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Abstract 

A cascading system of hierarchical artificial neural networks is presented, for the generalized 
classification of proteins into four distinct classes: Transmembrane, Fibrous, Globular and 'Mixed', 
from information solely encoded in their amino acid sequences.  This system, named PRED-
CLASS, is a direct descendant of the recently published PRED-TMR2 algorithm, which initially 
discriminates transmembrane (TM) from globular, water soluble proteins with considerable success 
for several representative data sets.  The architecture of the individual component networks is kept 
very simple, reducing the number of free parameters (network synaptic weights) for faster training, 
improved generalization and avoiding overfitting the data.  Capturing information from as little as 
50 protein sequences spread along the 4 target classes (6 TM, 10 Fibrous, 13 Globular and 17 
Mixed), PRED-CLASS was able to obtain 371 correct predictions out of a set of 387 proteins 
(success rate ~96%) unambiguously assigned into one of the target classes.  Application of PRED-
CLASS to several test sets and complete proteomes of several organisms, demonstrates that such a 
method could serve as a valuable tool in the annotation of genomic ORFs with no functional 
assignment or as a preliminary step in fold recognition and ‘ab initio’ structure prediction methods.  
Detailed results obtained on various data sets, completed genomes, along with a web sever running 
the PRED-CLASS algorithm can be accessed over the World Wide Web at the URL: 
http://o2.biol.uoa.gr/PRED-CLASS. 

Keywords: protein classification; artificial neural network; transmembrane, fibrous, globular, 
mixed proteins; genome annotation; genome-wide analysis 

Abbreviations used: TM, transmembrane; FIBR, fibrous; GLOB, globular; MIX, mixed; NN, 
neural network; WWW, world wide web; 1D, one dimensional; SCOP, structural classification of 
proteins; FFT, fast Fourier transform; SProt: SwissProt; ORF, open reading frame. 
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Introduction 

Prediction of protein tertiary structure from information contained in amino acid sequence remains 
a challenging problem in structural molecular biology, despite the fact that great progress has been 
achieved during the last few years 1,2,3.  Over the last three decades, several computational methods 
have been developed for the prediction of 1D structural features of proteins from their sequence 
alone.  For example, secondary structure prediction schemes aim to propose (sometimes with 
noteworthy success, 4,5,6) the probable locations of secondary structure elements. In many cases, 
they are reported to be a fundamental initial stage (or a refining final stage) for 'ab initio' 
calculations 7, fold recognition 8,9 or homology modeling techniques 10.  Machine learning 
techniques have been a common practice to mine the information 'hidden' in the vast amount of 
protein sequences resulting from completed and ongoing Genome Projects, combined with 
available experimental functional or structural knowledge or information.  In particular, different 
types of artificial neural network predictors have often served as a powerful tool for this 
achievement 11,12,13,14.  However, algorithms to predict generalized topological features of protein 
molecular structures could prove to be useful tools as a preliminary step in protein structure 
prediction and/or functional class determination. 

We have recently published a simple neural network based classification scheme (PRED-TMR2, 15) 
to distinguish between transmembrane and globular, water soluble proteins, integrated with a 
previously reported method (PRED-TMR, 16) for fast and accurate detection of transmembrane 
segments.  We now extend the capabilities of the system by further classifying non-transmembrane 
proteins into three classes: fibrous (e.g. collagen, elastin), globular (e.g. various types of enzymes) 
and a last group of proteins composed of both fibrous and globular domains, mentioned hereinafter 
as 'mixed' proteins (e.g. several intermediate filament proteins). 

In this work, we illustrate the learning procedure followed (neural network training), as well as 
results obtained on several sets of known proteins for an estimation of the classification error rate.  
The method's predictive power combined with reasonable time performance on currently available 
complete proteome sets (for instance the recently sequenced Drosophila melanogaster genome, 17) 
indicates that PRED-CLASS could be a precious source of information in automatic or manual 
annotation of genomic 'orphan' ORFs (ORFans, 18).  The generalized classification obtained by the 
method suggests that PRED-CLASS could be useful as a starting point in fold recognition or 'ab 
initio' structure prediction methods, while, in combination with comparative studies on completed 
genomic sequences, it could give further insight in the evolution of protein structure and function. 

