ex|

2

+
γ1

λ2

|x+ x∗|
2
)]

|ex|
2

(24)

We see that for any given qm, ε1 and b there exist positive

numbers λ1, λ2, λ3 and c such that defining k′px > 0 and2

k′′px :=
kM

2

(
ω∗ + λ3kM |ex|

2
+

γ1

λ2

|x+ x∗|
2
)

+ λ1γ2(|ξ| , |x|)
2 (25)

we have

V̇3(t, y1, ex) ≤ −c
[

|y1|
2
+ |ex|

2
]

. (26)

The result follows.

2Notice that |x∗|2 = O(τd) hence, it is bounded by a non-decreasing
function of order O(|ξ|).



B. Control under full parametric uncertainty

In the previous section we assumed that the rotor inertia J
and the load-torque are unknown and we established uniform

global exponential stability of the origin. The latter includes

{[y1 ex] ∈ R
7 : eω = 0, ex = 0}. This implies that currents

follow exponentially any reference x∗ as defined in (12) and

the rotor angular velocity is stabilized at the desired reference

ω∗. Note that this holds regardless of the value of σ. Now

we relax the assumption that L and R are known that is,

we assume that the physical parameters R, ℓ0, ℓ1 and hence

σ(ℓ1), are also unknown.

Let us redefine the reference for the stator currents by

using the constant

σ̂ =

√

2

Nr ℓ̂1(0)

where ℓ̂1(0) denotes the best estimate available of ℓ1. That

is, we use the reference x̂∗ := x∗(σ̂) where x∗(·) is defined

in (12) and to avoid an over-parameterization, we choose to

estimate online only Θ := [ℓ0, ℓ1, R].

Proposition 2 Consider the system (2) in closed loop with

the certainty-equivalence controller

u = Ψ(t, ξ, êx)
⊤Θ̂− kpxêx, êx := x− x̂∗ (27)

and the adaptation law

˙̂
Θ = −kθΨ(t, ξ, êx)êx, kθ > 0 (28)

under the conditions of Proposition 1 with x̂∗ in place of x∗

in (21). Define Θ̃ := Θ̂−Θ. Then, the origin of the closed-

loop system,
{

[y1, êx, Θ̃] = [0, 0, 0]
}

is uniformly globally

stable and the tracking errors y1 and êx satisfy

lim
t→∞

|y1(t)| = 0 lim
t→∞

|êx(t)| = 0.

Proof: The closed-loop system is given by equations

(9), (23) with êx in place of ex. Consider the Lyapunov

function V : R≥0 × R
4 × R

3 × R
3 → R≥0 defined by

V (t, y1, êx, Θ̃) := V3(t, y1, êx) +
1

2kθ

∣
∣Θ̃

∣
∣
2

which is positive definite and radially unbounded under the

conditions of Proposition 1. Following the steps of proof of

Proposition 1, using

u = Ψ(t, ξ, êx)
⊤Θ− kpxêx +Ψ(t, ξ, êx)

⊤Θ̃,

and replacing x∗ in (24) and (25) with x̂∗, yields

V̇ (t, y1, êx, Θ̃) ≤ −c
[

|y1|
2
+ |êx|

2
]

≤ 0 (29)

in place of (26). Uniform global stability of the origin follows

by integrating V̇ ≤ 0 along the closed-loop trajectories. In

addition, by integrating the first inequality in (29) we see

that y1 ∈ L2, êx ∈ L2. Furthermore, uniform global stability

implies uniform global boundedness hence y1 ∈ L∞, êx ∈
L∞; in view of (3), a simple inspection at the closed-loop

equations shows that ẏ1 ∈ L∞ and ˙̂ex ∈ L∞. The result

follows, invoking Barbalăt’s lemma.

V. SIMULATION RESULTS

With aim at evaluating the controller of Proposition 2 we

have performed some numerical simulations in SIMULINK
TM

of MATLAB
TM, using the parameters presented in [10] R =

0.3 [Ω], ℓ0 = 24 [mH], ℓ1 = 19 [mH] and Nr = 25. The

control gains are a = 1500, b = 3200, kp = 1050, ki =
5 × 10−4, kd = 1000, k′px = 150, k′′px = 0 and kθ1 = 15.

We stress that for implementation purpose, we use a constant

value of kpx even though the sufficient condition for global

stability is that this gain depends on the measured states. The

reason to fix k′′px = 0 is to avoid high values in the input

voltages which bring the converters into saturation.

The experiment consist in imposing a smoothed step speed

reference defined by

ω∗(t) = ω∗
0 +

(

ω∗

f − ω∗

0

)

2

(
1 + tanh(t− T )

)
(30)

with the final desired velocity set on 190 [rad/s]. The load

torque is piecewise constant, for the first half of the simula-

tion time τL = 0.1 then, it is increased by 50% at t = 3.5s.

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

← m1(q)

K1(q)

← m2(q)

K2(q)

← m3(q)

K3(q)

0 pi 2pi 3pi 4pi 5pi 6pi
0

0.5

1
j=3
∑

j=1

mj(q)

Angular Position [rad]

Fig. 1. Graph of the commutation functions q 7→ mj

The commutation functions mj : [0, 2π) → R≥0 are

illustrated in Fig. 1 and are defined as follows. Let

f(x) = 10
x3

θ3m
− 15

x4

θ4m
+ 6

x5

θ5m

then, for j = 1, 2, 3 and q1 = mod(q0, π/4), q2 = mod(q0−
π/12, π/4), q3 = mod(q0 + π/12, π/4),

m+

j (θ) =







fj(qaj) 0 < qaj ≤
π

3Nr

1
π

3Nr

< qaj ≤
2π

3Nr

1− fj(qaj)
2π

3Nr

< qaj ≤
π

Nr

0 otherwise

(31)

m−
j (θ) =







fj(qaj)
π

Nr

< qaj ≤
4π

3Nr

1
4π

3Nr

< qaj ≤
5π

3Nr

1− fj(qaj)
5π

3Nr

< qaj ≤
2π

Nr

0 otherwise

(32)



The operator mod resets q i.e., qj = mod(β1, β2) is such that

qj(0) = β1 and qj is reset to the latter when qj(t) = β2.
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Fig. 3. Electric current around t = 3.5s when the load-torque increases.
The actual currents xj as well as the reference trajectories x̂∗ and the
commutation signals mj(q(t)) are showed to be in synchrony

In Fig. 2 is depicted the system’s response; note the perfect

tracking of the angular velocity and the good performance.

In Fig. 3 we show a zoomed window on the three stator

currents and their references. The commutations due to the

sharing torque approach may be clearly appreciated, as well

as the effect of the load torque increase at t = 3.5s, the

motor requires more electrical current in order to remain

at the required velocity set-point. The corresponding input

voltages are depicted in Fig. 4.

VI. CONCLUDING REMARKS

We presented an adaptive controller for the switched-

reluctance motor, considering both the stator and rotor dy-

namics. Our control approach exploits the physical properties

of the machine, relying on torque-sharing approach. Ongoing

research focuses on the sensorless control problem that is,

avoiding the use of position measurements.
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