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Thermal di¤usion of high polymers in a continous medium is independent of the molecular weight
Mw. Accounting for the solvent molecular structure and the Brownian motion of the solute, we
derive an additional contribution of opposite sign which is signi�cant for short chains but vanishes
as Mw !1. Our �ndings explain the dependence on Mw observed recently for polystyrene, and its
inverse Soret e¤ect at very small Mw. Moreover, they bridge the gap between the macroscopic hy-
drodynamics description for large solutes and the enthalpy-of-transport picture for small molecules.

PACS numbers: 66.10.C-, 82.70.-y, 82.20.-w

Introduction. Di¤usion in dilute polymer solutions de-
pends strongly on the molecular weight [1]. The Brown-
ian motion of each monomer results in a �nite velocity of
the surrounding �uid. Summing these single-bead con-
tributions, one �nds that the polymer chain drags a �uid
volume of the size of its gyration radius R. Since the lat-
ter increases with the molecular weight, the Einstein co-
e¢ cient D � 1=R decreases as the chain becomes longer;
thus a polymer of 105 units di¤uses about thousand times
more slowly than a single mer.
Thermal di¤usion, on the contrary, is insensitive to a

variation of the molecular weight Mw. The drift velocity
of high polymers in a temperature gradient,

u = �DTrT; (1)

does not depend on the chain length. Experimental stud-
ies on polystyrene, polymethylmethacrylate, and poly-
isoprene in various organic solvents, found the transport
coe¢ cient DT to be constant in the rangeMw = 20:::600
kg/Mol [2�7], with typical values DT � 10�11 m2/sK.
Thus thermally driven transport is faster than di¤usion;
the large ratio DT =D makes a thermal gradient an e¢ -
cient trap in a microchannel with ambient �ow [8]. An
explanation for the molecular-weight independent coe¢ -
cient DT was given by Brochard and de Gennes [9]: In
contrast to the long-range �ow due to body forces like
gravity, the velocity �eld created by the thermal forces
decays rapidly with distance; as a consequence, hydrody-
namic interactions between di¤erent parts of the polymer
are negligible, and DT is independent of the chain length.
Recent experiments show, however, that the ther-

mophoretic mobility DT of short chains does depend on
the molecular weight; for polystyrene in toluene, a sig-
ni�cant variation with Mw occurs in the range below 10
kg/Mol, corresponding to less than hundred molecular
units [10]. Even more surprisingly, a very recent study
[11] reports inverse Soret motion (DT < 0) for e¤ec-
tive monomers in di¤erent solvents. Adding more styrene
units results in a change of sign to normal thermal dif-
fusion (DT > 0); then DT increases with the number of
units n and saturates at n � 100 [11].
Before treating thermally driven transport of poly-

mers, we brie�y recall the underlying principle. The sta-
tionary state of a non-equilibrium system corresponds to

a minimum of the entropy production rate � per unit
volume [12],

� = JQ �r
1

T
�
X
i

Ji �r
�i
T
; (2)

which is a bilinear form of the �uxes of heat JQ and
particles Ji, and the corresponding generalized forces;
the latter are given by the gradients of temperature and
the chemical potentials �i. Onsager�s �phenomenological
equations� establish linear relations between �uxes and
forces, yet do not provide an explicit scheme for calcu-
lating transport coe¢ cients like DT . This is achieved by
evaluating the thermally driven motion in terms of dif-
fusion models [13�17], molecular dynamics simulations
[18�21], or hydrodynamics.
Theoretical work on the Soret e¤ect of complex �uids

mainly dealt with viscous e¤ects in the framework of low-
Reynolds number hydrodynamics, where the solute veloc-
ity u1 is derived from Stokes�equation �r2v =rP � f ,
with the force density f(r) exerted by the solute on a unit
volume of the surrounding �uid of viscosity �, pressure
P , and velocity v. Ruckenstein thus obtained DT for
weakly charged particles [22]. Later on, this was formal-
ized and generalized to high valencies and non-uniform
electrolytes [23�27]. This hydrodynamic approach treats
the solvent as a continuous medium; it neglects both the
solvent molecular di¤usivity [28] and �uctuations [29].
In the present work we show that the solvent molec-

