
GPUburn: A System to Test and Mitigate GPU
Hardware Failures

David Defour
Université de Perpignan Via Domitia,

Laboratoire DALI - 54 avenue Paul Alduy
64000 Perpignan- France
david.defour@univ-perp.fr

Eric Petit
Université de Versailles Saint-Quentin,

Laboratoire PRISM - 45 avenue des Etats-Unis
78035 Versailles - France

eric.petit@uvsq.fr

Abstract—Due to many factors such as, high transistor density,
high frequency, and low voltage, today’s processors are more
than ever subject to hardware failures. These errors have various
impacts depending on the location of the error and the type of
processor. Because of the hierarchical structure of the compute
units and work scheduling, the hardware failure on GPUs
affect only part of the application. In this paper we present
a new methodology to characterize the hardware failures of
Nvidia GPUs based on a software micro-benchmarking platform
implemented in OpenCL. We also present which hardware part
of TESLA architecture is more sensitive to intermittent errors,
which usually appears when the processor is aging. We obtained
these results by accelerating the aging process by running
the processors at high temperature. We show that on GPUs,
intermittent errors impact is limited to a localized architecture
tile. Finally, we propose a methodology to detect, record location
of defective units in order to avoid them to ensure the program
correctness on such architectures, improving the GPU fault-
tolerance capability and lifespan.

I. INTRODUCTION

Hardware failure in computing processors is a known
fact [1], [2], [3]. Massively parallel hardware co-processors
such as GPU or Xeon Phi (MIC) suffer from the same prob-
lem [4]. Different factors such as low voltage, high frequency,
thin engraving technology, numerous and dense transistors
can significantly increase the hardware failure rate [5], [6],
[7]. Using simpler cores with lower frequency and smaller
standard-cell architectures, many-cores such as GPUs have a
higher transistor density than current CPUs. For instance, with
a die size of 550 mm2 and 7.1 billion transistors, the Kepler
GPU has 12.1 M transistor / mm2 while the SandyBridge E
CPU has a die size of 435 mm2 and 2.27 Billion transistors
that is equal to only 5 M transistor / mm2. This corresponds to
a ratio of nearly 2.5 between CPU and GPU. Hardware failures
can be classified in three main categories [6]:

• Permanent errors are caused by the manufacturing
process or a permanent damage due to aging.

• Transient errors are discrete and non-reproducible.
They result from external factors such as radiation or
interference.

• Intermittent errors are temporary but reproducible
within the same context. They result from aging or
a local variation of the quality of the manufacturing
process.

As transient errors depend on external factors, they are
not considered in this work. We focus on permanent and
intermittent errors. Even if these problems are common to all
processors, our intuition is that the impact on the GPU co-
processor will be different due to a large number of indepen-
dent cores. When an error occurs it can be accurately localized
and the contamination can be limited to the faulty independent
core unit. When using a GPU for computer graphics, errors
usually have minor visual impact which limits the need to
handle them. When it comes to scientific computing, especially
High Performance Computing, one must ensure the results are
reliable and stable in time [8], [9].

Some research works have already investigated the hard-
ware error arising in the memory of GPU systems [8]. To
limit the impact of such errors on memory hierarchy, Nvidia
introduced Error-Correcting Code, ECC, up to the register files
for Fermi and Kepler architecture. However this technology
does not provide total resiliency and the error rate remains
significantly high for large scale systems [10]. In order to
improve the fault tolerance of the GPU based system, it is
necessary to address all possible sources of error. To our
knowledge, no previous study demonstrated and characterized
the hardware failure impact on GPU computation.

To study the intermittent and permanent hardware fail-
ures on different GPUs, we design and implement a micro-
benchmark platform in OpenCL [11], a portable high-level
language. Our benchmarks platform helps the user to detect
and localize the intermittent and permanent hardware errors
on GPUs. Using the error location, it is possible to modify
the hardware, the driver, or the user code to schedule useful
work exclusively on trusted parts and avoid the defective ones.
To validate the hypothesis of the error self-containement to a
particular tile in the GPU hardware hierarchy, we design a
hardware apparatus to accelerate aging of the GPU chip [2]
while executing our benchmarks. We modify the cooling
system of the target architecture and enclose the GPU card
in a thermal chamber. The result is an accurate control of
temperature increase to accelerate the GPU aging.

Section II of this paper presents the background, and
related works on hardware failures, testing protocols, existing
benchmarks for the GPU, and previous studies on runtime error
detection on the GPU. Section III describes the targeted GPU
used for this study. Section IV presents the benchmark plat-
form for GPU self-testing. Section V presents the experiments
and results for error characterization. In section VI, we propose

ha
l-0

08
27

58
8,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3

http://hal.archives-ouvertes.fr/hal-00827588
http://hal.archives-ouvertes.fr


a new methodology to test production GPUs and quarantine the
defective hardware. Finally, we discuss the current limitation
of our methodology to test and improve the fault tolerance of
the GPU.