Results 

Results on an evaluation test set of 387 proteins 

In order to assess the performance of the system, several tests were applied.  As described in 
previous work 15, NN1 demonstrated a perfect performance on a set of 101 non-homologous 
transmembrane proteins (101 correct predictions) and a very good performance in a subset of 
PDB_SELECT composed of 995 globular proteins (97.7% correct assignments to the globular 
class).  We have created a new test set to contain a total of 387 well-characterized protein 
sequences from all 4 target classes (147 membrane, 73 fibrous, 55 globular and 112 mixed), as 
described in the Materials and Methods section, to evaluate the performance of the new integrated 
system. 
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 3

 PREDICTED  

TM FIBR GLOB MIX Total Obs. SEL (%) 

O
B

S
E

R
V

E
D

 TM 139 0 8 0 147 94.5 
FIBR 1 72 0 0 73 98.6 
GLOB 0 1 54 0 55 98.2 
MIX 3 3 0 106 112 94.6 

 Total 
Predicted 

143 76 62 106 387  

SENS(%) 97.2 94.7 87.1 100.0   
Table 1. System Performance on a test set of 387 protein sequences. SEL=selectivity , SENS=sensitivity, see 

equations (1), (2). 

The overall performance of the classification scheme is approximately 96% (371 correct 
assignments), and a summary of the results obtained by PRED-CLASS is presented in Table 1.  A 
first measure of the method's success is its selectivity (SEL) for each particular class C (TM, FIBR, 
GLOB,MIX):  
 

(1) 
 

Selectivity represents the percentage of correct assignments in each class (true positive hits, tpc) 
compared to the total members of the class (true positives plus false negatives, tpc+fnc), where fnc is 
the number of proteins belonging in class C, but erroneously classified in another class.  A higher 
selectivity of 98.6% was obtained for the fibrous class and a lowest 94.5% for the transmembrane 
one, yielding a mean selectivity of 96.5%.  It should be taken into consideration that the first 
classifier, which decides weather a protein sequence corresponds to a transmembrane protein or 
not, has been trained on as little as 11 sequences. 

Sensitivity (SENS) of classification for each class C is also a useful evaluation criterion: 
 

 (2) 
 

that is the percentage of correct assignments in each class compared to the total number of 
assignments in this class (true positives plus false positives, tpc+fpc), where fpc is the number of 
erroneous assignments in class C.  Along these lines, classification in the mixed class was 100% 
sensitive, yielding no false predictions in the mixed class, whereas a lowest sensitivity was obtained 
for the globular class (87.1%), with a mean sensitivity value of 94.7%.  This result, however, could 
be rather misleading, since the globular class apparently is the most abundant in the protein 
universe, whereas in our test set this class of proteins is somehow under-represented and a more 
sensitive performance of the globular classifier should be expected.  Additionally, since no mixed 
proteins were used as negative examples in the training phase of the first neural network, it seems 
sensible that 3 out of the 4 false assignments in the transmembrane class come from mixed 
proteins.  A maximal collection of proteins in the fibrous, globular and mixed classes, removing 
redundancy like in the work reported by 19, would certainly serve as a valuable set for training and 
evaluating classification systems like PRED-CLASS. 

)/(*100 ncpcpcc fttSEL 

)/(*100 pcpcpcc fttSENS 
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Case by case study of erroneous classifications 

Wrong classifications, in this evaluation phase, have been examined manually in order to gain some 
better understanding of the method's performance.  Half of the 16 erroneous predictions have been 
for 8 TM proteins classified in the globular class (SwissProt 20 IDs: COXK_BOVIN, 
COXD_BOVIN, TONB_ECOLI, VS10_ROTBN, GEF_ECOLI, FDOH_ECOLI, BCS1_YEAST, 
NNTM_BOVIN).  Half of them (COXK_BOVIN, COXD_BOVIN, BCS1_YEAST, 
NNTM_BOVIN) are bound to the mitochondrion membrane, whereas 2 of them (TONB_ECOLI, 
GEF_ECOLI) contain a signal membrane-anchored N-terminal sequence. 

