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Abstract. Porous solids built of fractal clusters can be obtained by destabilization of quasi-
monodisperse silica sols. Small-angle neutron scattering, associated with transmission-electron
microscopy,

was used for a structural investigation of these aerogels in a broad length scale. We
present a quantitative analysis of the data for materials with different particle sizes and
polydispersities. The analysis of the wavector region corresponding to the crossover between
surface and volume scattering is especially emphasized.

I. Introduction.

The study of the strtlcture of iuhomogeneous systems by light, X-ray, and neutron scattering
is a matter of considerable scientific interest. The most famous approach proposed by

Guinier ill describes the elastic scattering of X-rays as the sum of the intensities scattered by
individual particles. The method is commonly used for the characterization of solutions and of

porous aggregates of particles.
More recently, scattering techniques were used for the investigation of the structure of

complex systems such as polymers [2] and gels [3]. In the following, we will restrict our

discussion to structures obtained by the sol-gel route. In such materials, two important length
scales should be distinguished. The first is related to the elementwy blocks, which are

generally more or less homogeneous particles, of average size ro. These particles assemble to

form inhomogeneous clusters, up to a correlation length f. In the range of length
I, ro ~

i
~

f, a large number of gels exhibit a fractal structure. At scales larger than f, these

materials can be described as an almost homogeneous packing of clusters. Correspondingly,
three distinct regimes are observed in the wavevector dependence of small-angle X-ray
(SAXS) and neutron (SANS) scattering intensities, I (q). At small q, qf

~
l, in the so-called

Guinier regime, I(q) is weakly dependent of q. The power-law dependence, I(q) cc
q~~,

observed for I/f « q « I/ro is the signature of a fractal structure, with a fractal dimension D.

At larger q values, qro» I, the scattering originates from the surface of the particles : the

Porod regime, I (q) cc q~~, is observed.

(*) URA CNRS n° ii19.
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The main difficulty in the theoretical models is the description of the behaviour near the

crossovers between the three above regimes. Several approaches have been proposed [4, 5],

and have been used successfully to describe measurements on protein solutions [6] and fumed

silica aggregates [5]. However, experimental observations such as the shape of the Guinier-to-

fractal crossover in base-catalyzed silica aerogels [7, 8], as well as the crossover between

fractal and Porod regions in colloidal gold aggregates [9] cannot be satisfactorily described by

the above theories. Also, the question of the relation between the value of q at the latter

crossover and that of ro is still open, especially in polydisperse systems.

In this paper, we present experimental data on a well-characterized model system of silica

aerogels. Such materials, which are highly-porous single-phase solids, are ideally suited for

structural studies of inhomogeneous media. The SANS data will be compared to electron-

microscopy results, and fits to the theoretical expressions will be attempted in a range of q

covering the three above regimes. In the discussion, we will show that modified forms of the

above models have to be taken into account to allow a better description of the crossovers.

2. Sample preparation and characterization.

The silica gels were prepared by destabilization of commercial solutions (Ludox, trade mark

of E.I. DuPont de Nemours & Co.). In these solutions, spherical pa~ides of dense

amorphous silica are dispersed in an alkaline-water solvent. The stability of such aquasols
results from the negative charge of silica spheres, due to the small amount of sodium ions. We

used three different sols of quasi-monodisperse particles, hereafter referred to as SM, LS, and

TM, with nominal pa~icle radii ro of 4, 7.5, and 12 nm, respectively. The sol is destabilized by
decreasing the pH-value to 5.5. Several samples are prepared simultaneously from the same

sol diluted with various amounts of ethanol, in order to obtain different densities of the final

gels. Gelation occurs in a drying oven at 60°C. The gelation time varies with silica

concentration and pa~icle diameter. At that stage, the solvent in the wet gel is a mixture of

water and ethanol. In order to obtain an aerogel, we fu~her process the gel following Kistler's

method [10]. The wet gel is first washed with pure ethanol and then supercritically dried. In

this way, we have prepared three series of low-density samples, each of them having different

pa~ide sizes. The densities range from 70 to 400 kg.m~~
In order to increase the microstructure range of dry gels in a given series, was also prepared

«
xerogels

»
from the same wet material. In this case, the solvent is allowed to evaporate

slowly, in ambient conditions. In contrast to supercritical drying, the gel is then submitted to

capillary forces which induce profound changes in the structure of the solid skeleton. The

main effect is a shrinkage which leads to macroscopic densities of about 1000 kg.m~ ~.

