
Managing network congestion with a
Kohonen-based RED queue

Emmanuel Lochin
Université de Toulouse, DMIA

ISAE - France,
emmanuel.lochin@isae.fr

Bruno Talavera
Université Pierre et Marie Curie,

Polytech’Paris, France,
bruno.talavera@upmc.fr

Abstract— The behaviour of the TCP AIMD algorithm is
known to cause queue length oscillations when congestion oc-
curs at a router output link. Indeed, due to these queueing
variations, end-to-end applications experience large delay jitter.
Many studies have proposed efficient Active Queue Management
(AQM) mechanisms in order to reduce queue oscillations and
stabilize the queue length. These AQM are mostly improvements
of the Random Early Detection (RED) model. Unfortunately,
these enhancements do not react in a similar manner for various
network conditions and are strongly sensitive to their initial
setting parameters. Although this paper proposes a solution to
overcome the difficulties of setting these parameters by using a
Kohonen neural network model, another goal of this study is to
investigate whether cognitive intelligence could be placed in the
core network to solve such stability problem. In our context, we
use results from the neural network area to demonstrate that
our proposal, named Kohonen-RED (KRED), enables a stable
queue length without complex parameters setting and passive
measurements.

I. I NTRODUCTION

More than ten years ago, the Random Early Detection
(RED) was proposed to avoid congested links [5]. The main
idea of the RED algorithm is to drop packets before the queue
is full. As a consequence, when a TCP source gets such
preventive drops, it decreases the emitted throughput according
to the AIMD (Additive Increase Multiplicative Decrease)
algorithm. RED drops packets with an increasing probability
(maxp) when the occupancy of the queue lies between two
thresholds (minth, maxth). The goal of RED is to maintain
a small buffer occupancy and avoid casual bursts of packet
losses.

The authors in [10] and [11] weight up the disadvantages
for deploying such mechanism. In certain cases, increasing
the number of dropped packets can have unexpected effects
on the overall performance [11]. This has motivated the use
of preventive marking instead of preventive dropping with
the use of the Efficient Congestion Notification (ECN) flag.
In this case, instead of dropping packets, the RED queue
marks the packet’s ECN flag to notify senders that they are
crossing a congested link and that they should decrease their
sending rate. In [10], the authors claim that tuning parameters
in RED remains an inexact science. We fully acknowledge
the criticisms of this approach which motivate our proposalof
managing the RED configuration with a neural network.

Feng RED (FRED) [2] and Adaptive RED (ARED) [4]
introduced the notion of adaptive AQM. These adaptive strate-
gies recompute themaxp probability value following an
AIMD algorithm. However, the parameters that weight this
AIMD process remain difficult to estimate.

Some past work have already suggested that RED is funda-
mentally hard to tune [8]. In this study, the authors show that
RED parameters can be tuned to improve stability, but only
at the cost of large queues even when they are dynamically
adjusted. Even if other different queueing approaches have
been proposed to improve the efficiency of RED-like algo-
rithms in various network conditions, the parameters used to
set these new AQM are sometimes more complex to determine
than RED. In particular, this is the case for the PI controller
[6]. Nowadays, general parameters able to stabilize the queue
don’t yet exist whatever the AQM used and we could discuss
whether the problem is in fact solvable.

Although the validity of RED concept is still debated, we
claim that the parameters’ settings are one of the main barrier
to its acceptance. In this paper, we propose to compute the
optimal maxp value with a Kohonen neural network [7]. We
do not attempt to design another queueing mechanism or
propose to enhance the core mechanism itself. We only focus
on the optimal estimation of the probability parameter. This
paper aims at illustrating the impact of the role of learning
mechanisms on core network Internet problems with similar
motivation than the one presented in [1].

This paper is structured as follow. Section II presents the
motivation of this work. Section III gives pointers related
to the implementation of the core mechanism. Section IV
presents the training phase of the neural network. Then, section
V evaluates the proposal and finally section VI gives the
perspectives of this work.

