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Aix-Marseille Université, CNRS, PIIM UMR 7345, F-13397 Marseille Cedex 20, France

Abstract

It is shown that the unified theory for Stark broadening leads to incorrect
results when correlated emitter-perturber collisions are present. With a kinetic
theory treatment, we propose an extension of the model able to account for such
correlations. The treatment presents analogies with renormalization techniques
and the resulting collision operator has a structure similar to that obtained
within the unified theory. We illustrate the applicability of the model through
calculations of hydrogen line shapes in ideal cases.
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1. Introduction

In plasma spectroscopy, it has been a long-standing challenge to accurately
describe Stark-broadened line shapes. Stark broadening arises when dealing
with spectral lines in high-density medium, for diagnostics or for opacity calcu-
lations [1], but also in moderately dense plasmas such as in magnetic fusion ex-
periments [2]. The problem consists in a correct description of the atomic dipole
autocorrelation function in the presence of the plasma microscopic electric field.
The so-called “standard model” consists in assuming the ions motionless during
the dipole correlation time and, at the same time, assuming the electrons mov-
ing rapidly. Their contribution is described through a non-Hermitian part in the
Hamiltonian, the collision operator. Ion dynamics effects have been extensively
investigated, using kinetic theory methods [3], numerical simulations [4, 5, 6, 7]
or ad hoc models such as the frequency fluctuation model [8]. On the other
hand, there have been several attempts in the past to retain static electron ef-
fect, i.e., incomplete collisions, in the collision operator. A first-principles-based
treatment is provided by the “unified theory” [9, 10]. This formalism relies on
a set of equations similar to those used in kinetic theory within the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy and uses an approximation
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of weak-coupling type for solving them, based on the assumption that strong
collisions are rare events. This assumption amounts to considering the dimen-
sionless parameter g = Nb3W (with N , bW being the density of perturbers and
the Weisskopf radius, respectively) small compared to unity. Recent modeling
efforts have been undertaken by our group to analyze the limits of applicability
of this model [11]. Here, we report on the current status of this work. It is
shown that the unified theory can lead to incorrect results (in particular with
unphysical dips at the line center) even for rare strong collisions. This discrep-
ancy occurs when correlations between the collisions are present. By applying
a resummation procedure to the hierarchy equations, we propose an extension
of the unified theory able to account for such correlations. Section 2 gives an
overview of the unified theory and Sec. 3 addresses the description of corre-
lated collisions. Calculations of hydrogen spectral profiles, with comparisons to
numerical simulations, are presented in Sec. 4.

2. Unified theory

We give here a brief overview of the BBGKY approach applied to the line
broadening problem, following the early works reported on in Refs. [9, 12, 13].
An atom immersed in a set of N charged particles is considered. For simplicity,
we assume one-component plasma and we consider the particles evolving along
straight lines and generating a Debye electric field. A generalization accounting
for correlations between the perturbers in a rigorous way can be developed
following [12]. A Stark line shape I(ω) is written as

I(ω) =
1

π
Re

∑
ε

⟨⟨d · ε|Φ̃0(−iω)|ρd · ε⟩⟩. (1)

Here, the double ket notation for Liouville space |...⟩⟩ has been used, ρ is the
atomic density operator, d·ε is the dipole projected onto the polarization vector
ε, and Φ̃0(−iω) =

∫ +∞
0

dteiωtΦ0(t) is the Laplace transform of the evolution
operator averaged over the perturber trajectories assuming classical paths. The
latter is obtained from the following definitions with p = 1...N

Φp(1...p; t) =

∫
d(p+ 1)...dN fN (1...N )U(1...N ; t), (2)

Φ0(t) =

∫
d1...dN fN (1...N )U(1...N ; t). (3)

Here, 1...N stand for the phase space coordinates (r1,v1...rN ,vN ) of the per-
turbers, d1...dN are the corresponding volume elements, fN is the N -particle
phase space distribution, and U is the atomic evolution operator. It obeys the
Liouville equation ∂

∂t
+ iL0 +

N∑
j=1

[
vj ·

∂

∂rj
+ iV (j)

]U = 0, (4)
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with the initial condition U(t = 0) = 1. All the quantities present in Eq.
(4) are operators acting in the atomic Liouville space formed by the dyadics
|ab⟩⟩ ≡ |a⟩|b⟩. The term L0 is the Liouvillian accounting for the atomic energy
level structure and V (j) = V (rj) = −d ·E(rj) denotes the Stark term resulting
from the electric field due to the j-th perturber.