Another erroneous classification occurred for a fibrous collagen type IV precursor 
(CA44_HUMAN) possessing a signal N-terminal sequence ranging from residue 1 to 38, 
incorrectly classified as TM.  Careful inspection of the output of the first NN, reveals that the 
segment responsible for the wrong classification is located exactly in this region.  After removing 
this signal peptide from the sequence it is correctly classified in the fibrous class. 

A total number of 6 false predictions for mixed proteins was obtained, 3 of them being type II 
cytoskeletal keratins (K2CA_HUMAN, K2CB_HUMAN, K2CF_HUMAN) misclassified in the 
transmembrane class.  These sequences are almost identical (more than 98% pairwise identity) and 
the false classification is due to a long segment rich in glycine and hydrophobic residues.  The rest 
of the 3 wrongly predicted mixed proteins (K1CJ_BOVIN, K2M2_SHEEP, NFH_MOUSE) were 
assigned to the fibrous class. 

A subtle case was the only globular protein that was classified in the fibrous class: Ferredoxin.  Its 
characteristic cysteine-rich iron-binding domains exhibit a periodicity of approximately 3.4 
residues and when 3 cysteines are artificially 'mutated' into another residue type ferredoxin is 
correctly classified into the fibrous class, indicating that a probable reason for this wrong 
assignment is both the overall composition and the detected periodic patterns. 

Results in the context of the SCOP classification of protein domains 

A rather qualitative test of the method was performed against the sequences of protein domains as 
classified in the SCOP database 21 choosing as the most appropriate resource for this task the 
ASTRAL 22 subset (see Materials and Methods), which is freely accessible via the Internet.  The 
chosen threshold of sequence similarity in this data set, ensures that, on one hand, most of the 
redundancy (in terms of sequence similarity) is removed, while on the other hand, several sequence 
representatives exist in most of the classification levels.  This data set (shortly SCOPlt40pc) 
contains 2619 sequences of protein domains while the whole SCOP version 1.48 contained 21828 
protein domains.  The distribution of PRED-CLASS predictions along the seven classes of the first 
level of SCOP hierarchy is presented in Table 2.  Although most sequences in this test set 
correspond to globular water-soluble protein domains, there are several points to make without 
considering further details:  

a) 2198 out of the 2286 protein domains (~96%) classified in the all-alpha, all-beta, alpha/beta and 
alpha+beta classes in the SCOP classification scheme, were predicted to belong to the Globular 
class.  Only 43 of them (1.9%) were predicted to be transmembrane, 29 (1.3%) fibrous and 16 
mixed (0.7%). 

b) Membrane or cell surface protein domains are predicted to belong either to the transmembrane or 
the globular class (possible for membrane anchored protein domains) 

c) Most of the domains classified by PRED-CLASS in the fibrous class correspond to 'small' 
protein domains, which are usually domains rich in disulfide bonds.  No small proteins have been 
classified in the transmembrane or the mixed class. 
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 5

