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Abstract. Tethered phantom membranes with quenched disorder in the internal preferred
metric are studied in the limit of large embedding space dimension d

- oc- We find that the

instability of the flat phase previously demonstrated via <-expansion is towards a spin-glass-
like phase which we call the crumpled glass phase. We propose a

spin-glass order parameter
that characterizes this phase and derive the free energy which describes the crumpled, flat and

crumpled glass phases of the disordered membrane. The crumpled glass phase is described by
local tangents which vanish on average, but display

a nonzero Edwards-Anderson spin-glass
order parameter. From the saddle point equations at large d we obtain the equation of state,
phase diagram and the exponents characterizing these phases. We estimate the effects of the

higher order corrections in the 1Id expansion by utilizing previous results for pure membranes.

We use Flory arguments to calculate the wandering exponents and discuss the relevance of

self-avoidance in the crumpled glass phase.

1 Introduction.

Recently there has been considerable interest in polymerized surfaces which are two-dimensional

generalizations of linear polymers [2, 3]. Unlike polymers these higher dimensional general-
izations are expected to exhibit both the crumpled high temperature phase and

a
flat low

temperature phase with
a second order phase transition between the symmetric and broken

phases. The flat phase is described by singular elastic moduli renormalized by the nonlinear

interactions between in~plane and out-of-plane fluctuations of the random surface [4-6]. The

existence of the crumpled and flat phases has been verified in computer simulations of a non-

self-avoiding "phantom" membrane [7~9]. The crumpled phase has also been recently seen in

Monte Carlo simulations of self-avoiding tethered surfaces modelled by impenetrable flexible

(*) Supported by Fannie and John Hertz Graduate Fellowship.
(°*) On leave from Laboratoire de l'Ecole Normale Sup6rieute (Paris), Laboratoire propre du CNRS

assorts £ I'ENS et £ l'Universit4 Paris Sud.



600 JOURNAL DE PHYSIQUE I N°5

plaquetes [10]. A red blood cell with spectrin attached to the lipid cell wall is an example of

a biological tethered surface and fan be described by these theories ill]. Inorganic examples
of tethered surfaces include graphite oxide sheets in an appropriate solvent [12] and the "rag"

sheetlike structures found in MoS2 (13]. For other experimental realizations, see reference [3]-
The first study that investigated the efsects of internal disorder on these random surfaces

was done by Nelson and Radzihovsky[I] They considered the effects of quenched impurities,
dislocations and disdinations on these structures and modelled the disorder by random local

fluctuations in the ground state internal metric. Within the e =
4 D expansion it was found

that the impurities and dislocation (uncorrelated) disorder leads to a T
-

0 instability of the

flat phase. For D < 4 this instability results from the addition of any amount of disorder,
while for D > 4 there is a

finite threshold at low temperatures. For finite temperatures the

flat phase was
found to be stable to the addition of weak impurity disorder. The disdination

(long-range correlated) disorder, however, was found to lead to an instability toward strong
disorder region at all temperatures.

Although the instability was to a strong disorder region that lies outside the range of validity
of the e expansion there were some indications that it leads to a "spin-glass" phase [14]. One

such indication was the softening of the renormalized bending rigidity ~R as T
-

0 leading to

many different nearly degenerate configurations characteristic of a glassy phase. Because of the

frustration induced by the random preferred metric, the bending energy cannot be minimized

simultaneously with the elastic energy resulting in a random buckling of the membrane out

of the plane. These properties were argued to lead to Edwards-Anderson Ising-like spin-glass
[15-19] with up and down puckers of the membrane playing the role of spins with random

interactions. This type of spin~glass phase (if it exists) would probably appear at intermediate

strength of disorder, and would describe a roughened membrane with a nonvanishing average

tangent field. It is thus appropriate to think of this phase
as a flat spin glass. Work is currently

in progress to investigate its existence and properties.
The fact that quenched internal disorder

can drastically modify the thermodynamics of

polymerized membranes was recently demonstrated experimentally by Mutz, Bensimon and

Brienne [20]. They observed that partially (heterogeneous) polymerized vesicles undergo upon
cooling

a
transition to a folded rigid stucture. They interpreted their experiment as an

evidence

for a transition towards
a

crumpled spin-glass-like state. Although it is not yet clear which

model is appropriate to describe their experiment, it provides a strong motivation to look for

possible models of crumpled glass phases.
A low temperature instability toward strong disorder was also found in the random-axis

model [21] which is somewhat analogous to the present problem with the unit normal to the

surface playing the role of the spin. For these systems an e expansion led to flow diagrams very

similar to the
ones

found for disordered membranes in reference ill with
a low temperature

instability toward strong disorder region. Further studies of this problem have led to the

identification of the new phase of a random-axis model with an isotropic spin-glass phase
[22-27]. These results on spin systems were in part the original motivation for this work and

suggested to us that the flat phase of the membrane is unstable to a crumpled spin-glass phase

[28].
Here we propose that the model of refere w@ exhibits a crumpled spin~glass phase charac~

terized by a vanishing average tangent field (bar;) but with a nonzero crumpled spin-glass order

parameter (bo~r;)(bpr;). We investigate this conjecture by utilizing a
I/d-expansion [29,30].