Equation (2) provides generalizations of the reduced phase space distribu-
tions, which account for the presence of the atom. It is customary to introduce
a cluster expansion (t is not written explicitly)

Φ1(1) = f1(1)Φ0 + Γ1(1)
Φ2(1, 2) = f2(1, 2)Φ0 + f1(1)Γ1(2) + f1(2)Γ1(1) + Γ2(1, 2)
Φ3(1, 2, 3) = f3(1, 2, 3)Φ0 + f2(1, 2)Γ1(3) + f2(1, 3)Γ1(2) + f2(2, 3)Γ1(1)

+f1(1)Γ2(2, 3) + f1(2)Γ2(1, 3) + f1(3)Γ2(1, 2) + Γ3(1, 2, 3)
...

(5)
The Γs denote generalized correlation functions. They obey a hierarchy of equa-
tions ∂

∂t
+ iL0 +

p∑
j=1

[
vj ·

∂

∂rj
+ iV (j)

]Γp(1...p)

= −i

p∑
j=1

f1(j)V (j)Γp−1(1...j − 1, j + 1...p)− iN
∫

d(p+ 1)V (p+ 1)Γp+1(1...p+ 1),(6)

with the initial condition Γp(1...p; t = 0) = 0 for p ≥ 1. It has been as-
sumed that the phase space distributions are space independent and factorize
as fp(1...p) = f1(1)...f1(p). Also, the thermodynamic limit (N → ∞, V → ∞,
N/V = constant with V being the volume of the system) is assumed. In Eq.
(6), by convention Γ0 ≡ Φ0 and Γ−1 ≡ 0.

Originally, the unified theory was developed for applications in cases where
the collisions are uncorrelated. The treatment involves equations for Φ0 and Γ1

only, setting Γ2 ≡ 0:(
∂

∂t
+ iL0

)
Φ0 = −iN

∫
d1V (1)Γ1(1), (7)

and [
∂

∂t
+ iL0 + v1 ·

∂

∂r1
+ iV (1)

]
Γ1(1) = −if1(1)V (1)Φ0. (8)

Equation (8) can be solved formally by using the propagator of the atom under
the influence of one perturber, Q(1, t). It obeys the following equation[

∂

∂t
+ iL0 + iV (r1 + v1t)

]
Q(1, t) = 0, (9)

with the initial condition Q(1, t = 0) = 1, and it is proportional to a time-
ordered exponential (Dyson series)

Q(1, t) = e−iL0tT exp

[
−i

∫ t

0

dτeiL0τV (r1 + v1τ)e
−iL0τ

]
, (10)
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T being the time-ordering operator. The correlation Γ1 is obtained from a
convolution

Γ1(1; t) = −if1(1)

∫ t

0

dτQ(r1 − v1τ,v1, τ)V (r1 − v1τ)Φ0(t− τ). (11)

Inserting the solution Eq. (11) into the right-hand side of Eq. (7) provides a
closed, integro-differential equation for the averaged evolution operator Φ0(t).
Its solution takes a simple form in the Laplace space:

Φ̃0(s) = [s+ iL0 +K(s)]
−1

. (12)

Inserting this relation in Eq. (1) provides an analytical expression for the line
shape. Decomposing the double bra and kets onto an appropriate base of the
Liouville space indicates that the line shape can be written as a sum of general-
ized Lorentzian functions, whose widths are frequency-dependent and given by
matrix elements of K(s = −iω). The latter quantity is a collision operator that
accounts for incomplete collisions. It is completely determined in terms of the
propagator Q and the interaction term V :

K(s) = N
∫ ∞

0

dte−st

∫
d1V (r1 + v1t)Q(1, t)V (1)f1(1). (13)