SPECIES TM FIBR GLOB MIX 
 
BACTERIAL 
Aquifex aeolicus 21.9 0.1 72.8 5.2 
Bacillus subtilis 26.1 0.2 68.9 4.7 
Borrelia burgdorferi 25.6 0.2 70.5 3.7 
Campylobacter jejuni 25.4 0.1 70.9 3.6 
Chlamydia muridarum 26.7 0.3 67.2 5.7 
Chlamydia pneumoniae 29.6 0.5 65.2 4.7 
Chlamydia trachomatis 25.3 0.1 69.1 5.5 
Deinococcus radiodurans 20.2 3.0 73.3 3.5 
Escherichia coli 23.8 0.5 72.7 3.0 
Haemophilus influenzae 21.3 0.2 74.6 3.8 
Helicobacter pylori 22.6 0.1 71.5 5.7 
Helicobacter pylori J99 23.2 0.3 71.0 5.4 
Mycobacterium tuberculosis 21.3 4.6 71.9 2.1 
Mycoplasma genitalium 27.1 0.0 68.7 4.1 
Mycoplasma pneumoniae 22.8 0.0 72.0 5.1 
Rickettsia prowazekii 29.7 0.1 66.8 3.3 
Synecocystis sp. (strain PCC 6803) 26.7 0.5 69.4 3.4 
Thermotoga maritima 23.8 0.3 70.4 5.5 
Treponema pallidum 24.5 1.4 68.5 5.6 
Ureaplasma parvum 24.4 0.2 73.1 2.3 
Xylella fastidiosa 19.9 1.1 76.7 2.3 
Mean 24.4 0.6 70.7 4.2 
Standard deviation 2.7 1.1 2.7 1.2 

ARCHAEAL 
Aeropyrum pernix 18.3 18.2 61.2 2.3 
Arcaeoglobus fulgidus 21.3 0.2 75.2 3.2 
Methanobacterium thermoautotrophicum 20.9 0.3 73.6 5.1 
Methanococcus jannaschii 20.5 0.1 76.7 2.7 
Pyrococcus abyssi 23.3 0.3 72.8 3.6 
Pyrococcus horikoshii 27.4 2.0 67.3 3.2 
Mean 21.9 3.5 71.1 3.3 
Standard deviation 2.8 6.6 5.3 0.9 
 
EUKARYOTIC 
Caenorhabditis elegans 38.2 0.8 17.1 43.8 
Drosophiila melanogaster 24.6 3.8 53.0 18.6 
Saccharomyces cerevisiae 28.7 0.5 55.2 15.6 
Mean 30.5 1.7 41.8 26.0 
Standard deviation 5.7 1.5 17.5 12.6 

Overall Mean 24.5 1.3 67.9 6.2 
Overall Standard deviation 3.8 3.3 10.8 7.8 

 
Table 3. PRED-CLASS results on 30 complete proteome sets.  The percent of proteins predicted to belong in the 

transmembrane, fibrous, globular, mixed class respectively are listed. 
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A thorough analysis of the PRED-CLASS predictions against all SCOP levels of hierarchy is 
currently in progress, paying much attention in cases where PRED-CLASS predictions are not 
consistent within the same fold, family or even superfamily. 

 
 TM FIBR GLOB MIX TOTAL

all-alpha 15 9 447 13 448
all-beta 1 12 588 1 602
alpha/beta 16 4 610 2 632
alpha+beta 11 4 553 0 568
multidomain 3 0 44 1 48
membrane and cell surface  28 0 27 0 55
small 0 43 187 0 230
Total 74 72 2456 17 2619

Table 2. Distribution of PRED-CLASS predictions along the seven classes in the first level of SCOP hierarchy based 
on the SCOPlt40pc set. 

Genome-wide application of PRED-CLASS 

With the great impact of genomic sequences into the public databases, the main goal of all efforts 
to devise reliable predictions, on aspects of protein structure and function, is the tractability of the 
developed methods to handle huge data sets with efficiency, with respect to computational time and 
resources.  Our method's time performance is rather reasonable, while no external parameters need 
to be defined by the end user, which makes automatic genome-wide predictions with PRED-
CLASS possible.  For example, the recently sequenced genome of the fruit fly Drosophila 
melanogaster 17, composed of 13604 protein sequences, was analyzed overnight on a Silicon 
Graphics O2 Workstation with 128Mbytes of main memory and one 300MHz R5000 processor. 