II. STATE OF THE ART

A. Source of Hardware Failure

The earliest source of error is the manufacturing process.
Some engraving or conception errors can occur. Moreover
the engraving process quality may vary inside a single chip.
Processors can be locally more sensitive to the voltage and
frequency variation which impacts transistors charge and
switching delay [6]. Testing the integral circuit is intractable on
such a big chip[12], [13]. Thus some failures remain uncovered
by factory tests. They are progressively appearing to end-
users [14], [15].

A statistical study based on the data from the Fold-
ing@home project [8] shows that two thirds of the GPU cards
are producing detectable errors. About 2% produce errors with
a probability higher than 10−4. However, this rate becomes
negligible when it comes to the Nvidia TESLA series.

The out-of-core memory bus on GPU works at a rel-
atively high frequency and very high data rates. It makes
them more sensitive to the interference caused by radiation
or voltage instability [16]. The solution proposed by Nvidia
for its TESLA GPGPU cards is to use lower frequency and
to introduce ECC. Despite the positive impact on the error
rate, the penalty on the memory bandwidth is significantly
high, nearly 25% of the total bandwidth on a TESLA 2050
or 2070. Since the GPU performance is very dependent on
the memory bandwidth, the execution time vary with the same
order of magnitude. Therefore this functionality is deactivated
on many systems and can be replaced by on-line self-testing
and redundancy [17], [18].

In the recent years, the voltage has decreased slower
than the transistors shrink. The result is an acceleration of
processors aging [6], [19] due to electromigration. It consists
of the migration of constituent materials of the circuit. With
a transistor size getting close to a few atoms, the circuits are
getting more and more sensitive to this phenomenon.

B. Standard Protocols for Hardware Error Detection

In the industry, the test protocols for Integrated Circuit (IC),
the results classification, and the unit system are defined by the
Joint Electron Device Engineering Council, JEDEC. The test
protocols can be accelerated by changing physical parameters
such as voltage or temperature [1], [2], [3].

The standardization permits the constructor to provide
comparable data sheets to help the architect engineer to ac-
curately choose the system components. For instance, Xilinx
summarizes in [20] the test results for some FPGA compo-
nents.

JEDEC defines temperature as a good parameter to accel-
erate IC aging [2]. For the intermittent errors we target in
our study, the target temperature for the stress-tests is between
120◦C and 160◦C.

C. Related Work on GPU

1) GPGPU benchmarking: Even if GPGPU is a relatively
recent domain for HPC, there are some benchmark suites such
as RODINIA [21], SHOC [22], or PARBOIL [23]. These
benchmarks are built around compute intensive kernels of
applications. They are useful to measure or compare the
performance of a system or the efficiency of an optimization.
However they do not feature error detection and characteriza-
tion mechanisms. Indeed in these benchmarks, an intermittent
error can remain silent on the final result.

Some synthetic micro-benchmarks target precise architec-
tural units [24]. However these computations have generally
no particular meaning and therefore cannot integrate any error
checking. Furthermore we haven’t found any of them written in
OpenCL which is not compliant with our portability objective.

GPU simulators like barra [25] cannot characterize hard-
ware failures because it requires the real hardware. However
they can be useful to evaluate the coverage and cost of new
error detection and correction mechanism. Another usage of
the simulator can be found in GPGPU-SODA [26]. This is
a model based soft-error vulnerabiliity characterization for
GPGPU architecture. The objective is to determine with part
of the architecture are susceptible to soft-error in function of
the workload characteristic. This analytic approach has not
been validated by experimental data and the approach is not
providing any solution to enhance the GPU reliability.

2) Detection and correction of hardware failure on GPU:
The study of Haque et al. [8] of the Folding@home statistics
does not characterize the error location, context, and frequency
precisely. However it shows that errors can happen not only in
memory but also potentially in the GPU processor chip. To our
knowledge, there are no available studies targeting intermittent
error on GPUs in desktop and HPC systems.

However, some previous works have already addressed the
computational errors on the GPU. There are two main ap-
proaches to deal with hardware failure: prevention or detection-
correction.

In order to prevent an error, it is possible to constrain
the GPU usage parameters: working temperature, frequency,
cooling devices, or maximum Thermal Design Power (TDP).
Nvidia is already using some of these levers as illustrated
by this two patents [27], [28]. They control temperature and
voltage to avoid failure and prevent aging phenomenon. The
test we present in section V-B shows the characteristics we
have measured for these mechanisms.

Another solution to leverage the reliability of the system
is the error detection and correction. The method can rely on
hardware or software mechanism. An example of hardware
mechanism can be found in Shaeffer et al. [29]. They are using
redundancy and comparator to detect errors and correct with a
majority vote. The hauberk tool [30] is a software method to
detect and correct errors based on duplication and checksum
on the code outside of the loops.