II. M OTIVATION OF USING A KOHONEN NEURAL

NETWORK

Kohonen networks are a class of neural networks known
to solve the pole balancing problem [9]. Pole balancing is a
control benchmark historically used in mechanical engineer-
ing. It involves a pole placed on a cart via a joint allowing
movement along a single axis. The cart is able to move along
a track with a fixed length as represented in figure 1(a). The

ha
l-0

03
61

33
4,

 v
er

si
on

 1
 -

15
 F

eb
 2

00
9

Author manuscript, published in "IEEE ICC 2008 : IEEE International Conference on Communications , 19- 23 May 2008, Beijing,
China., Beijing : Chine (2008)"
 DOI : 10.1109/ICC.2008.1047

http://dx.doi.org/10.1109/ICC.2008.1047
http://hal.archives-ouvertes.fr/hal-00361334
http://hal.archives-ouvertes.fr

aim of the problem is to keep this pole balanced by applying
forces to the cart.

The main idea of our contribution is based on the analogy
existing between this balancing problem and the RED queue-
ing problem. In RED, we can compare the pole balancing to
the evolution of the queue occupancy which oscillates between
both thresholds (minth, maxth). The physical forces resulting
on the pole have a similar role to the packets arrival rate in
the queue. Figure 1 illustrates this view.

(a) Pole balancing

Input packets Output packets

Packetsmaxth minth

maxp

(b) Adaptive RED

Fig. 1. Analogy between the single pole balancing problem and RED AQM

Pole RED

input value[1] previous position previous
queue length

input value[2] new position current
queue length

output value[1] force to apply maxp

in Newton

TABLE I

INPUT AND OUTPUT VALUES USED

Self-configuring RED schemes such as FRED or ARED
update themaxp value as a function of the arrival rate in order
to stabilize the queue size between both thresholds,minth and
maxth. In [2], the authors explain the queue length variation
by the need of dynamically changingmaxp as function of the
queue occupancy. They propose to recompute this probability
following an AIMD algorithm. The update is done as function
of the average queue size. If the average queue size is around
maxth, the algorithm increasesmaxp to drop more packets
and decreasesmaxp if the value is aroundminth.

The AIMD algorithm performed by FRED is different from
ARED. Indeed, FRED updatesmaxp each time a packet is

enqueued while ARED has another parameter allowing to
update this value during a time interval. This action period
can smooth the effect of an aggressive setting of the AIMD
factors. Moreover, FRED does not apply consecutive decrease
or consecutive increase of themaxp value. This choice can
be problematic in case of rapid traffic change.

The neural network we use here is known as the Kohonen
Self Organizing Map (SOM) [7]. It consists in a one or two
dimensional information processing layer of functional entities
called neurons. It is connected to input data seen as input
vectors and provides output data also as vectors. We present
in table I the entries used to feed the neural network in both
cases and the resulting output. The input vector contains the
previous and the current queue length and the output vector the
maxp probability. For a sake of comparison, we give in this
table the vectors used with the pole balancing problem. The
input data is fully mapped onto the Kohonen layer’s neurons
which respond to this data according to the weight assigned to
the connexions between input vectors and neurons and deliver
an output response vector. To begin with, the neural networkis
presented a learning set of example input vectors and adjusts
(i.e. learns) appropriate weights for its neurons by comparing
the input vectors to the weight vectors for each neuron thus
electing a ”winning” neuron ”close” to the input vector.

In addition to this, the Kohonen SOM deals with a topo-
logical learning feature, which implies neural neighborhood
generalization of a correct learning experience so as to create
clusters of neurons responding to similar input vectors without
necessarily having explicitly learnt them. If a neuron learns
that a given input vector is a vector it should respond to, its
neighbours will learn they also should respond, only in a lesser
way, depending on their topological distance to the first ”win-
ning” neuron. This way, the Kohonen SOM is well adapted to
stability preservation tasks as the one we present here. Once
the learning procedure is over, i.e. when the neural network
produces an acceptable amount of erroneous responses during
learning, the weights of the neural connexions to the data input
are freezed. That means that the training process needs to be
done only once without specific scenario and should work for
every kind of situation.