Transmission electron microscopy (TEM) observations were performed using a Jeol 200CX

instrument. The specimens studied were small pieces of aerogel obtained by crushing, and

deposited on a carbon-coated copper grid. Thin regions of the aerogel transparent to

electrons were imaged in the microscope. A typical micrograph is shown in figure I. The

sample, of bulk density 250kg.m~~, shows the structure of a very tenuous aggregate of

spheres, with an average radius ro m
13.5 nm. The polydispersity is small, 6ro

=

2.5 nm. It is

clear in the figure that the spherical shape of the sol pa~icles is preserved in the aggregates
which constitute the aerogel. It must also be noted that the connection between spheres is

done through narrow necks.

In the case of these colloidal aerogels, TEM provides clear structural information at the

particle scale. This makes these materials a very interesting model system for the

interpretation of elastic scattering experiments.
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Fig. I. Transmission electron microscopy picture fkom a TM colloidal aerogel of density
250 kg.tn~ A mean radius r~

=

13.5 nm and a polydispersity Ar~
=

3 nm, defined as the difference

beDveen the largest and the smallest radius observed, are obtained.

3. Summary and discussion of theoretical predictions.

The theoretical description of the whole scattering curve must be made by calculating the

space-Fouher transform of the density-density correlation function of the structure. This is in

general a very difficult task, even on rather simple fractal models.

In the classical formulation [11] established for isotropic disordered systems of identical

spherical particles, the intensity P (q) scattered by one element is calculated first from the

Fourier transform of p(r), the scattering-length-density distribution :