III. NVIDIA GPU ACCELERATOR DESCRIPTION

TESLA architecture is the first CUDA/OpenCL capable
architecture. These coprocessors, denoted devices in the fol-
lowing, are used as an on-demand support unit by the host

ha
l-0

08
27

58
8,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3



Table I. CUDA AND OPENCL TERMINOLOGY

CUDA OpenCL
Thread Work-item

Thread block Work-group
Grid dimension Local-work-size and global-work-size
Global memory Global memory

Constant memory Constant memory
Shared memory Local memory
Local memory Private memory

system. We should differentiate the hardware and software or-
ganization of threads. Indeed, it is Nvidia driver and hardware
responsibility to group and schedule the user threads onto the
GPU.

In this section we present the GPU programing models
followed by the GPU architecture.

A. GPU programing model

There are currently two main alternatives to program
Nvidia GPU devices: CUDA and OpenCL. In order to ease
the description of TESLA architecture, we use CUDA termi-
nology. However, Table I shows the correspondence between
the terminology of both languages.

From the programmer’s point of view, the thread hierarchy
is divided in three levels: threads, blocks and grid. The
same device code is executed by many thread operating
in parallel on different data. Threads are packed in sets of
block_size threads to form a so called blocks. Threads
can be synchronized if they belong to the same block.
Threads of a block and blocks of a grid are virtually
launched in parallel. This means that no assumption can be
done on their execution order. The grid is defined by its
dimension in a number of blocks. A block is identified by
its unique coordinate in the grid, and a thread by its
coordinate in the block. Therefore, the programmer can use
these identification numbers to specify the work done by each
thread in each block.

The host controls the execution steps: create an execution
context associated to the target device, allocate memory on the
device, initiate the transfer of the input dataset, call the kernel
on the device, and transfer the result to the host. When calling
the kernel, the host fixes the grid and block dimensions. They
have to be chosen carefully by the user to be valid and efficient
on the target.

B. The TESLA Architecture

Graphic processors have throughput oriented design ex-
ploiting data-parallelism. They integrate a large number of
computing units working as a vector processor, i.e. all units
are executing the Same Instruction at the same time but on
Multiple Data (SIMD). GPUs keep thousands of threads to
hide long-latency operations, such as memory references, with
parallel concurrency. Figure 1 describes such a device.

TESLA GPUs have up to 128 processing cores called
streaming processors (SP), supporting single precision floating
point operations, organized in a hierarchical manner. There
are organized in 16 multiprocessors of 8 SP each. The thread
hierarchy contains 4 levels, threads, warps, cooperative thread

Multiprocessor n

Multiprocessor 2

GPU
memory

(global
memory)

Multiprocessor 1

Hardware Software

Vector register fileShared
Memory

SP SP SP SP

SP SP SP SP

SFU

SFU

Instruction Unit Block 
Scheduler

Grid
Kernel

Block 1

Warp 1
Instruction

Warp 2
Instruction

Warp k
Instruction

Block 2 Block n...

...

Vector register file
VR iVR 1VR 0

R0

R1

R15

...

R16

R17

R31

...

...

0 1 32...
Threads

Figure 1. Description of the G80 architecture

array (CTA), and grids. CTAs in TESLA architecture corre-
spond to blocks in CUDA. The additional level in TESLA,
called warps, is transparent to the programmer. A warp is a
group of 32 threads created, managed, scheduled, and executed
by a Single-Instruction Multiple-Thread (SIMT) unit. Up to
24 warps (groups of 32 threads) are active per Multiprocessor.
The multiprocessor maintains a scoreboard for each warp to
prioritize ready warps, according to warp type, instruction type,
and fairness. SM maps one warp of 32 threads on 8 SPs. It
executes 16 threads (half-warp) every two cycles.

There are several memory devices. For instance the G80
has register banks, a shared memory and a read-only texture
cache. Multiprocessor features many different computing units
such as fused multiplication and addition (FMA), intrinsic
functions (cos,sin, exp, log, sort), interpolation unit, texturing
and filter units. These units address integer and floating point.

IV. THE GPU SELF-TESTING BENCHMARKS

In this section, we describe the proposed software infras-
tructure based on self-testing. The software stresses specific
architectural elements of the accelerator, and detects and
stores the errors occurring during the execution. The goal is
to characterize the errors by type, frequency of occurrence,
location, and consequences. The self testing benchmark suite
is composed of a host part and a device part.

A. Host System

It is essential in our protocol to minimize the interference
between the device program and the control of the experiment.
To do so, we use the OpenCL philosophy and delegate the
control to the host code. The C++ code running on the host is
generic and can be reused in experiments on various platforms.
The host is in charge of:

• Selecting the target device in case of multiple possible
OpenCL target devices in the system.

• Allocating memory on the device and transfer the
initial input datasets.

• Defining each kernel scheduling parameters, such as
local work size and global work size.

• Selecting the pattern of micro-benchmark kernels to
execute in sequence.

• Iterating over kernels sequence and repeat.

• Controling the test duration.

• Controling the number of iterations.

ha
l-0

08
27

58
8,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3



• Performing some additional software controls of the
working temperature by modulating the charge of the
GPU.