3. Correlated collisions

The assumption Γ2 ≡ 0 considered in the unified theory is not valid in
regimes where correlated collisions are present. Such correlations occur if, during
the characteristic time for a binary collision which can be estimated as λD/v ∼
ω−1
p , where v is the perturbers’ thermal velocity, another perturber affects the

atomic wavefunction. Such a perturbation occurs on a time scale of the order of
the inverse matrix elements of the collision operator. A complete treatment of
correlated collisions involving the infinite hierarchy Eq. (6) seems out of reach.
In [11], we have proposed a simplification that uses the singular role of the
p+1-th particle in the p+1-correlation present in the integral term of Eq. (6).
The approach is inspired from diagrammatic techniques used in kinetic theory,
in particular the “ring approximation”, e.g., see Ref. [14]. For all p ≥ 1, it is
assumed that p-correlations are created or destroyed due to the p-th particle
only. This simplification amounts to the replacement of the sums involving V
in Eq. (6) by their last term. The development is complex and will not be
presented here; however, for details see Ref. [11]. The result is a nonlinear
equation for the collision operator. It involves a formula similar to the result of
the unified theory [Eq. (13)], with a modified propagator

K(s) = N
∫ ∞

0

dte−st

∫
d1V (r1 + v1t)Qeff(1, t)V (1)f1(1). (14)

The propagator obeys an integro-differential evolution equation[
∂

∂t
+ iL0 + iV (r1 + v1t)

]
Qeff(1, t) +

∫ t

0

dτM(τ)Qeff(1, t− τ) = 0, (15)
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with the initial condition Qeff(1, t = 0) = 1. It generalizes the time-dependent
Schrödinger Eq. (9), in the sense that correlations are retained. The memory
kernelM(t) is identical to the inverse Laplace transform of the collision operator.
Equation (15) is interpretable as describing the evolution of the atom under the
influence of one collision represented by the interaction term V , given a set
of collisions occurring in its past history. These collisions act accumulatively
and are taken into account by the kernel M(t). The absence of this term in
the unified theory [Eq. (9)] stems from the assumption Γ2 ≡ 0, which is valid
provided the characteristic evolution time for Qeff is much shorter than the
time between two collisions. In the case of a weakly correlated plasma, the
evolution time is of the order of λD/v, so that a validity criterion is provided
by the relation λDγ/v ≪ 1 where γ is a typical matrix element of the collision
operator, e.g. estimated as γ = Nb2W v ln(λD/bW ). This result indicates that
the present extension of the unified theory allows one to explore regimes where
correlated collisions are present. In terms of the dimensionless parameter h =
Nb2WλD ln(λD/bW ), such regimes correspond to values larger than ∼ 0.1 − 0.2
(see Fig. 1). In the Laplace domain, Eq. (15) involves a resonance broadening,
with denominators like s+ iL0 +K(s), where the presence of K(s) stems from
the memory kernel. This suggests that the substitution of Q by Qeff denotes a
renormalization of the atomic energy levels induced by the correlated collisions.
In practice, a calculation of the collision operator from Eq. (14) should be done
by iterations. A simplification, practical for numerical applications, is provided
by assuming K(s) ≃ K(−iω0) ≡ K0 with ω0 being the central frequency of
the line under consideration in all denominators present in the Laplace domain.
This amounts to setting M(t) ≡ K0δ(t) in Eq. (15), and it leads to a simple
expression for Qeff , with a structure similar to that in the binary case Eq. (10):

Qeff(1, t) = e(−iL0−K0)tT exp

[
−i

∫ t

0

dτeiL0τV (r1 + v1τ)e
−iL0τ

]
. (16)

