
Tracking quasi-classical chaos in ultracold boson gases
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We study the dynamics of a ultra-cold boson gas in a lattice submitted to a constant force. We
track the route of the system towards chaos created by the many-body-induced nonlinearity and
show that relevant information can be extracted from an experimentally accessible quantity, the
gas mean position. The threshold nonlinearity for the appearance of chaotic behavior is deduced
from KAM arguments and agrees with the value obtained by calculating the associated Lyapunov
exponent.

PACS numbers: 03.75.Nt, 05.45.Ac, 37.10.Jk

Recent advances in the physics of cold atoms paved the
way for the investigation of fundamental quantum prob-
lems with unprecedented cleanness. “Quantum chaos” is
one of the most fascinating among these problems, be-
cause in such case the correspondence between the dy-
namics of the quantum system and its classical coun-
terpart is nontrivial. The reasons for that are twofold:
First, quantum particles obey Heisenberg inequalities,
hence their dynamics cannot be described in terms of
phase-space trajectories. Second, sensitivity to initial
conditions is not observed, as the Schrödinger equation
is linear. For these reasons, quantum chaos has often
been defined as “the behavior of a quantum system whose
classical limit is chaotic”. Whereas this is a reasonable
definition, it is clear that the actual quantum dynamics
has no direct relation to classical chaos. Much work thus
concentrates in finding “reminiscences” of classical chaos
that might survive in the quantum system, the so-called
“signatures” of quantum chaos [1].

The realization in 1995 of the first Bose-Einstein con-
densate with laser-cooled atoms [2, 3, 4] opened a new
way for investigating (truly) nonlinear dynamics in quan-
tum systems. In an “ideal” (i.e. in the zero temperature
limit) Bose-Einstein condensate (BEC), the atoms are
indistinguishable and form a mesoscopic object which
can be described by a “collective” single wavefunction.
The BEC’s dynamical behavior is then described by
the Gross-Pitaevskii equation which includes a nonlin-

ear term due to atomic interactions [5]. The solutions of
such equation can – and do – present sensitivity to initial
conditions, leading to “classical-like” instabilities, a pos-
sibility that attracted much attention from both theoreti-
cians [6, 7, 8, 9, 10, 11, 12, 13, 14] and experimentalists
[15, 16].

In order to make these ideas clear, let us first consider
a simpler system, the kicked rotor, whose experimental
realization with laser cooled atoms [17] lead to an impres-
sive burst of experimental work [18, 19, 20, 21, 22, 23,
24, 25]. This system is formed by a particle periodically
“kicked” by a sinusoidal force. The classical dynamics
is characterized by a single parameter K, which is the
normalized amplitude of the potential [17], whereas the

“quanticity” of the quantum system is described by a
“normalized Planck constant” k̄ (the dynamics become
classical as k̄ → 0).

In order to characterize the dynamics, one may chose,
for instance, the particle’s square momentum as the rel-
evant quantity (p2(t) in the classical case,

〈

p2(t)
〉

in the
quantum case). By taking the Fourier transform of the
above quantity and pinpointing the frequencies appear-
ing in the evolution of the system for different values of
K and fixed initial conditions, we can characterize in a
common language the classical and the quantum versions.
The result is plotted in Fig. 1.

The classical dynamics, Fig. 1a, shows resonances (or
frequency-lock events) each time a frequency become very
close to another one. For K & 0.8, the frequencies in the
spectrum “coalesce” to form of a dense spectrum, which
is a signature of a chaotic dynamics. In the quantum case,
Fig. 1b, the spectrum is richer and present numerous
frequency crossings, but no dense spectrum is observed.

Let us now consider a one-dimensional BEC of parti-
cles of mass M placed in a sinusoidal lattice formed by
counterpropagating laser beams of wavelength λL, and
subjected to a linear force. The system is described by
the Gross-Pitaevskii equation (GPE)

i
∂ψ(x, t)

∂t
=

(

P 2

2m
+ V0 cos(2πx) + Fx+ g |ψ|2

)

ψ(x, t),

(1)
with lengths measured in units of the lattice step d =
λL/2, energy measured in units of the recoil energy ER =
~

2k2
L/(2M) (with kL = 2π/λL), time in units of ~/ER,

the force F in units of Er/d, P = −i∂/∂x, the reduced
mass is m = π2/2 and g is the (1D) nonlinear parameter.
The eigenstates of the linear part of the Hamiltonian (1),
obtained by setting g = 0, are the so-called Wannier-
Stark (WS) states [6, 26, 27]. In order to simplify the
discussion, let us we suppose that the BEC energy is low
enough that its wavefunction ψ can be expanded only
on the lowest-energy WS state for each potential well,
hereafter noted as ϕn(x) (corresponding to the nth well).
These states are centered at each potential well, obey
the symmetry relation ϕn+m(x)= ϕn(x−m), and form a
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Figure 1: Classical and quantum dynamics of the kicked ro-
tor. For each value of K, we numerically calculate p2(t)
(classical case) and