Thirty completed non-redundant proteome sets have been obtained from the 'Proteome Analysis' 
web site at the European Bioinformatics Institute (EBI) server (http://www.ebi.ac.uk/proteomes).  
The organisms whose proteomes have been analyzed ranged from simple archaea and bacteria to 
complex eukaryotic multicellular organisms, i.e. Drosophila melanogaster, and the results are 
summarized in Table 3.  A significant proportion of these sequences does not show clear sequence 
similarity to proteins of known structure or function and consequently remain uncharacterized. 

Even if no detailed annotation can be obtained for these 'unique' protein sequences, it is very 
interesting to answer the following questions: 'What is the (approximate) expected frequency of 
proteins in the transmembrane, fibrous, globular and mixed class in a newly sequenced genome?  
How are these frequencies correlated with the taxonomy of the studied organism and/or specific 
environment factors or cellular processes?'  Previous studies raised the question whether the 
proportion of membrane proteins encoded in a genome is correlated with its size or not 23,24 with 
contrasting conclusions. 

According to the predictions obtained by PRED-CLASS, even when averaging the frequencies of 
each class on proteomes of the same kingdom (Figures 1a, 1b, 1c), the standard deviations 
calculated are rather high (see Table 3) in order to support a generalized hypothesis.  This 
apparently leads to the conclusion that there is substantial variation even within the same domain of 
life and further phylogenetic relations as well as organism specific information should be 
considered before suggesting any hypothesis.  For example, if we examine the frequency of 
predicted transmembrane proteins in bacteria, where frequency values range between 19.9% 
(Xylella fastidiosa) and 29.7% (Rickettsia prowazekii), in accordance to 22, the mean and median of 
the bacterial distribution are equal (both 24.4%) and close to the mean frequency of the complete 
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 7

set of proteomes (24.5%), whereas the 'extreme' values lie approximately two standard deviations 
from the mean, indicating a normal-like distribution. 

Figure 1. (a) Mean proportions of proteins encoded in 21 complete bacterial genomes classified into transmembrane, 
fibrous, globular and mixed classes as predicted by PRED-CLASS. (b) Mean proportions of proteins encoded in 6 
complete archaeal genomes classified into transmembrane, fibrous, globular and mixed classes as predicted by PRED-
CLASS. (c) Mean proportions of proteins encoded in 3 complete eukaryotic genomes classified into transmembrane, 
fibrous, globular and mixed classes as predicted by PRED-CLASS. 

Most of the proteomes of archaeal and eukaryotic organisms studied in this work, fall between the 
limits imposed by the bacterial distribution for transmembrane proteins, with the only sound 
exception Caenorhabditis elegans (C.elegans), where about 38% of the genes is predicted to 
encode for transmembrane proteins.  This extremely high value cannot be counted as an artifact of 
our method as it is in agreement with previous works 23,24 following different strategies for this 
characterization.  Another strange finding considering C.elegans is the fairly large number of 
proteins predicted to belong to the mixed class (43.8%) combined with a vary small incidence of 
predicted globular proteins (17.1%).  These values are the maximum and minimum frequencies in 
the respective classes among all genomes analyzed in this study. Apparently, a detailed study of the 
C.elegans genome is necessary in order to explain these findings, combining several types of 
computer-based predictions with experimental knowledge. 

Discussion 

The classification of protein structure and function is a major goal in structural molecular biology, 
aiming at understanding the principles that govern the folding procedure, when 'linear' amino acid 
chains fold to a three dimensional structure, adapting a preferable shape for their desired function.  
Here, we have demonstrated PRED-CLASS, a robust system of simple artificial neural networks 
for generalized classification of proteins using information encoded in single amino acid sequences.  
Although protein sequence information is submitted to the system in machine-friendly numerical 
representations, the underlying principles are based on well-known attributes of protein structure. 