F(q)
=

~°
p (r) ~~~ ~~~~

4 arr~ dr (I)
o qr

The so-called form factor for an homogeneous pa~ide (p (r)
= p ) is then obtained from the

~~~"~ °~ ~~~~

~

[ sin (qro) qro cos (qro) 2

P (q)
~

v0 p 3
~ ,

(2)
(qro)

where Vo is the particle volume. The second step consists in evaluating the Fourier transform

S(q) of the pair-correlation function g(r) of pa~ides, each of them being assimilated to a

point scattering an intensity P (q). Following reference [4], in a fractal, g(r) can be written

as :

~~r~ °~

j r~ ~ exP~- r/f> ~3>

Here f is a fractal persistence length, which is introduced phenomenologically. From equation
(3) and a proper normalization of g(r), one gets [4]
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where r is the gamma-function. The intensity scattered by a fractal assembly of N particles

can now be written as :

I(q) CONS(q)P(q). (5)

A typical example of calculation of I (q is shown as the dashed-dotted line in figure 2. As far

as f»ro, the three above-discussed power-law regimes are observed, and the two

corresponding crossovers occur near q~
=

lit and
q~~ =

I/ro, respectively. The oscillations at

large q are due to the form factor. Equation (5) has been used successfully, in particular to

describe the fractal region and the crossover to homogeneity (see, e-g-, Refs. [6, 8]).

However, it must be noted that, in the vicinity of q~, I (q) in equation (5) can only decrease

with increasing q. Thus, this description cannot account for the bump observed in base-

catalyzed aerogels [7, 8]. This bump must originate from correlation effects in an assembly of

clusters of average size f. Such interferences are not included in the above formulation of

g(r) [12]. A similar difficulty occurs in the analysis of data near q~~.
As the particles are

treated as «
point

»
scattering sources instead of solid elements of finite size ro, interference

effects in the vicinity of
q~~ are neglected. A treatment of this problem has been proposed by

Sinha and collaborators [9]. The amplitude of the
«

fractal
» term in equation (3) is taken as

an adjustable parameter. This is done formally by replacing ro in the normalization factor of

equation (3) by an adjustable parameter ri. These authors also included in g(r) additional

terms describing the pile-up of hard spheres. In this case, g(r) is set equal to 0 for

0
< r <

2 ro. The main new element of the model is a correlation between spheres introduced

through a 3-peak at 2 ro :

g (ri
=

[
(zj/16 arrj) 6 (r 2 rot (61

io4 (1/j
-,

~ '~,

,
)_

~, '_, ~ /~~

~~2 Zl
=

2 /"
~

Q.
r~ =2r~

~/ P(q)
d

i z~=2 :

-=~
11

~
~F "~o

+C
3

10'~ ~ ~F
- o

0'~

io~3
Wave vector q

Fig. 2. -
of

e

from quation
(dashed-dotted

line),
and from the

model
of reference [9]

with parameter

values. The solid line
represents

the
form-factor ontribution,

equation (2).
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Here, V is the scattering volume, and zj is the average coordination number of particles in the

first shell. Several examples of calculations off (q) according to this model with different

values of the parameters are shown in figure 2. The main difference with the results obtained

from equation (5) above is the appearance of a dip near q~~.
As expected, this dip becomes

sharper, and shifts to larger values of q with increasing coordination number. The larger-
order oscillations introduced by the Fourier transform of the 3-peak (Eq. (6)) match those of

the form factor, as shown in figure 2. On the other hand, the effect of the factor multiplying
the

«
fractal

» term of g (r) is to change the amplitude of I (q ) at q < q~~.
It also shifts the value

of q at which S(q) departs from the fractal-power-law behaviour at large q's. In spite of the

above improvement of the model, some departures of the fitting line from experimental data

are still observed in figure I of reference [9], for values of q ~ q~~.

In the following, we will present an analysis of SANS data on colloidal solutions, aerogels
and xerogels having very different structural characteristics. In particular, we will concentrate

on the description of these results in the high-q region.

4. Experimental results and discussion.

SANS experiments were performed on the PAXE spectrometer at the Laboratoire Ldon

Brillouin in Saclay, France. We used a combination of two incident wavelengths and two

sample-to-detector distances in order to cover the q-range from 3 x10~~ to 0.3 I-'. The

data were corrected from background and empty-cell contributions, and normalized by the

spectrum of a purely-incoherent scatterer, which was water in this case. This also provided a

correction for detector efficiency.
SANS data in colloidal aerogels give clear evidence for the experimental behaviours

described in section 3. A log-log plot of the results for the lightest and heaviest samples of

each aerogel series is shown in figure 3. In the small-q region, the Guinier regime is observed

for the heaviest samples. At larger q, the power law I (q) cc
q~~ extends over about one

order of magnitude for the three low-density samples. This indicates a fractal structure, with

D
=

1.8, independent of the size of the primary particles. The analogy of this value of D with

that obtained by numerical simulations of diffusion-limited cluster-cluster aggregation [13, 14]

suggests that this mechanism dominates the gelation process in colloidal aerogels. As already
observed on different aerogels [8], the extension of the fractal range decreases with increasing

density. The departure from the power-law behaviour, indicated by the arrows on the figure,
shifts to larger q with decreasing particle diameter. The oscillations predicted by equation (2)

are observed in the large-q region. In this regime, the similarity between I (q) for samples of

different densities belonging to the same family is evident. In contrast, the amplitude of the

oscillations is very different for the different families of samples. This is related to the

polydispersity of the particle sizes, which increases with decreasing ro, as known from TEM

measurements (Tab. I).

To start with a quantitative analysis, figure 4 shows the comparison of SANS data obtained

with several samples prepared from the same TM sol. In the diluted sol, the silica particles can

be assumed to scatter neutrons independently. Thus, the upper curve of figure 4 was fitted to

the calculated form factor, equation (2). The best fit is shown as a solid line. The parameters

are ro "

13.5 nm and 8ro
=

1.6 nm, and an amplitude coefficient. The small departure of the

fit from the experimental data at small q is a signature of correlation effects between adjacent
particles. The same calculated curve, shifted vertically to adjust the amplitude coefficient, has

been compared to the three other experimental data sets. The excellent agreement at large q
shows that the size, the shape, and the dispersity of the particles are conserved in the