In the limit of large embedding dimension, d
- co, the pure model can be solved exactly.

[6] However, for a
disordered membrane even in the d

- co limit the exact solution of the

spin-glass phase seems intractable. The difficulty arises from the tensor structure of the spin-
glass order parameter which leads to a

problem of matrix field theory, a notoriously difficult
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problem. To make progress we
make an approximation in the spirit of mean-field theory in

which we ignore the fluctuations in the tensor spin-glass order parameter. We note however

that since we consider large d we can still integrate out exactly the fluctuations of the tangent

vectors, thus obtaining the tree level effective free energy for the spin-glass order parameter.
Within this theory we find an Edwards-Anderson-like crumpled spin-glass phase.

This paper is organized as follows. In section 2 we
introduce the model of reference ill

for the disordered tethered phantom membrane. Using replica "trick"
we

derive the effective

free energy for this system to the leading order in I Id with the approximation alluded to in

the previous paragraph. The saddle point equations, within the replica symmetric ansatz, are

obtained in section 3 and
are

analyzed in section 4 for the pure and the disordered membrane.

We determine the phase diagrams and calculate the critidal exponents describing these phases
and the transitions. In section 5 the results of the calculations

are
discussed. We consider the

effects of the higher order I Id corrections to our results. Using the Flory type of arguments we

estimate the radius of gyration exponent in the crumpled glass phase. It determines the scaling
of the membrane's size with the internal dimension, inside the embedding space. The relevance

of the self~avoiding interaction is also considered. In section 6 we summarize our results and

pose many interesting unaswered questions as the subjects for future investigations.

2. Effective free energy in the large d Iin£t.

We use the disordered free energy with the disorder introduced through the local deviations

bc(x) in the ground-state metric, as was first proposed in reference iii. The probability of

a
particular configuration for fixed disorder configuration is proportional to exp(-Fc[fl/T),

where

Fc[fl
=

/ d~z I) ~d(i7~fl~ + ~d(bo~i. bpf- bo~p[1+ 26c(x)])~
4

+~ ld(b~F. b~F-
[1+26c(x)])~j

(2.1)

Above, ~ is the bending rigidity, and ~ and I are the elastic Lamd coefficients of the mem-

brane. We will restrict our considerations to impurity (uncorrelated) disorder and take 6c(x)
to be a zero mean Gaussian quenched random field, with probability distribution P[bc(x)]

cc

exp (- / ~z6c~(x)j.
It describes random dilations and compressions in the locally pre-

2a

ferred metric, bo~i. bpi= Sap11 + 2bc(x)], due to disorder. In the above we have rescaled the

elastic moduli by letting ~, l
-

~d, ad, to obtain sensible and nontrivial results in the limit

d
- co.

To simplify the calculation
we introduce an auxilary field xo~p and perform a Hubbard-

Stratanovich transformation on the quartic part of the free energy [31-30].

~Cl'> Xafll
"

/ d~~
~

~lv~fl~ + Xafl (baf'bflf- Sap)
Y~(Xafll~

fl~(Xaal~

d~~~ ) ~~~ 6cbaF da
j

(2.2)
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In the above a =
1/(2~) and fl

=
-1/(2~(2~ + Da)).

The disorder-averaged effective free energy Fe~ is given by the average of the logarithm of

the partition function for each-configuration of disorder, Zc, with the weight P[bc]

jfe~
=

/
l7bcP[bc] In Zc

,

(2.3a)

Zc
=

/
Vi /l7xapexp(-jfc[F, xap]) (2.3b)

We use the replica formalism [15] to treat the disorder. As usual
we

introduce
n copies of

fields land xap labeled by the replica index
a

with the total free energy given by the replicated
version of the free energy equation (2.2). The relation to the original nonreplicated free energy

is established through the identity

lnZc
=

lim
~~

(2A)

Assuming that we can interchange the thermodynamic limit and the limit
n -

0, we average
Zf over the disorder obtaining the replicated free energy involving only the annealed fields,
but generating a quartic coupling between different replicas.

< zl >~c =

/
Via /Dxa«p exP (-jflla,xa«pl)

,

(2.Sal

Fji~, xa«p]
=

f
Folla, xa«pl ~) L / d~T(b«ia b«ia)(bpfb bps) (2.5b)

a=I a#b

In equation (2.5b) Fo is the replicated free energy for the pure system, bc
=

0. In the above

we
defined an

effective disorder parameter b
=

(2~ + Dl)~a and redefined I
-

I db/T in

order to eliminate the replica-diagonal terms from the disorder term.