The high overall prediction accuracy (~96%), indicates that PRED-CLASS could be pertinent for 
single-sequence or genome-wide analysis, either as a stand alone application or as a part of more 
elaborate computational analysis.  PRED-CLASS could be utilized as an assisting tool in genome 
functional annotation projects, where some potential functions for a protein sequence become more 
possible while others are excluded after a correct prediction in the one class or the other.  Such 
generalized predictions could prove to be valuable in primary stages of threading methods or 'ab 
initio' protein structure prediction.  In the former, predictions could reduce the number of folds 
possibly compatible with an examined sequence, while in the later case structural constraints (e.g. 
existence of coiled-coil regions in fibrous or mixed proteins) are indicated, drastically improving 
execution time and performance of such approaches. 

As a stand alone method, PRED-CLASS has been utilized to analyze several complete proteomes 
from all the domains of life (archaea, eubacteria, eukaryots).  It is possible that there exists a 
tendency in eukaryotic complete genomes to code a larger proportion of transmembrane proteins, in 
agreement with previously reported work 23.  This finding could be explained by the invention of 
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 8

new protein functions through evolutionary mechanisms to accommodate the need of multicellular 
organisms for communication with the cell environment.  However, due to the insufficient 
complete genome information in this domain of life and lack of the appropriate experimental 
evidence it may be too early to make such an assumption. 

Plans for future work in the improvement and further extension of the proposed system are already 
in progress, resulting from some weaknesses of the method (described in the Results section) and 
the emerging need for divergent accurate predictors.  Transmembrane protein detection could 
apparently gain in sensitivity by filtering in a preprocessing stage secretory signal peptides, while 
sensitivity could be improved by re-training NN1 with mitochondrial transmembrane proteins as 
well. 

A feature useful to the end users would be to be presented with a reliability index accompanying 
each prediction, so that the 'quality' of individual predictions could be known before deciding 
further analysis steps.  A main problem with this task is that large data sets of proteins with reliable 
characterization into all 4 classes should become available. 

Although the time performance of the system's current version is adequate, a parallel 
implementation of PRED-CLASS would make genome-wide predictions faster by an estimated 
factor of 1.5-2.  A novel fold-class prediction method for globular, water-soluble proteins is 
currently in the final development and testing stages and is intended to be integrated in the 
PRED_CLASS system. 

Materials and Methods 

Information gathering 

A set of eleven proteins (6 transmembrane, 2 fibrous, 3 globular) with known structural 
characteristics has been used for the training of the first network, as described in detail elsewhere 
15.  Another set of 40 proteins (10 fibrous, 13 globular and 17 mixed, see Table 4) has been selected 
for the learning process of the newly employed neural networks.  This makes a total of only 50 
protein sequences, considering that the sequence with corresponding SProt ID  ELS_CHICK has 
been used in the training of all three networks. 

Another set of 387 protein sequences reliably assigned to the four target classes (147 membrane, 73 
fibrous, 55 globular, 112 mixed) served as a test data set to evaluate the predictive power of the 
system. 

The non-redundant set of 148 integral membrane proteins recently compiled by Möeller and 
coworkers 19 served as an ideal representative set of well characterized prediction targets of the 
transmembrane class.  For classification purposes, no detailed information concerning the location 
or the orientation of membrane spanning segments is necessary.  One protein used in the training 
process of the first component network (SProt ID: LECH_HUMAN) was present in this set and 
was therefore removed.  This set, which is larger than the initial test set on which PRED-TMR2 
was tested upon, has been used to gain a more realistic approximation of the performance of the 
first network classifier. 