concentrated sol as well as in the dry gels. The main effect of the higher density in the
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TEM determination

a p D ro 6ro

(nm)
nm)

(nm) (nm)

TM 0.76 5.0 1.8

fixed

LS

fixed

SM

fitted
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Fig. 4. SANS results for TM samples in &e sol and gel states. The solid line is a fit of the upper

experimental curve to equation (2). Symbols are as in figure 3.

concentrated sol and in the xerogel is a drop of the intensity at small q due to interferences,
resulting in a peak near q~~.

This peak shifts to higher q with increasing density. For the

aerogel, the power law associated to the fractal structure is observed on the left-hand side of

the curve. It must be noted that, even in this case, the calculation of the form factor is larger
than the experimental I (q) near q~~.

Thus, as the structure factor in equation (4) is always

larger than I, it is clear that a satisfactory fit of the whole curve by equation (5) cannot be

obtained, as could be expected from the discussion in section 3. The above point is illustrated

by a comparison of the solid line in figure 3, to I (q ) results for the lightest TM sample. As the

values of r~ and 6r~ are fixed by the fit of the form factor to the high-q region of the curve, the

only adjustable parameters in equation (4) are D and f. The observation of a power-law
dependence of I(q) down to the lowest values of q investigated shows that f has little

influence on the intensity curve. On the other hand, D was taken equal to 1.8 from the slope
of the straight line. Other values of D do not improve the fit.

The result of one attempt at describing the same data following the method of reference [9]

is shown as a dashed line in figure 3. The presence of an amplitude parameter in the
«

fractal
»

term improves the adjustment in the low-q region. However, as far as reasonable values are

assumed for the coordination number zj, an oscillation which is not present in the

experimental data is observed in the calculated curve near q~~.
This peak is associated to the
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first-shell coordination term in g(r) given in equation (6). This formulation assumes a single

value of r~, and zj is also taken as an adjustable constant. In fact, in addition to the

distribution of r~ due to particle polydispersity, zj is always widely distributed in a random

fractal. This is clearly illustrated in figure I for the aerogel. Introducing a distribution of these

quantities from site to site would result in a modulation of both the position and the amplitude

of the oscillation in I (q).
In our opinion, a more precise description of the data in the q~~-region would imply a better

knowledge of g(r) in this length domain. In disordered materials, this is obviously a very

difficult task, and can only be solved empirically at this time. The main effect observed

experimentally either on concentrated solutions or on dry gels being a drop of intensity at

q < q~~, we have fitted our data by introducing in equation (5) an additional factor of the

form I
a

exp[- (qrolar)fl]. Here,
a

is linearly related to the amplitude parameter of the

«
fractal

» term in the formulation of reference [9]. The exponent p govems the shape of the

amplitude variation near q~~.
Interferences due to the finite size of the particles can be the

physical origin of the intensity dependence described by the above expression. Obviously,
such a factor can only be used near q~~, as the interferences are properly accounted for at small

q in equation (4). The recourse to it is justified here by the limited extension of the data below

q~~.
It must also be noted that the amplitude coefficient of the surface-scattering term in

equation (3), as well as that of the
«

fractal
» term in equation (4) are calculated for an

assembly of N isolated particles. Thus, the need for a different intensity coefficient in the low-

q and high-q region could possibly be related to a change in the surface-to-volume ratio

o

TM r~ =135A

DENSITY
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Fig. 5. Log-log plot off (q) x q~ for three colloidal samples, emphasizing the details of the volume-to-
surface crossover, and the oscillations at large q. The arrows indicate the value q =

ar/ro for each

sample. The intercept between the q~~ and q~~ lines defines the value of q~.
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between isolated and interconnected elements. Both effects above may occur simultaneously.
The results of fits using equation (5) modified by the above factor are shown in figure 5. To

emphasize the oscillations, the data are plotted as log (I x
q~)

vs. log q. The details of the

curves are now well described. A value of D close to 1.8 is obtained. As shown in table I, the

fits give for all the curves almost constant values of the parameters a
and p, demonstrating

that the nature of the crossover near q~~
is sample independent, and likely related to one of the

intrinsic mechanisms proposed above. The result a >
0.7 corresponds to r~ m

2 ro. In view of

the arguments used in reference [4] to calculate the amplitude of the fractal term, this is an

indication that the fractal scaling of mass starts at a length scale corresponding approximately
to 2 ro.

Finally, we want to discuss the position of the surface-to-volume crossover, which is often

used to determine an average particle size in gels. For an aggregate of well-defined

monodisperse particles, this crossover can be expected to occur when the neutron wavelength
is close to the particle diameter, q m

w/ro. This value is shown as an arrow for three aerogels
with different particle sizes in figure 5. For the quasi-monodisperse TM samples, the arrow is

reasonably close to the point where the experimental data depart from the I (q) oz
q~~ line.

With increasing polydispersity, this departure occurs at smaller values of qro. If we define the

crossover as the value q~ where the extrapolations of the q~~ and q~~ laws intercept, this

definition can also be used for a broad class of aerogels. In particular, q~ is the only
quantitative crossover value for materials with polydisperse, or poorly defined primary
particles, such as those studied in references [7, 8]. For our colloidal samples, the values of

q~ ro, given in table I, are sample independent for aerogels belonging to the same series, but

vary slightly from one series to the other. This shows that q~ can only be considered as an

indication from which a precise value of the average particle size cannot be deduced.

In conclusion, the precise knowledge of the form, size and polydispersity in these materials

has allowed a quantitative study of the various features observed in SANS data. The

observations call for further studies, in particular for numerical calculations of g(r) in the

ro range on realistic aggregation models.
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