ular structure and the solute Brownian motion give rise
to a second contribution u2 of opposite sign. Since u2
depends on the size of the solute, the overall velocity

u = u1 + u2 (3)

and the transport coe¢ cient DT vary with Mw and may
take both signs. We consider a dilute solution of poly-
mers of n beads; their radius a is equal to that of a
solvent molecule. For the sake of simplicity, both are
described as �atoms� that interact through a van der
Waals attractive potential vps = �Cps=r6. Then the en-
ergy of a solute atom p in the solvent s of density c reads
�"p = �Cps

R
dV c=r6, and similarly �"s with Css for

the solvent. Since the parameters "i > 0 are much larger
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than the thermal energy, we may identify the chemical
potential per bead with the single-atom energy, �i = �"i.
The number density c of solvent molecules varies with
temperature according to

c = �c(1� � r �rT ); (4)

where �c is a reference value and � = �(1=�c)dc=dT the
thermal expansivity.
Di¤usion of a single bead. We brie�y discuss the case

of a single bead n = 1 in dilute solution. Balancing
the generalized forces and Stokes friction with coe¢ cient
6��a, and imposing zero net mass �ow Jp + Js = 0, we
have u = (T=6��a)r(�s=T ��p=T ); with the derivative
r�i = "i�rT this leads to

DT =

�
1

T
+ �

�
"p � "s
6��a

: (5)

When taking �(1+�T )"i as the enthalpy of transport hi,
we recover the standard thermodi¤usion model for solute
and solvent molecules of equal size [13�15]. Eq. (5) re-
lies on the crucial assumption that the response to the
generalized forces in (2) is given by a single friction coef-
�cient 6��a. Clearly, this ceases to be valid if solute and
solvent di¤er in molecular volume, since di¤usive motion
in general depends on size.
Polymer-solvent interactions. We evaluate the veloc-

ity contribution driven by solute-solvent forces, u1, from
Stokes�equation. Taking vps to be constant with respect
to temperature, we �nd the force on the solvent to be
proportional to the density gradient, f = vpsrc. Follow-
ing standard arguments [30] and neglecting a geometrical
factor of the order of unity, one obtains the transport ve-
locity

u1 = �
�"p
6��a

rT: (6)

In physical terms this means the solute particle migrates
to regions of higher solvent density, where its potential
energy is lower. Note that u1 corresponds to the term
proportional to �"p in (5) and to the force r�p in (2).
We emphasize that u1 is independent of the size of the

solute, as is well known for transport driven by forces
at sticky surfaces [30, 31]. When considering a large
sphere of radius an, consisting of n atoms, one has to
sum their interaction potentials, resulting in the modi-
�ed form vps = �nCps=(r2�a2n)3 [32]. Yet the transport
velocity u1 turns out to be independent of n and an, and
is entirely determined by the single-atom energy "p and
radius a.
For the present case of polymer thermophoresis, Eq.

(6) describes a monomer as well as a chain of n repeat
units [33]. This is easily understood in terms of the short-
ranged velocity �eld v(r) of the surrounding �uid; con-
trary to external forces that result in v � 1=r, the �ow
induced by surface forces decays with the third power of
the inverse distance, v � 1=r3 [34]. Thus hydrodynamic

FIG. 1: Schematic view of a random move x̂(t) of a solute
molecule (+), accompanied by an opposite solvent �ow (#).
The coherent current of both solute and solvent correspond
to the volume of a single bead. In a uniform system, the left
and right states occur with equal probability. A temperature
gradient gives rise to thermal forces that favor one of the
positions, thus resulting in a net solute velocity u2.

interactions between distant beads are weak, and Eq. (6)
is valid independently of the chain length.
Brownian motion. Now we turn to the second contri-

bution u2 to the transport velocity, which arises from the
Brownian motion of the solute and relies on the molecu-
lar structure of the solvent. The equation of motion of a
particle of mass M along the x-axis,