〈

p2(t)
〉

(quantum case) up to 2000 kicks,
perform the Fourier transform and pinpoint the frequencies
whose Fourier amplitude is above a threshold (here 1/500 of
the maximum amplitude). (a) Frequencies in the classical
dynamics: A dense spectrum appears for K & 0.82 (initial
conditions x = 0 and p = 0.56). (b) Frequencies in the quan-
tum dynamics: The spectrum is complex, but always discrete
(k̄ = 2.89, the initial state is a Gaussian in momentum space
of FWHM 5k̄ centered at p = 0.56).

ladder of eigenenergies En = nωB, where ωB = Fd/~ (F
in our normalized units) is the Bloch frequency. Thus,
putting ϕ(x) ≡ ϕ0(x)

ψ(x, t) =
∑

n

√

Ine
−iθnϕ(x− n), (2)

where the eigenstates population In and phase θn are real
functions of the time.

Following the approach of [6], we insert Eq. (2) in
Eq. (1), and obtain Hamilton equations for the popu-
lations and phases. The Hamiltonian then appears as a
sum of an integrable part H0 and a non-integrable per-
turbation H1:

H = H0(I) + ǫH1(I, θ), (3)

with ǫ ∝ gχ01, where χ0i ≡
∫

dxϕ3(x)ϕ(x − i) is a mea-
sure of the superposition of eigenfunctions correspond-
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Figure 2: Frequencies present in the spectrum of 〈x(t)〉 vs g
(the threshold is 1/100 of the maximum amplitude). For small
g, the Bohr frequencies [cf. Eq. (4)] are ω10 = ωB − 0.4gχ00,
ω0−1 = ωB + 0.55gχ00 and ω1−1 = 2ωB + 0.15gχ00, corre-
sponding to branches a, b, and c, respectively. Harmonics
of ω10 are also seen (branches d and e) and Ω1,−1,0 (branch
f). For 0.22 . g . 0.26 one observes dense-spectrum win-
dows corresponding to quasi-classical chaos. Parameters are
ωB = 0.25, V = 5 (χ00 = 2); initial conditions are I0 = 0.65,
I1 = 0.25, θ0 = θ−1 = 0, θ1 = π.

ing to different wells. For small ǫ, the system is quasi-
integrable and fits into the general frame of the KAM
theorem [28]. Therefore, the quantum-coherent evolution
of a BEC displays classical-like KAM-structured chaos.
We call this, “quasi-classical” chaos.

If we temporarily neglect the nonlinear term in Eq. (1),
we see that the phases evolve as θn(t) = θn0 + nωBt.
To the first order in ǫ, the effect of the nonlinearity is
to introduce a population-dependent correction to this
phase, producing a harmonic evolution with frequencies
ωn = nωB + gχ00In. The intensities are constants of mo-
tion, In(t) = In(t = 0) and the “self-coupling” parameter
χ00 depends only V0 and F . The BEC dynamics is thus
governed by the Bohr frequencies

ωnm ≡ ωn − ωm = (n−m)ωB + gχ00(In − Im). (4)

In order to simplify further our description, let us restrict
the dynamics to three adjacent potential wells, i.e. we
set In ≡ 0 if n 6= −1, 0, 1 in Eq. (2). The system is
then four-dimensional, the dynamical variables being two
populations (since I

−1 + I0 + I1 = 1) and two relative
phases.

The onset of chaos in this system is shown in Fig. 2,
which is the equivalent of Fig. 1 for the BEC dynam-
ics, with the difference that we used the average position
〈x(t)〉 instead of

〈

p2(t)
〉

. Strikingly, the plot resembles
more closely to the classical (Fig. 1a) than to the quan-
tum (Fig. 1b) dynamics of the kicked rotor.

We can interpret the main features of Fig. 2 from sim-
ple arguments. At g = 0 there are only three Bohr fre-
quencies in the model: Two of them are degenerated,
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ω0−1 = ω10 = ωB, and correspond to energy differ-
ence between neighbor wells, whereas ω

−11 = 2ωB corre-
sponds to next-to-neighbor energy difference. The low-g
structure can be understood using Eq. (4). The frequen-
cies present around g = 0.05, for instance, in Fig. 2 are
of the form

Ωpqr = pω0−1 + qω10 + rω1−1 (5)

with p, q, r integer. Namely, from top to bottom, we
found ω1−1, 2ω10, ω0−1, ω10 and ω0−1 − ω10. These
frequencies are only weakly perturbed by the nonlinear-
ity, which manifests itself by the slight curvature of the
branches. A KAM-type expansion in powers of ǫ shows
that the weight of a frequency Ωpqr in the spectrum is
proportional to g/Ωpqr [28], thus, the higher the value
of g, the larger the number of frequencies that will be
present (remember that Fig. 2 displays the frequencies
whose amplitude is above a threshold), and smaller fre-
quencies will be favored. The intersection of two branches
correspond to a resonance, that is, the condition Ωpqr = 0
is fulfilled for some p, q, r. Close to a resonance the KAM
perturbation theory breaks down, and non-integrable be-
haviors appear that may lead to chaos. In Fig. 2 the
arrows indicate the resonances Ω1q0 = 0 (q = −2) for
g ≈ 0.093, and q = −3,−4,−5 for, respectively, g ≈ 0.14,
g = 0.17, g = 0.196 . For higher g values, resonances with
higher and higher q values become significative, as seen
on the left of the chaotic region: Each frequency crossing
produces a multi-frequency structure (indicated by the
arrows). Finally, for g & 0.2 one observes at least four
successive windows of dense spectrum, corresponding to
a chaotic behavior.