The execution parameters are set such that on the targeted
devices, each software thread is associated with a unique
identifier corresponding to the physical ID of the processing
element executing it. The additional software control of tem-
perature calibrate a small latency between kernels call, to lower
the average load of the GPU and thus let the cooling system
evacuate enough calories. This last step is only useful when
the GPU is running at high temperature when for example the
aging process has to be accelerated. This was the case for our
test as described in the next section.

B. GPU Device

The benchmark is built from multiple micro-benchmarks.
Micro-benchmarks are compiled without any optimization, and
the generated assembly validity is checked with a disassembler.
Among the specific targeted architectural elements, we focus
on register banks (REGkernel), shared memory (SHMKernel)
and fused add-multiply (MADKernel). Each of these kernels
is built from a particular sequence of instructions in a loop.
The instructions and the input data are built such as single
error propagate up to the final result. This way, errors will
be detected be comparing results with the reference results
computed before kernel launch. We provide a generic OpenCL
template to build new micro-benchmarks. Each new kernel
must provide an input dataset, a reference result, and an
OpenCL kernel conforming to the signature template. The
output produced by kernel executions has to be deterministic.

Algorithm 1 presents the SHMKernel. The kernel loads and
stores in sequence different memory patterns from the shared
memory. If an error occurred, it appears in vecA with its
position. This code is not using the vecB reference result
since the result is the input vector itself. Even though the
framework is written in OpenCL with portability in mind, each
device micro-benchmark has to be architecture dependent to
take into account their internal specificities. In this work, each
proposed OpenCL micro-kernel targets a very specific part of
Nvidia architecture. We demonstrate our protocol for TESLA
architecture.

#define NBPATTERN 4
__constant uint pattern[NBPATTERN]={0xFFFFFFFF,

0xAAAAAAAA, 0x55555555,
0x00000000};

__kernel void ShMemKernel(
__global int * vecA,// Error vector
__global float * vecB,// Reference result
__global float * vecC,// Input Number
__global float * vecD,// Input Number
const uint nbiter)

{
uint gid = get_global_id(0);
uint lid = get_local_id(0);
uint lsize = get_local_size(0);
int i, j, k;
__local int localBuffer[SIZE_OF_SH_MEM];

vecA[gid] = 0;

for(i=0; i<nbiter; i++){
for(k=0; k < NBPATTERN; k++){

// 1: Write the value to the shared memory
for(j=lid; j<SIZE_OF_SH_MEM; j+=lsize)
localBuffer[j]=pattern[k];

// 2: Read the value from shared memory
for(j=lid; j<SIZE_OF_SH_MEM; j+=lsize){
if(localBuffer[j] != pattern[k])
vecA[gid] = j;

}
}

}
}

Listing 1. Shared memory micro-benchmark kernel

V. EXPERIMENTAL RESULTS

In this section we describe our experiments on GPUs
to analyze their behavior and reliability when used under
stress. We focus on intermittent errors due to the IC aging.
During 3 months we have tested different Nvidia graphic
GPUs from different generations (G80, G92, GT200, GF100,
GF114, GK104). We apply internal stress, using intensive
micro-benchmarks execution, and external stress using high
temperature.

A. Hardware set up

By using the hardware mechanism, we control the physical
properties of the experiment, such as the architectural set-up
and the chip temperature. The hardware configuration used
during the experiment is described in figure 2. The host
machine is an HP Z800 desktop with a Xeon E5645@2.
4GHz and 3x4GB of RAM. The CPU is connected to the
system with an Intel X58 and ICH10 controllers. The host
operating system is Ubuntu 12.04 with OpenCL 1.1, CUDA
4.2.1, and Nvida driver 295.41. We set the GPU in an external
TESLA D870 case connected to the system using a dedicated
Nforce100 bridge. This provides us a convenient way to tune
the case without interfering with the host system environment
(temperature).

For some tests, we needed to control the temperature
(ie. Tests of protection mechanism, acceleration of IC ag-
ing). Some of the targeted GPU cards use the ONSEMI
ADT7473 [31] chip to monitor temperature and control the
fan. For these cards, some of the parameters related to
the temperature can be modified by a BIOS update using
overclocking tools such as nvflash or nibitor. Unfortunately,
the modification cannot be applied to all GPUs. Even by
modifying the BIOS, the GPUs cannot reach the range of
160-170◦C without physical modification. Therefore, we build
a thermal chamber around the TESLA case and modified the
fan control. The temperature is monitored using internal probes
and an external P3400 thermocouple set as close as possible
to the GPU processor chip. The strength of such an approach
is the minimum intrusion of measurement on the device by
doing the monitoring on the host machine outside the thermal
chamber.

B. Frequency Scaling

Manufacturers embed some mechanisms to automatically
shut it down or scale down the frequency of the GPU when
a certain temperature threshold is reached [27]. In order to

ha
l-0

08
27

58
8,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3



Figure 2. Testing device description.

Table II. THERMAL PROTECTION MECHANISMS CHARACTERISTICS.

