inria-00329599, version 1
Spatio-temporal structure extraction and denoising of geophysical fluid image sequences using 3D curvelet transforms
Jianwei Ma a, 1Olivier Titaud b, 2Arthur Vidard
b, 2François-Xavier Le Dimet 2
N° RR-6683 (2008)
Résumé : Since several decades many satellites have been launched for the observation of the Earth for a better knowledge of the atmosphere and of the ocean. The sequences of images that such satellites provide show the evolution of some large scale structures such as vortices and fronts. It is obvious that the dynamic of these structures may have a strong predictive potential. Extracting these structures and tracking their evolution automatically is then essential for future forecast systems. In this paper we consider extraction of spatio-temporal geometric structures from image sequences of geophysical fluid flow using three-dimensional (3D) curvelet transform and total variation minimization. Numerical experiments on simulated geophysical fluids and real video data by remote sensing show good performances of the proposed method in terms of denoising and edge structural extraction. This work is partially motivated by a sequent application to image sequence assimilation of geophysical fluids.
- a – School of Aerospace
- b – INRIA
- 1 : Tsinghua University
- Tsinghua University
- 2 : MOISE (INRIA Grenoble Rhône-Alpes / LJK Laboratoire Jean Kuntzmann)
- CNRS : UMR5224 – INRIA – Laboratoire Jean Kuntzmann – Université Joseph Fourier - Grenoble I – Institut Polytechnique de Grenoble - Grenoble Institute of Technology
- Domaine : Mathématiques/Optimisation et contrôle
- Référence interne : RR-6683
- inria-00329599, version 1
- http://hal.inria.fr/inria-00329599
- oai:hal.inria.fr:inria-00329599
- Contributeur : Arthur Vidard
- Soumis le : Lundi 13 Octobre 2008, 10:19:38
- Dernière modification le : Mardi 28 Octobre 2008, 17:37:11