Given the Kohonen SOM algorithm, the neural network
can generalize its learnt experiences to other input vectors
it has never seen before and produce adapted responses. In
this way, the conservation of a direction, an equilibrium or
the correct parameter to adjust a RED mechanism is made
possible although there is no way of predicting the way the
neural network learns to solve this particular problem. In our
case, the learnt sequences of input vectors are not the ones
used in our tests, in order to prove that the learning method
provides a general purpose neural network for the resolution
of the problem we deal with here. Once it has learnt, it can
be used indefinitely for the task it has been trained for.

Previous related work [3] presents the use of a multi layer
perceptron to adapt theα andβ coefficients of a PI controller.
In [3], the authors don’t improve the queue length stability
but smooth the PI dynamic and in average, results obtained

ha
l-0

03
61

33
4,

 v
er

si
on

 1
 -

15
 F

eb
 2

00
9

are globally similar. We think that such a neural network is
well adapted to pattern and shape recognition problems, whilst
a SOM such as the Kohonen SOM could be better suited to
the task of stability preservation which we deal with here.
Indeed, this Kohonen SOM algorithm preserves topological
relationships between neighbouring vectors.

Each time a packet is enqueued, the Kohonen network
computes a newmaxp following the previous and the current
average queue size. No other parameters are needed to perform
this operation.

III. I MPLEMENTATION

One important point of dealing with Kohonen network is
the small memory footprint required by the implementation.In
our case, we have implemented our proposal in ns-2 simulator.
The most complex structure is simply a square matrix25×25

which represents the Kohonen network. The code used is a
modification of the well-known Karsten Kutza’s implemen-
tation1. All the scripts and ns-2 implementation used in this
study are available for download at the author’s webpage2.

IV. T HE TRAINING PROCESS

The KRED queue has been trained with an arbitrary chosen
number of eight long-lived TCP/Newreno flows emitted during
600 seconds without traffic variation on a single link topology.
The neural network map learnt to stabilize the KRED queue
with the common parameters given table II after 331 seconds.
No further training has been done. The resulting Kohonen map
is used thereafter in all the experiments. Both experiments
related in section V use the same Kohonen map resulting from
the same training process.

V. EVALUATION AND ANALYSIS

This section presents the experiments driven to evaluate the
KRED and comments the results obtained.

A. Testbed and assumptions

Src N

Src 1 Dst 1

Dst N

 5 Mbit/s RTT=60ms

10 Mbit/s RTT=2ms

RTT = 64ms (scenario #1)

RTT = 64ms to 102ms (scenario #2)

RED Router

Fig. 2. The simulation topology

We drive experiments over a standard dumbbell topology
represented in figure 2. We compare our proposal to RED,
Feng RED (FRED), ARED and PI AQM. The parameters
used for each queue are given in table II. The TCP flows are
NewReno with a large window size set to10000 packets. The
RED queue is configured to drop and not to mark packets.
In order to evaluate our proposal, we drive two distinct

1http://www.neural-networks-at-your-fingertips.com/
2http://manu.lochin.org/kred

experiments. In the first scenario, the number of TCP flows in
the network is increasing from 50 to 250 flows following the
pattern figure 3(a). The RTT for each flow is identical. This
scenario allows us to verify the impact of the traffic load on our
proposal compared to others AQM. In the second experiment,
the traffic changes every 50 seconds following the scenario
presented in figure 3(b). Furthermore, each flow has a random
RTT ranging from 64 to 102 ms. The rationale for using this
traffic pattern is to evaluate our proposal under wide traffic
variations.