M@tû = ��û+ f̂ ; (7)

involves Stokes drag with the friction coe¢ cient � and a
random force f̂ ; the hat indicates �uctuating quantities.
The random force satis�es [35]D

f̂(t)f̂(t0)
E
= 2�kBT�(t� t0); (8)

and the formal integral of (7) reads

û(t) =
1

M

Z t

0

dt0e�(t�t
0)=� f̂(t0); (9)

with the relaxation time � =M=�. Integrating once more,
x̂(t) =

R t
0
dt0û(t0), and using (8), one readily �nds the

mean square displacement


x̂(t)2

�
= 2Dt, with the dif-

fusion coe¢ cient D = kBT=�. The �uctuating force van-
ishes in the average, and so does the mean velocity of the
Brownian particle hû(t)i = 0.
In a non-uniform system, however, the �uctuating

force may result in directed motion. As illustrated in
Fig. 1, a solute moving by a small distance x̂(t), creates
an opposite �ow in the surrounding �uid. According to
the generalized forces in (2), the molecules prefer regions
of lower temperature and lower chemical potential, re-
sulting in mean �uxes Ji.
This directed motion is quanti�ed in terms of the Fluc-

tuation theorem, which relates the work done on the sys-
tem to the free energy change [36], or alternatively, the
probability of forward and backward trajectories to their
entropy production [37]. In order to obtain a statistical
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weight for non-equilibrium states, it turns out convenient
to use the total entropy change kB , as expressed by the
dimensionless quantity

 (t) =
1

kB

Z t

0

dt00
Z
dV �(t00): (10)

As a consequence of the second law of thermodynam-
ics, a trajectory with positive  is more likely to occur
than the backward trajectory with � [37]; their prob-
ability distributions satisfy P+( )=P�(� ) = e . The
corresponding average results in the mean solute velocity

ûe 

�
. Linearizing in  and noting hûi = 0, one has

u2 = hû(t) (t)i : (11)

Inserting (9) and (10), we �nd that the velocity u2
is determined by the two-time correlation function
hf̂(t0)�(t00)i.
A perfectly rigid polymer in a homogeneous �uid,

would induce the solvent �ow
R
dV Ĵs = �nû, which is n

times larger than that of a monomer. Yet real polymers
are �exible, and the molecular structure of the solvent
results in retarded hydrodynamic interactions. As a con-
sequence, the solvent �ow Ĵs around a moving polymer is
to a large extent out of phase with respect to the random
force acting on a given bead.
In order to evaluate the correlation function in Eq.

(11), we write the random force as a sum of independent
one-atom contributions,

f̂(t) =
X
k

f̂k(t); (12)

and û =
P
k ûk, accordingly. As shown schematically in

Fig. 1, we assume that solvent motion correlated with
f̂k is limited to the direct vicinity of bead k; then the
coherent part of Ĵs corresponds to a single bead moving
at velocity �ûk. Thus we haveZ

dV
D
f̂k(t

0)Ĵp=s(t
00)
E
= �

D
f̂k(t

0)ûk(t
00)
E
; (13)

where the plus and minus signs corresponds to p and s,
respectively. Since the gradient of the solute chemical po-
tentialr�p is already accounted for in (6), the remaining
entropy production rate reads

� = �Ĵp�pr(1=T )� Ĵsr(�s=T ):

Inserting these relations in (11), summing over k, using
(8), and performing the time integrals for t� � , we �nd

u2 =
r�s
�

+
(�p � �s)

�

rT
T

: (14)

As in Eq. (6) above, we identify the single-bead chemi-
cal potential �i with the van der Waals attractive energy
�"i and the derivative r�s = �"srT . The friction co-
e¢ cient of a polymer reads � = ��R, where the gyration

FIG. 2: Reduced thermophoretic mobility as a function of
the chain length n. The points are calculated from Eq. (15)
with � = 0:6. The dashed lines indicate the maximum and
minimum values where D(max)

T = �"p=(6��a) and D
(min)
T =

D
(max)
T � �"s=(��`); the latter may be positive or negative,

depending on the relative magnitude of the two terms.