The 55 representative globular proteins are a subset of the 65 well known globular proteins 
collected by Levitt and Greer 25: they are typical globular proteins varying in sequence and 
functional characteristics.  All 10 sequences present in the training set have been removed as well. 
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 9

FIBROUS GLOBULAR MIXED 
CA16_HUMAN ADHA_UROHA ABP2_HUMAN 
CA1E_HUMAN AZU1_METJ AINX_RAT 
CCC4 * C550_THIPA DESM_CHICK 
CH18_DROVI CATA_YEAST FILS_BOVIN 
CH19_DROGR CTR2_VESCR GFAP_HUMAN 
ELS_CHICK DYRA_CITFR IF3T_TORCA 
FBOH_BOMMO HBA1_ARCGA IFE_BRALA 
KR2A_SHEEP IGJ_HUMAN ION3_CARAU 
KRB2_SHEEP LYC1_CAPHI LAM1_HUMAN 
TPM1_CHICK RNPH_BACSU NEST_RAT 
 RUB1_PSEOL NF60_LOLPE 
 THTR_AZOVI NFM_MOUSE 
 TRYP_ASTFL PERI_RAT 
  PLST_CARAU 
  TANA_XENLA 
  VIM4_XENLA 
  XNIF_XENLA 

Table 4. SwissProt identification codes for sequences composing the training set used for NN2, NN3. CCC4 has not 
been deposited in SwissProt.  It is a structural protein found in the egg-shell of the fruit fly Ceratitis capitata 30 

A set of 130 sequences belonging to the mixed class were extracted from SwissProt (release 35), 
seeking for entries containing all of the following keywords in their 'FT' fields: 'HEAD', 'ROD', 
'TAIL', which correspond to typical domain definitions in known mixed structures.  All 17 
sequences used for the training phase, as well as an incomplete sequence (SProt ID IFEA_HELPO), 
have also been removed. 
The collection of fibrous proteins was based on expert knowledge deposited in the existing 
literature and is composed of typical representatives of this class, for example, different collagen 
types, non-cytoskeletal keratins, elastins, fibrous chorion proteins, all collected from SwissProt 
release 35. 

We have to note that retrieving representative sets of non-homologous fibrous and mixed protein 
sequences was not an easy task, because of the low number of proteins in these classes deposited in 
the public databases.  In addition, no safe automatic way exists to extract fibrous protein sequences 
from public databases, as there are no specific and selective keywords.  As far as the mixed class is 
concerned, performing a search keywords 'HEAD', 'ROD', and 'TAIL' within the 'FT' fields in 
SwissProt release 39, yielded just 55 more protein sequences.  For this reason, we have decided to 
contain all protein sequences from SwissProt release 35 that, to our knowledge, could fit into these 
two classes so that the test could be as general as possible, not taking possible sequence similarity 
into account.  As more data become available, further testing on larger data sets should be 
performed. 

We also considered that another useful test would be to screen the classification results in the 
context of the SCOP classification scheme of protein domains 21.  On these grounds, we chose the 
ASTRAL (Brenner et al., 2000) subset of SCOP (version 1.48) sequences with less than 40% 
pairwise similarity.  This set is composed of 2619 sequences of protein domains classified (in the 
first level of SCOP-version 1.48-hierarchy) in seven classes: 484 all alpha, 602 all beta, 632 a/b, 
568 a+b, 48 multidomain, 55 membrane and cell surface proteins and peptides, 230 small proteins. 

Protein sequence data collected for the training and evaluation phases of the PRED-CLASS system 
are available over the WWW at the URL: http:/o2.biol.uoa.gr/PRED-CLASS. 
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 10

System Architecture and Component Neural Network topology  

The overall classification system consists of three successive multilayer feedforward (acyclic) 
artificial neural networks (NNs, Figure 2), each one with a single hidden layer, where the 
computation takes place.  NN1 has been previously described 15.  Some common features shared by 
all three NNs are: 

i) 'Full Connectivity', as every node in each network layer is connected to every other node in the 
adjacent forward layer. 

ii) Small number (2,3,3 respectively) of nodes in the hidden layer, those that are responsible for the 
actual learning process carried out by each component network. 

iii) The 'activation function' on each node is a non-linear sigmoidal logistic function 26 of the 
weighted sum of all synaptic weights (plus a constant bias, not shown in Figure 2). 

iv) Output values are normalized in the 0-1 range. 