Fig. 2 represents a “local route” (in the sense that its
detailed geometry depends on the initial conditions) to
quasi-classical chaos. The above argument suggests how-
ever that this route is characteristic of KAM systems, and
globally independent of initial conditions. Its universal
character is confirmed by comparing it to Fig. 1a, where
an analogous structure is observed in a completely dif-
ferent KAM system, the classical kicked rotor. We have
thus put into evidence a route to KAM chaos in a non-
linear quantum system, which is potentially observable
with state-of-art experiments.

In order to confirm our conclusions, we have also cal-
culated the maximum Lyapunov exponent (MLE) as-
sociated to the dynamics, which is a direct signature
of the sensitivity to the initial conditions, and thus of
chaos. In order to calculate MLEs in our quantum sys-
tem, we adapted the classical Jacobian method [29]. We
represent the system evolution by a trajectory in a six-
dimensional “generalized quantum phase-space”, formed
by the real and imaginary parts of each WS state co-
efficient, i.e.

√
In cos θn and

√
In sin θn, for n = −1, 0, 1

(this is numerically more stable than using In and θn),
and calculate the divergence of neighbor WS states, from
which we can extract the MLE. The result is presented in
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Figure 3: Maximum Lyapunov exponent (in units of T−1

B =
ωB/2π) as a function of g. One observes a good correspon-
dence between the existence of a non-zero Lyapunov exponent
and the presence of dense-spectrum regions in Fig. 2. The
observed dense-spectrum is thus a reliable signature of the
chaotic behavior. Same parameters and initial conditions as
in Fig. 2.

Fig. 3. One sees a clear transition to chaos for g ≈ 0.194,
which is in good agreement with the value that can be
deduced from Fig. 2. We can also identify the four suc-
cessive chaotic windows.

For given initial conditions, we can obtain an estimate
for the critical value of g at which chaos appears. KAM
theory shows that chaos generally appears along a sep-
aratrix. In our system there are two main kinds of tra-
jectories [6]: “Passing” trajectories correspond to Bloch
oscillations slightly perturbed by the nonlinearity (for the
low values of g we are considering); they appear when the
three populations are comparable. Bound, periodic or-
bits correspond to a motion essentially confined at a po-
tential well, and appear when one population dominate
the others. Between these two kinds of trajectories, there
is a separatrix. For a given trajectory (i.e. for fixed ini-
tial conditions), chaos appears when the changing in the
value of g brings it close to the separatrix. The condition
for that can be simply estimated by confining the BEC to
only two wells (I

−1 = 0), in which case the system is in-
tegrable. This “reduced” system does not exhibit chaos,
but it has a phase-space structure analogous to that of
the 3-wells, displaying bound and passing trajectories,
and, between them, a separatrix. In the reduced system
we can calculate both the energy E0 corresponding to
the trajectory (with I

−1 = 0) and the energy Es of the
unstable point to which the separatrix is connected. We
can then numerically determine the value of g for which
E0 = Es, which gives the critical value. Fig. 4 shows
the result for various initial conditions (solid line). The
dotted lines indicate the limits of the chaotic region as
inferred from the Lyapunov exponent calculation in the
3-well system. The agreement is very good, even when
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Figure 4: Determination of the critical value of g. The solid
lines with triangles are the estimated critical value of g, given
by the condition that the trajectory energy equals the sep-
aratrix energy (cf. text). The dotted lines with crosses are
the limits of the chaotic region, where the Lyapunov exponent
is non-zero. The parameters are the same as in Fig 2, with
θ0 − θ1 = π

2
.

the chaotic zone is narrow.
In conclusion, we have characterized the phenomenon

of quasi-classical chaos using an experimentally acces-
sible signal, the mean position of the boson gas. We
have studied a “local route” to quasi-classical chaos and
shown that the information obtained from this approach
agrees well with that provided by a hallmark signature
of chaos, the sensitivity to initial conditions, quantified
by a positive Lyapunov exponent. The understanding
of the structure of such a route allowed us to determine
the critical value of the nonlinearity parameter, which is
in good agreement with the one deduced from the cal-
culation of the Lyapunov exponent. We think that the
present work might stimulate an experimental observa-
tion of quasi-classical chaos, which would, in turn, stim-
ulate new investigations on the nature of quantum chaos.

The authors are happy to thank M. Lefranc for fruit-
ful discussions and for his help with the calculation of
Lyapunov exponents.
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