GPU : Manufacturer Fab. Throttling TSP
Process

(nm) (◦C: MHz) (◦C)
G80 : Nvidia C870 90 105/110 : 600/300/150/75 -

G92 : Nvidia 9800GX2 65 105/115 : 600/300/37 130
GT200 : Nvidia T10P 65 105 : 900/475 115

GF100 : Nvidia GTX480 40 100 : 700/350 110
GF114 : ASUS GTX560 40 100 : 810/405 105
GK104 : PNY GTX670 28 100 : 915/457 100

characterize these mechanisms, we tested the performance of
different graphic cards against temperature, without modifying
the original firmware. Table II summarizes the results. For each
card, we measure the temperatures triggering the frequency
scaling and the scaling factor. We run the test up to the Thermal
Shutdown Protection. Indeed, TSP cuts the power supply of the
card above a certain temperature threshold.

In addition, starting from GF11x, a software mechanism in
the driver can scale down the frequency for certain executable
(e.g. Furmark, OCCT) to prevent damage on GPU due to
overheating. Changing the name of the executable is enough to
overrun the protection. From GTX 570/580, a third mechanism
monitors the 12v rail for power and stability and scale the
frequency accordingly. It ensures a maximum TDP for the
GPU and limits the consumption if the system power supply
is overloaded.

Figure 3 represents the evolution in time of the temperature
for the MAD kernel execution in an infinite loop. The results
are obtained on C870 (G80) and 9800GX2 (G92) cards. These
graphics show different levels of performance. The C870 has
three levels for which the frequency is divided by two with
the previous level. Contrary to the TSP, our experiments show
that the frequency scaling is reversible. Indeed, when the
temperature is getting lower than the activation threshold, the
frequency scales back to the previous level. We can observe
that the temperature threshold which activate the TSP is getting
lower with each generation of graphic card up to the point
where it is equivalent to the temperature threshold of throttling.
This indicates that the manufacturer is seriously taking into
account the IC aging and reliability problem linked with high
temperature and prefers to shut down the circuit rather than
let it run under stress caused by temperature.

C. Reliability stress Test

We have seen in the previous section that only 9800GX2
and C870 can reach 130◦C. First we took two cards of each

10 20 30 40 50 60
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

MAD Kernel SHM Kernel REG Kernel

2
Multiprocessor 170°C 170°C150°C

Time 
(min.)

3 33 37

1-161-161-16 1-16

37 3 33 37 3 77 37 3

1-161-16
1-16

1-16 1-163 1-161-16

1 1 11

37

3

7 3 37

1
1

Figure 4. Error localisation in function of time and temperature on the GPU
C870 number 1. Single numbers indicate the faulty SP unit. Range numbers
such as 1-16 corresponds to a vector error.

generation and made them run at 130◦C with our micro-
benchmarks running without interruption during 3 weeks. We
do not observe any error.

For the two C870, we set the temperature to 160◦C. At this
temperature we had a maximum variation of +/-5◦C. These
tests ran for 15 days. After the eleventh day, one of the two
cards had a permanent failure, the card was unable to restart.
We can not determine if this failure was due to the GPU
itself or from a component present on the board. We then
took another C870 to continue the test. We then raised the
temperature to 170◦C and ran the test for 70 minutes. We
finally got intermittent errors. The type and distribution of
errors are reported in figure 4 and 5.
We can observe that none of the two cards presents error on
the register bank. Almost all the errors occurred in the MAD
kernel. These errors are of two types:

• Vectorial errors affect the results of a complete half-
warp (e.g. Results 1 to 16). This means that error
arises either at the half-warp instruction dispatch or at
the register level. Since the register micro-benchmark
shows no errors during all the test, we assume that
these errors occurred in the instruction exception
pipeline.

• Scalar errors imply only a single PE of a TPC. As
stated in the literature, these errors occurs in burst
mode, i.e. very close in time on a single PE.

While decreasing the temperature from 170◦C to 150◦C,
the intermittent error immediately disappear. At 170◦C they
reappear immediately. This is due to an irreversible circuit
aging phenomenon.

VI. PROPOSED METHODOLOGY TO QUARANTINE HW
ERRORS

We have seen in section V that we are able using the
proposed micro-benchmarks, to locate units that could return
a faulty result. As we have noticed, these errors are silent
and except the corrupted result, do not impact the rest of the
GPU as the execution continues. In addition, they are confined
to a specific area, involving either a single SP or a vector

ha
l-0

08
27

58
8,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3



(a) C870 (b) 9800GX2

Figure 3. Evolution of the cycle per iteration agains temperature.

10 20 30 40 50 60
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

MAD Kernel SHM Kernel REG Kernel

1-16 1-16 1-16

555

1-16

1

8

5551

1

1-16
1

Multiprocessor

5

5

5

1-16

5

551

3

5

1

170°C 170°C150°C

1-16

Time 
(min.)

Figure 5. Error localistion in function of time and temperature on the GPU
C870 number 2. Single numbers indicate the faulty SP unit. Range numbers
such as 1-16 corresponds to a vector error.

