inria-00344516, version 1
Interval Arithmetic Yields Efficient Dynamic Filters for Computational Geometry
Hervé Brönnimann a, 1Christoph Burnikel b, 2Sylvain Pion
1
14th Annual ACM Symposium on Computational Geometry (SCG) (1998) 165-174
Résumé : We discuss interval techniques for speeding up the exact evaluation of geometric predicates and describe an efficient implementation of interval arithmetic that is strongly influenced by the rounding modes of the widely used IEEE 754 standard. Using this approach we engineer an efficient floating point filter for the computation of the sign of a determinant that works for arbitrary dimensions. Furthermore we show how to use our interval techniques for exact linear optimization problems of low dimension as they arise in geometric computing. We validate our approach experimentally, comparing it with other static, dynamic and semi-static filters.
- a – Polytechnic University of New York
- b – Max-Planck-Institut
- 1 : PRISME (INRIA Sophia Antipolis)
- INRIA
- 2 : Max Planck Institut für Informatik (MPII)
- Max-Planck-Institut
- Domaine : Informatique/Géométrie algorithmique
Informatique/Arithmétique des ordinateurs
- inria-00344516, version 1
- http://hal.inria.fr/inria-00344516
- oai:hal.inria.fr:inria-00344516
- Contributeur : Sylvain Pion
- Soumis le : Vendredi 5 Décembre 2008, 02:53:16
- Dernière modification le : Dimanche 7 Décembre 2008, 21:06:03