radius of long chains is given by the scaling law R = `n�

[1] and � is a numerical constant.
As an essential result of this paper, the two velocity

contributions of Eq. (3) di¤er with respect to the friction
coe¢ cient; the gradient of the solute chemical potential
gives rise to u1 = �r�p=(6��a) with the single-bead co-
e¢ cient 6��a, whereas u2 depends on �. Thus we obtain
the thermophoretic mobility of a polymer chain

DT =
�"p
6��a

� �"s + ("s � "p)=T
��R

: (15)

Putting �R = 6�a for a single bead (n = 1) one recov-
ers Eq. (5). Increasing the chain length leaves the �rst
term �"p=(6��a) unchanged, whereas the remainder is
reduced by the ratio a=R. For n ! 1 the second term
vanishes, i.e., thermal transport of high polymers is en-
tirely determined by the contribution from solute-solvent
interactions, �"p=(6��a). Thus Eq. (15) bridges the gap
between the thermodi¤usion model Eq. (5) and the re-
sult from macroscopic hydrodynamics Eq. (6).
With typical values for "p; "s; �, the coe¢ cientDT is an

increasing function of the number of beads; in the limit
n ! 1 it takes the positive value �"p=(6��a), whereas
for short chains both signs may occur, as shown in Fig.
2. We discuss these aspects in view of the experimental
�ndings on polystyrene (PS) reported in [10, 11]. Evalu-
ating the mobility of long chains DT = �"p=(6��a) with
the Berthelot relation "p �

p
ApAs, the Hamaker con-

stant Ap � 7�10�20 J of PS, the atomic size a � 0:3 nm,
and the parameters �, �, As gathered in Table I of Ref.
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[38], one �nds a quantitative agreement with experiment.
Both the absolute values and the dependencies on � and
� for eight di¤erent solvents are well described by (15).
An inverse Soret e¤ect is expected to occur for a sin-

gle bead if "p < "s. A negative DT has indeed been
observed for e¤ective monomers in the solvents cyclo-
hexane, cyclooctane, and tetrahydrofuran [11], whereas
in ethyl-acetate, toluene and methyl-ethyl-ketone, the co-
e¢ cient DT is strongly reduced but does not change its
sign. These experimental data suggest that the rela-
tive value of the second term in (15) depends on addi-
tional parameters such as polarity and the molecular size
and mass, which are not accounted for in the present
work. Moreover, a re�ned analysis would replace �"p
with �p"p, where �p is determined by the anharmonicity
of the solute-solvent potential.
Though derived here for polymers in organic solvents,

the molecular-weight dependence applies equally well to
aqueous solutions, and could indeed be relevant for exper-
imental �ndings on polyoxyethylene in water [6]. A very
complex behavior has been reported for charged proteins
in an electrolyte solution, where the sign of DT depends
on temperature and salinity [39].

Regarding the in�uence of the persistence length, sim-
ple rescaling `� = �` leads to the gyration radius R� =
�1��R. This a¤ects the second velocity contribution u2
only, whereas the �rst one u1 remains unchanged. Thus
for a sti¤ polymer (� > 1) the second term in Eq. (15)
is reduced, and DT is shifted to more positive values.
This enhancement agrees with molecular dynamics sim-
ulations [18] for � = 4:2 and 7:9, whereas the data for
� = 2:9 rather indicate an opposite tendency.

We conclude with a remark on whether dynamical as-
pects cancel in the ratio of thermal di¤usion and Ein-
stein coe¢ cients, that is, whether the Soret coe¢ cient
ST = DT =D can be obtained from static quantities.
As pointed out by de Groot in his doctoral thesis [40],
thermostatics does not account for the entropy �ow and
cannot provide a general description for the Soret e¤ect.
This is illustrated by Eq. (15); because of the di¤erent
friction coe¢ cients 6��a and ��R, the two terms cannot
be derived from a heat-of-transport picture.

I thank W. Köhler for stimulating discussions and for
communicating Ref. [11] prior to publication.
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