(entire SM) and appear sporadically potentially impacting
results return by such a GPU. Therefore, it is legitimate to
quarantine units that could return a faulty result. There are
two options to achieve quarantine, a hardware solution and a
software solution. The hardware solution is usually the one
adopted by the manufacturers during the factory process who
disconnect entire multiprocessor and sells them as model with
less compute unit. To our knowledge, there are no proposed
solutions that do the same job in software. In this section,
we show after describing the scheduling algorithm in use in
TESLA architecture, how we are able to quarantine hardware
errors in software at both SP and block level. By tuning the
scheduling with our methodology, the manufacturers can, after-
sales, make the GPU reliable again and prolongate the lifespan
of the faulty GPU.

A. TESLA Scheduling Algorithm

To ease the understanding of the link between the hardware
and the software, we use the CUDA terminology for the
execution parameter set in software. Without loss of generality
we only consider execution parameter in one dimension, even

though it is possible to set some of these parameters in higher
dimension where,

• GridDim is the number of block within the grid

• BlockDim is the number of thread per block

• BlockID.x is the block id x within the grid

• ThreadID.x is the thread id x within the block

In a similar manner, we define the following hardware
identifier for a given GPU:

• NumSM is the number of multiprocessor

• SM.x is the multiprocessor number x

• SP.x is the Streaming Processor number x

In this definition, we omit the Thread Processor Cluster
level, present in the TESLA architecture. It has been shown
in [32] that the scheduling of block regarding TPC and SM
is static and depends only of the graphic cards and/or driver
version. During our test, we noticed that when an error appears
for a given SP at the hardware level, it corresponds to the
same ThreadID.x and BlockID.x for an identical execution
parameter at software level. Out of this observation, we deduce
that block number bx is executed by the multiprocessor number
mpy such that:

mpy = bx mod NumSM

and within a given SM, thread number tz is executed by
SP number spw such that

spw = tz mod 8

where 8 corresponds to the number of SP per SM.

B. Impact of a corrupted unit

In section V-C, we have shown how to detect and locate
a faulty Streaming Processor of a multiprocessor. Let SP(i,j)

be the faulty SP number i (0 ≤ i ≤ 7) of the multiprocessor
number k (0 ≤ k ≤ 15).

ha
l-0

08
27

58
8,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3



We now have to determine which software threads can
be impacted by a hardware failure. Out of the scheduling
algorithm we know that within a SM, the faulty SP.i executes
every software thread ThreadID.x such that (ThreadID.x)
mod 8 == SP.i. Therefore, out of the BlockDim threads
launched on this multiprocessor, dBlockDim/8e can be po-
tentially corrupted.

In a similar fashion, based on the scheduling results pre-
sented in [32] and in this paper, we deduce that the faulty
SM.k will execute every BlockID.x such that (BlockID.x)
mod NumSM == BlockID.x.

C. Solutions to Quarantine Defective Hardware

To avoid faulty units, we propose to exploit a characteristic
of the data parallel programming of GPUs such as CUDA or
OpenCL. In this programming model, threads are independent
and no communication is allowed between two threads of two
different blocks. In addition, it is not possible to make any
assumption about the scheduling of software threads of a given
block as threads can be executed in any order. However, it
is possible to define synchronization barrier between threads
of a given block. We propose to avoid corrupted units using
this important property. There are two solutions, either making
correct SP do the job of corrupted SP and increasing ILP or
by launching extra threads and/or extra blocks. We propose to
detail the second solution which implies modifications of the
execution parameters of the kernel as well as the kernel itself.

Let call an instruction block, a block of instructions located
between two synchronization barriers. Let N be the original
number of Threads per block, and M the number of blocks
for the execution parameter of the kernel. For one faulty SP
indexed corr SP of the multiprocessor indexed corr SM ,
the modified kernel will be launched with the same number
M of blocks and N + dN/8e + dN/64e threads. One can
notice that this modification is working as long as the new
configuration still meets the requirement of the hardware (512
threads per block for TESLA architecture). Each instruction
block of listings 2 can automatically be translated into modified
instruction blocks as shown in listings 3. The modification
exploits the SIMT principle, where each thread can follow
its own execution path leading to divergent threads. However,
one can observe that divergence is contained. When a block is
executed on a normal SM, only the code from line 2 to 6 is
executed. In this case the overhead is limited to the test (line
2) and the management of the extra warps that are not doing
any work (line 4). When a block is executed on a SM having
a corrupted SP of index Corr SP (line 7 to 18), only correct
SP are doing work (line 9), and the extra launched threads
are used to make the others SP do the work that should have
been done by the corrupted one.

1 int idx = ThreadIdx.x;
2 Instruction_Block1(idx);
3 __syncthreads();
4 Instruction Block2(idx);
5 __syncthreads();
6 ...