Figure 2. PRED-CLASS arhitecture: Individual component neural networks and their layered structure.  Input type 
for each subsystem, network connectivities, information flow and decision scheme for the output layer of each NN are 
indicated. 

In addition, NN2 and NN3 have an input layer of 60 nodes, which means that 60 parameters for 
each sequence are required to feed the network during the learning or classification operation.  
Before the learning process, all network synaptic weights are initialized to small random values. 

Using error backpropagation 27 as the learning algorithm for each NN, two passes of computation 
are required during the training stage: A forward pass, where all synaptic weights remain unaltered 
and network signals are computed on each neuron in an hierarchical order by the activation 
function.  The value on the output node is then compared with the desired network response 
(ideally 1 for positive classification, 0 for rejection) which corresponds to the already known class 
of the parameter vector presented to the network.  An error signal is computed as the difference of 
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the obtained and the desired network output, which switches-on the backward pass, starting at the 
output layer, propagating error signals to adjacent backward layers of neurons, performing an 
adjustment of synaptic weights.  The target of this phase is to minimize the error value, following a 
gradient descent strategy.  Several sequential iterations, with randomized order of presentation of 
training examples might be necessary, until the network is considered to have converged, 
stabilizing the error rate below a desired threshold, ideally leading to a global minimum. 

By keeping the number of synaptic weights as small as possible the training process is lead faster to 
convergence, since less free parameters have to be readjusted for optimization in each 
backpropagation cycle.  At the same time the number of training examples required to achieve good 
generalization (small fraction of classification errors) can be reduced, as it is reported to be 
proportional to the number of free parameters 28. 

In the prediction phase, just like the forward pass in learning, network weights are globaly fixed 
(those obtained after the convergence of the training process) and the NN is presented with an 
'unknown' example for classification.  In the same hierarchical manner, the input signal propagates 
once in the forward direction and the output value constitutes the network's decision based on the 
already studied training examples. 

Training Parameters 

In our study, those proteins classified as non-membrane by NN1 are candidates for classification by 
NN2.  After a careful inspection of the sequential and structural characteristics of several fibrous, 
globular and mixed proteins (data not shown) the following 60 input parameters where chosen as 
an appropriate input to NN2: 

(i) 30 values corresponding to the composition of the examined sequence in all 20 residue types and 
10 different groupings of residues sharing common structural and/or physicochemical properties.  
The amino acid groupings used in this study were the following: AVLIFWDEQMHK (α-helix 
formers), VLIFWYTCQM (β-sheet formers), GPDNSCKWYQTRE (β-turn formers), 
CVILMFYWAP (hydrophobic), DEHKRSTNQ (polar), HRKDE (charged), HRK (positively 
charged), DE (negatively charged), HFWY (aromatic) and VLIA (aliphatic). 

(ii) 30 values corresponding to the highest intensity for periodicities detected for each residue or 
group type by a Fast Fourier Transform (FFT) algorithm 29.  The implementation of the FFT 
algorithm within this method is applied with the default parameters, encoding protein sequences in 
a numerical string of 0s and 1s to note the absence or presence respectively of any desired residue 
type in a specific position in the examined sequence.  Higher intensities for a particular amino acid 
type (or group) suggest the existence of an underlying periodic pattern in which this residue type is 
involved. 

These two types of parameters clearly reflect patterns of composition as well as relative 
distributions of amino acid types along sequences and repetitive elements.  Although such an 
approach might seem rather simplified, NNs are capable of capturing subtle patterns in available 
data and succeed to recognize weak underlying signals 'buried' in the examined data. 

The output neuron of NN2 is considered activated (or 'fired' in the NN terminology) when its value 
(O2) is O2≥0.5, indicating a positive case of a fibrous protein.  In the opposite case (O2<0.5) the 
sequence is further examined by NN3, which has exactly the same topology and accepts identical 
parameters to NN2.  A result O3≥0.5 in NN3's output node indicates a case of a globular protein, 
otherwise the protein is classified as mixed. 
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