50 100 150 200 250 300

nu
m

be
r

of
 T

C
P

 fl
ow

s

time (sec)

150

100

50

200

250

(a) First scenario

50 100 150 200 250 300

time (sec)

25

50

75

100

nu
m

be
r

of
 T

C
P

 fl
ow

s

(b) Second scenario

Fig. 3. The simulation scenarios

Common minth = 100pkts maxth = 150pkts,
Parameters (C.P.) qsize = 200pkts, qweight = 10−4 .

RED C.P.,maxp = 0.1.

FRED C.P.,maxp = 0.1 α = 3.0, β = 2.0.

ARED C.P.,α = 0.01, β = 0.09, gentle = true,
interval = 0.3, maxp = 0.1.

PI a = 1.822.10−5, b = 1.816.10−5,
qref = 100pkts, w = 170Hz.

KRED C.P.

TABLE II

RED PARAMETERS USED

B. First scenario

Results are given in figure 4. Each graph shows the in-
stantaneous and average queue size. The two horizontal lines
represent theminth and maxth threshold RED parameters.

ha
l-0

03
61

33
4,

 v
er

si
on

 1
 -

15
 F

eb
 2

00
9

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(a) RED

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(b) FRED

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(c) ARED

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(d) PI

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(e) KRED

Fig. 4. Performance comparison of various AQM with KRED, (1st scenario)

The results presented for the KRED queue are obtained after
the training process. As shown in these figures, ARED 4(c)
and KRED 4(e) queues obtain a stable queue length between
both thresholds compared to the others. To better illustrate the
benefit of our algorithm, we use as comparative metric the
queue delay. The link statistics reported table III show that
the queueing delay for ARED and KRED are the lowest. The
drop rate for both queue is similar and the overall throughput
at the output link is equal for all AQM.

With this first experiment we can conclude that ARED and
KRED are the best algorithms in terms of stability of the queue
when the traffic load increases but we cannot stand in favor
of KRED since the results obtained are in the same order of
magnitude. Indeed, the overall performances obtained by both
AQM are quite similar. However, we have to keep in mind
that fixed initial parameters are needed for ARED (given in
table II).

The second scenario, presented in the next section, extends
these measurements by changing the traffic pattern during the
simulation and the RTT of each flow is ranging from 64 to
102 ms. The original parameters remain unchanged in order to
verify the well adaptability of these AQM to the rapid traffic
change problem.

C. Second scenario

As shown in figure 5, the KRED queue obtains a stable
queue length between both thresholds compared to the AIMD
process method of the FRED 5(b) and ARED 5(c). Moreover,
KRED reacts rapidly to a traffic change compared to ARED.
Due to the rapid traffic changing, themaxp value is constantly
recomputed and the previous computed value strongly impacts
on the current result. In the case of an AIMD process to
compute the bestmaxp value, if the weights are small, the

AQM Mean / Std. Dev. Mean / Std. Dev. TCP
Queue Delay (ms) Link Throughput (Mbit/s) drop rate

RED 29.17 / 3.05 4.9978 / 0.29 22.23%
FRED 29.09 / 3.55 4.9978 / 0.29 22.39%
ARED 22.24 / 3.65 4.9978 / 0.29 25.23%

PI 29.51 / 5.27 4.9979 / 0.29 22.53%
KRED 21.92 / 3.02 4.9978 / 0.29 25.34%

TABLE III

STATISTICS FROM1ST SCENARIO

AQM Mean / Std. Dev. Mean / Std. Dev. TCP
Queue Delay (ms) Link Throughput (Mbit/s) drop rate

RED 23.68 / 5.68 4.9978 / 0.0294 7.65%
FRED 21.96 / 6.14 4.9978 / 0.0294 8.54%
ARED 22.73 / 6.27 4.9978 / 0.0294 8.42%

PI 21.67 / 10.78 4.9979 / 0.0294 8.70%
KRED 20.10 / 4.75 4.9978 / 0.0294 9.15%

TABLE IV

STATISTICS FROM2ND SCENARIO

pace of convergence to the optimal value is slow and if
the weights are high, the resulting probability can strongly
oscillate when the traffic is changing. The initial configuration
parameters used with success in the first scenario by ARED
are not adapted to the second one. Thus, the KRED proposal
allows to overcome this difficult problem of initial setting
which is managed by the neural network. Finally, table IV
give the statistics of this scenario and show that KRED still
obtains the lowest average queuing delay.