Listing 2. Original instruction blocks of a given kernel

1 int idx;
2 if ((BlockID.x) mod numSM) != corr_SM){

3 // This is a trusted SM
4 if (ThreadIdx.x <N){
5 idx = ThreadIdx.x;
6 Instruction_Block1(idx);
7 } }else {
8 // This block is executed by a

SM having a corrupted SP
9 if (ThreadID.x mod 8 != corr_SP){

10 if (ThreadIdx.x < N){
11 idx = ThreadIdx.x;
12 Instruction_Block1(idx);
13 }else if (ThreadIdx.x <(N+N/8)){
14 idx = (ThreadIdx.x - N)*8 + Corr_SP;
15 Instruction_Block1(idx);
16 }else {
17 idx = (ThreadIdx.x - N - N/8)*8 + Corr_SP;
18 Instruction_Block1(idx);
19 }
20 }
21 }
22 __syncthreads();

Listing 3. Modified instruction block of a given kernel when there is one
faulty SP indexed corr SP in the multiprocessor indexed corr SM

The described mechanism works as long as no assumptions
are done on the thread scheduling as mentioned in CUDA
or OpenCL specifications. However, we noticed during our
tests, that this assumption is not always respected. Some
developers are using the fact that all the threads of the same
warp execute in one single step. For example, this is the
case for the last few steps of the reduction program provided
with the OpenCL/CUDA Nvidia sdk. A solution would be to
force developer to respect the philosophy of the data parallel
programing model and do not make such assumptions about
the hardware.

In a similar manner it is possible to alleviate the impact of
vector error. In this case, the entire multiprocessor were those
errors arise are unreliable and should be avoided. It is possible
to do so by launching extra M/NumSM blocks and using the
same test as described in listing 3, line 2 to avoid the faulty
multiprocessor.

VII. CONCLUSION

Current processors are more and more sensitive to hardware
failures and intermittent errors. One of the key factors of this
error is temperature. During our tests, we have observed that
GPUs also suffer from intermittent errors. It may explain why
manufacturers have lowered the threshold of thermal protection
mechanism at each generation over the past 6 years. However,
we believe that the internal structure of these processors makes
GPU behave differently when such errors arise. First, because
GPUs are made by duplicating many times compute units and
an error in one unit does not imply that the entire processor
is corrupted. Second, because these units are highly structured
and the programming model which addresses these processors
make it possible to quarantine faulty units.

In this article, we have seen three major contributions
improving the reliability of GPUs. The first one, is GPUB-
urn, a framework implemented in OpenCL made of several
micro-benchmarks. This framework addresses three different
hardware units of the TESLA architecture. GPUBurn can be
easily extended to other units and architectures. The second
contribution of this paper is to investigate which units of
TESLA architecture are the most sensitive to IC aging. This

ha
l-0

08
27

58
8,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3



is possible with a thermal chamber where GPUs are running
at high temperature. We observe that most of the errors were
concentrated on streaming processor or multiprocessor level.
The third contribution is a set of software modifications of the
execution kernel to quarantine faulty units at either streaming
processor or multiprocessor level when detected. Our final
result is a methodology to detect hardware errors, and mitigate
them by avoiding defective units. This ensure the program
correctness on GPU architectures, improving the processors
fault-tolerance capability and lifespan.

In this work we have observed GPU’s behaviour ragarding
IC aging due to high temperature. Comparing these errors with
errors when others parameters are modified such as voltage and
frequency remains to be done. As other future works, we plan
to measure the impact in terms of performance and reliability
of the proposed solution to avoid defective units with the help
of a simulator.

ACKNOWLEDGMENT

We thank the Itea2-H4H project for its support and funding.

REFERENCES

[1] JEDEC, “Foundry process qualification guidelines,” JEDEC technical
report, 2004.

[2] JEDEC, “Accelerated moisture resistance-unbiased autoclave,” JEDEC
technical report, 2008.

[3] JEDEC, “Stress-test-driven qualification of integrated circuits,” JEDEC
technical report, 2011.

[4] P. Rech, C. Aguiar, R. Ferreira, M. Silvestri, A. Griffoni, C. Frost, and
L. Carro, “Neutron-induced soft errors in graphic processing units,” in
Radiation Effects Data Workshop (REDW), 2012 IEEE, 2012, pp. 1–6.

[5] J. Guilhemsang, O. Héron, N. Ventroux, O. Goncalves, and A. Giulieri,
“Impact of the application activity on intermittent faults in embedded
systems,” in VTS. IEEE Computer Society, 2011, pp. 191–196.

[6] J. Guilhemsang, “Test en ligne pour la détection des fautes
intermittentes dans les architectures multiprocesseurs embarquées,”
THESE, Université de Nice Sophia-Antipolis, Apr. 2011. [Online].
Available: http://tel.archives-ouvertes.fr/tel-00640599

[7] O. Héron, J. Guilhemsang, N. Ventroux, and A. Giulieri, “Analysis of
on-line self-testing policies for real-time embedded multiprocessors in
dsm technologies,” in IOLTS. IEEE, 2010, pp. 49–55.

[8] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale
assessment of real-world error rates in gpgpu,” in Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, ser. CCGRID ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 691–696.