4. Application to hydrogen lines

We have applied the collision operator formula Eq. (14) to calculations of
hydrogen line shapes in ideal cases. The effective propagator has been estimated
from Eq. (16). Figure 2 presents a plot of the Lyman-α line broadened due to
ions at N = 3×1017 cm−3, T = 10 eV, obtained using the unified theory (binary
approximation) and compared to that obtained within the renormalized model.
This case corresponds to h = 1 and g = 0.1. A numerical result from an ab initio
simulation code [5] is also shown in the figure. The technique assumes particles
moving along straight lines, in agreement with the quasi-particle model used in
the collision operator model. As can be seen, the binary model overestimates
the width and predicts a different shape structure, with a dip at the center.
This dip is a consequence of the inadequacy of the binary model. Correlated
collisions are important in the central region because they govern the average
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Figure 1: An illustration of the conditions where correlated collisions are present, here for
hydrogen Lyman α in moderately dense plasmas, with ionic perturbers. The boundary is set
at h = 0.2. Also shown in the figure is the region such that simultaneous strong collisions
are present, which is characterized by significant values of the g parameter (see introduction).
The theory is not applicable for such conditions.
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atomic evolution operator at long times, hence, by virtue of the Laplace trans-
form, at small frequency detuning. The typical range for the dip corresponds
to frequencies smaller than the matrix elements of K. The renormalized model
gives a much better result, with no dip and with an overestimate of the width
no larger than 10%. The role of correlated collisions is strongly dependent on
the energy level structure of the emitter. For non-degenerate energy levels (iso-
lated lines), the Stark effect involves couplings between different energy levels,
which reduces the effective range of the interaction from λD to v/ω̄ (with ~ω̄
being the characteristic separation between the energy levels) [15, 16]. This
reduction mitigates the effect of correlated collisions. An analysis of the role of
the correlated collisions in terms of the dimensionless parameter h depends on
the component under consideration and is not straightforward in general. As an
example we have examined the role of correlated collisions on hydrogen Lyman
α in the presence of an external magnetic field, at N = 3 × 1015 cm−3, T = 1
eV, and assuming B = 5 T. Our calculations follow previous works performed
in the framework of magnetic fusion research [5, 2, 17]. The magnetic field
yields a splitting of the 2p level (spin is neglected), which results in a splitting
of the spectral line into three components (Lorentz triplet). The broadening
of the lateral components involves Stark coupling between energy levels suffi-
ciently separated so that v/ω̄ < λD (here ω̄ = eB/2me). On the other hand, the
broadening of the central component results from the 2p0-2s coupling and is not
affected by the degeneracy removal. Figure 3 shows the result of the calculation,
for observation perpendicular to the magnetic field. The difference between the
unified theory and the renormalized model on the lateral components is not as
large as that on the central component.

5. Conclusion

We have shown that the unified theory can lead to incorrect results, with
unphysical dips at the line center, if it is applied in regimes where correlated
collisions are present. By applying a kinetic theory-based treatment, we have
proposed an extension of the model able to account for such correlations. The
resulting collision operator has a structure similar to that obtained within the
unified theory. The main difference is the presence of a non-Hermitian part in
the atomic Hamiltonian accounting for the correlated collisions. Applications
to hydrogen lines in ideal cases, assuming neutral emitters and ion broadening,
have indicated a good agreement between the model and numerical simulations.
The method presented in this work provides an important correction to the
usual models based on collision operators. It is applicable either to ions or to
electrons. The structure of the new collision operator is convenient for physical
interpretation and suitable for numerical calculations, in particular for an im-
plementation in line shape codes that use a binary collision operator, e.g., see
Refs. [18, 19, 8]. The recent Workshop on Spectral Line Shapes in Plasmas [20]
provides a motivation to proceed with further investigations from the theoreti-
cal point of view, in order to create fast routines for the evaluation of spectra.
Specific topics include ion dynamics, atomic structure, Zeeman effect, but also
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Figure 2: Profile of Ly-α at N = 3 × 1015 cm−3, T = 1 eV. This case corresponds to a
regime where correlated collisions are present. The binary model overestimates the width and
predicts a different shape, with a dip at the center. The renormalized model gives a much
better result, with no dip and with an overestimate no larger than 10%.
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Figure 3: Profile of Ly-α in the presence of an external magnetic field. The spectral line is
split due to the Zeeman effect. The lateral components are not much affected by correlated
collisions because the broadening involves Stark coupling between non-degenerate levels. Here,
the result h = 0.3 concerns the central component.

9

ha
l-0

08
30

43
1,

 v
er

si
on

 1
 - 

5 
Ju

n 
20

13



more advanced concepts such as penetrating collisions or perturber-perturber
correlation effects. Moreover, further work could address the description of
two-photon processes and the corresponding redistribution functions [21].
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