VI. D ISCUSSION AND CONCLUSIONS

This paper introduces Kohonen-RED: an adaptive RED
mechanism easily implementable. The idea deals with the

ha
l-0

03
61

33
4,

 v
er

si
on

 1
 -

15
 F

eb
 2

00
9

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(a) RED

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(b) FRED

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(c) ARED

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(d) PI

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

K
B

yt
es

Time (sec)

current queue size
average queue size

(e) KRED

Fig. 5. Performance comparison of various AQM with KRED (2nd scenario)

use of a Kohonen neural network to compute the optimal
probability parameter in order to achieve stable queue length.
KRED reduces the number of parameters and in particular the
non obvious ones. The Kohonen network does not need to be
retrained and therefore can be put in hardware in the contextof
a router implementation. The mechanism’s efficiency has been
illustrated through ns-2 simulation where other schemes fail. In
this work, we use a Kohonen based neural network specifically
designed to solve the pole balancing problem. One of the
main contribution of this study is to show the feasibility of
using neural network to solve a networking stability problem.
Considering promising preliminary results, we are currently
designing a specific neural network for RED queue able to
stabilize on a given value and not between two bounds and
we are investigating on the improvements required in the core
mechanism itself to achieve this goal. We also explore the
design of a neural network able to accurately characterize the
TCP behaviour.

ACKNOWLEDGMENTS

The authors would like to thank Sebastien Ardon and
Guillaume Jourjon and Max Ott for the discussion about this
mechanism and the support of the National ICT Australia
(NICTA).

REFERENCES

[1] Robert Beverly and Karen Sollins. The role of learning in
network architecture. Research Abstract of the Computer
Science and Artificial Intelligence Laboratory (CSAIL) -
http://publications.csail.mit.edu/abstracts/abstracts07/beverly2/beverly2.html.

[2] Wu chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin.
A self-configuring RED gateway. InProceedings of INFOCOM 99,
volume 3, pages 1320–1328, 1999.

[3] H.C. Cho, M.S. Fadali, and Hyunjeong Lee. Neural networkcontrol
for tcp network congestion. InProc. of the 2005 American Control
Conference, pages 3480–3485, June 2005.

[4] S. Floyd, R. Gummadi, and S. Shenker. Adaptive red: An algorithm for
increasing the robustness of red, technical report, international computer
science institute, August 2001.

[5] Sally Floyd and Van Jacobson. Random early detection gateways for
congestion avoidance. 1(4):397–413, August 1993.

[6] C. V. Hollot, Vishal Misra, Donald F. Towsley, and Weibo Gong. On
designing improved controllers for AQM routers supportingTCP flows.
In INFOCOM, pages 1726–1734, 2001.

[7] Teuvo Kohonen. Self-Organizing Maps, volume 30 of Information
Sciences. Third extended edition edition, 2001.

[8] Steven H. Low, Fernando Paganini, Jiantao Wang, and JohnC. Doyle.
Linear stability of tcp/red and a scalable control.Computer Networks,
43(5):633–647, 2003.

[9] A. Makarovic. Machine intelligence 12: towards an automated logic of
human thought. InClarendon Press, New York, NY, USA, pages 241–
258, 1991.

[10] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy RED. In
Proc. of 7th. International Workshop on Quality of Service (IWQoS’99),
London, pages 260–262, 1999.

[11] T. Ziegler, S. Fdida, and C. Brandauer. Stability criteria of RED with
TCP traffic. In IFIP ATM&IP Working Conference, Budapest, June
2001.ha
l-0

03
61

33
4,

 v
er

si
on

 1
 -

15
 F

eb
 2

00
9