[9] X. Yang, X. Liao, W. Xu, J. Song, Q. Hu, J. Su, L. Xiao, K. Lu, Q. Dou,
J. Jiang, and C. Yang, “Th-1: China’s first petaflop supercomputer,”
Frontiers of Computer Science in China, vol. 4, pp. 445–455, 2010,
10.1007/s11704-010-0383-x.

[10] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram errors in the wild:
a large-scale field study,” Commun. ACM, vol. 54, no. 2, pp. 100–107,
2011.

[11] KHRONOS, “Opencl official website,” http://www.khronos.org/opencl/,
2012.

[12] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka,
C. Metzger, M. Molcho, G. Shurek, and Y. M. C. Metzger, “Test
program generation for functional verification of powerpc processors
in ibm,” 1995.

[13] I. Wagner and V. Bertacco, Post-Silicon and Runtime Verification for
Modern Processors. New York, USA: Springer, 2011.

[14] D. Koncaliev, “Intel fdiv bug,”
http://www.cs.earlham.edu/ dusko/cs63/fdiv.html, 1995.

[15] D. Koncaliev, “Intel fpu bug,” http://www.cs.earlham.edu/ dusko/cs63/fpu.html,
1997.

[16] B. Greskamp, S. R. Sarangi, and J. Torrellas, “Threshold voltage
variation effects on aging-related hard failure rates,” in ISCAS. IEEE,
2007, pp. 1261–1264.

[17] J. Kraus and M. Förster, “Facing the multicore-challenge ii,” R. Keller,
D. Kramer, and J.-P. Weiss, Eds. Berlin, Heidelberg: Springer-Verlag,
2012, ch. Efficient AMG on heterogeneous systems, pp. 133–146.

[18] J. Lobeiras, M. Amor, and R. Doallo, “Influence of memory access pat-
terns to small-scale fft performance,” The Journal of Supercomputing,
pp. 1–12, 10.1007/s11227-012-0807-5.

[19] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells
and platters: an empirical analysisof hardware failures on a million
consumer pcs,” in Proceedings of the sixth conference on Computer
systems, ser. EuroSys ’11. New York, NY, USA: ACM, 2011, pp.
343–356.

[20] XILINX, “Device reliability report (ug116),”
http://www.xilinx.com/support/documentation/user guides/ug116.pdf,
2010.

[21] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proceedings of the 2009 IEEE International Symposium
on Workload Characterization (IISWC), ser. IISWC ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 44–54.

[22] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heterogeneous
computing (shoc) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, ser.
GPGPU ’10. New York, NY, USA: ACM, 2010, pp. 63–74. [Online].
Available: http://doi.acm.org/10.1145/1735688.1735702

[23] J. Stratton, C. Rodrigues, I. Sung, N. Obeid, L. Chang, N. Anssari,
G. Liu, and W. Hwu, “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” Center for Reliable and High-
Performance Computing, 2012.

[24] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking,” in ISPASS. IEEE Computer Society, 2010.

[25] S. Collange, M. Daumas, D. Defour, and D. Parello, “Barra: A parallel
functional simulator for gpgpu,” in Proceedings of the 2010 IEEE Inter-
national Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, ser. MASCOTS ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 351–360.

[26] J. Tan, N. Goswami, T. Li, and X. Fu, “Analyzing soft-error vulnerabil-
ity on gpgpu microarchitecture,” in Workload Characterization (IISWC),
2011 IEEE International Symposium on, 2011, pp. 226–235.

[27] L. Mimberg, B. Wagner, and M. Lao, “Method and system for dynamic
power supply voltage adjustment for a semiconductor integrated circuit
device ,” Patent, no. 10/078,292, February 15 2002.

[28] C. W. Davies and B. M. Kelleher, “Apparatus, system, and method for
managing aging of an integrated circuit ,” Patent, no. 10/882,140, June
29 2004.

[29] J. W. Sheaffer, D. P. Luebke, and K. Skadron, “A hardware redundancy
and recovery mechanism for reliable scientific computation on graphics
processors,” in Proceedings of the 22nd ACM SIGGRAPH/EURO-
GRAPHICS symposium on Graphics hardware, ser. GH ’07. Aire-
la-Ville, Switzerland, Switzerland: Eurographics Association, 2007, pp.
55–64.

[30] K. S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, and R. Iyer,
“Hauberk: Lightweight silent data corruption error detector for gpgpu,”
in Proceedings of the 2011 IEEE International Parallel & Distributed
Processing Symposium, ser. IPDPS ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 287–300.

[31] ONSEMI, “dbcool remote thermal monitor and fan control,” ONSEMI,
http://www.onsemi.com/pub link/Collateral/ADT7473-D.PDF, Tech.
Rep., 2010.

[32] S. Collange, D. Defour, and A. Tisserand, “Power Consuption of GPUs
from a Software Perspective,” in ICCS 2009, ser. Lecture Notes in
Computer Science, vol. 5544. Springer, 2009, pp. 922–931. [Online].
Available: http://hal.archives-ouvertes.fr/hal-00348672/en/

ha
l-0

08
27

58
8,

 v
er

si
on

 1
 - 

29
 M

ay
 2

01
3