We propose that the crumpled spin-glass phase is characterized by the order parameter
bard;bprbj

a
composite quadratic operator of tangent fields from different replicas. The crum-

pled spin-glass will be characterized by the vanishing of the average tangent field, < tad; >=

< bard; >= 0 and a nonvanishing average of the spin-glass order parameter, < tad;tbp; ># 0.

To construct the free energy, which is
a

function of this spin-glass order parameter, we
add

to the free energy equation (2.5b) a coupling dhabap;jbarajbprb; to an external field habap;j.
In the standard procedure one constructs the effective free energy by integrating out all of the

degrees of freedom and performs a Legendre transform with respect to the external field.[31]
However, here we will bypass this procedure, and will utilize a more convenient method similar

to the one used to derive the #~ eTective free energy from the lattice Ising model.

Ignoring the unimportant constant term we complete the square between the external field

term and the quartic disorder term, obtaining
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We now perform a Hubbard-Stratanovich transformation thereby introducing another set of

fields, Qabap;;
,

(15] and find

< z"jhabaflijl >6c "

/l'la /l'Xaafl /l'oabafltj eXP l~jflia> Xaafl>
abafltjl)

(2.7)

where

n

Fjia Xaafl Qabaflijl
"

~ Fo jia Xaafll

a=I

+ £ / d~Z
~(Qaboflij)~

$Qaboflijbo~aibfl~bj
aboflijhaboflijj (2.8)

a#b

We observe that Qabapi; couples linearly to the external field. This leads to its physical
interpretation as the crumpled spin-glass order parameter.

We are now in the position to construct the effective free energy, by integrating out the

fluctuations in the la degrees of freedom which now appear only quadratically. For now we will

work in vanishing external fields. In order to describe the crumpled, the flat and the crumpled
spin-glass phases all within the same analysis, we will allow for the possibility of a nonvanishing
tangent order parameter, given by baf$. We expand the free energy in equation (2.8) in terms

of the fluctuations b£a about this ground state, ia
=

f~ + bra and integrate them out. We

obtain the expression for the free energy that is correct to the leading order in I Id

nfe~l<>Xaofl> Qaboflijl
"

f / d~~ (j ~lv~<l~ +
j

Xaofl (doe bfl< SOP)
X~(Xaofl)~ l~(Xaoo)~j

a=I

+ £ / d~z
~(Qab«p;;)~

$Qab«p;;b«<;bp~t; + )~lYin
mab;;lj

,

(2.9a)

a#b

Mabij
"

babbij(~A~ ooxaaflbfl) + w°ooabaflijbfl (2.9b)
~

Note that all the linear terms in f~ have vanished by the definition of f~ being the minimum of

the effective free energy. The matrix Mab;; is dx d and hence the last term in the equation (2.9a)
coming from the fluctuations in the field $ is proportional to d,

as are the tree level terms of

the free energy.
Diagramatically, the bi~ fluctuation contribution to the free energy comes from the sum of

all the one-loop graphs constructed from the bra propagators.(see Fig. I) In this language the d

dependence of the free energy is easy to understand. The propagators are proportional to I Id
while all the vertices are proportional to d and since there is an equal number of propagators
and vertices this gives no net powers of d. However there

are
d D cs d transverse fields

that contribute to the loop, leading to the contribution to the free energy that in d
- co is

proportional to d.

In the pure case b
=

0 one can construct a systematic I Id expansion by also expanding the

field Xaap around the minimum of the free energy as we did with £a and integrating out the
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Fig. 1. One-loop diagrams contributing to the effective free energy. All the terms are proportional

to d.

fluctuations. It is easy to see that since the free energy has an overall power of d, the loop
expansion of the effective free energy will correspond to this I Id expansion with the sum of

n-loop diagrams corresponding to a
(I Id)" term [29~30].

However for b # 0, because of the tensorial structure of the field Qabap;;, the fluctuations

in this field may lead to corrections to the effective free energy which are of the same leading
order in I Id

as
the tree level graphs and the b$-graphs in figure I. Summing up these graphs

for the Qabap;j fluctuations is equivalent to a calculation of an effective free energy for
a matrix

model, which is a well known unsolved problem [32,33].
To compute the effective free energy we use the saddle point method in the equation (2.9a)

and take xaap and Q~bap;; at their saddle point values. For Xaap this is exact to the leading
order in I Id. However for Qabap;; this approximation is equivalent to considering the spin-glass
sector of the free energy in mean-field approximation. It is

an
improved mean-field theory since

the tangent fluctuations are treated exactly in large d and the theory is exact for a -
0.

3. Saddle point equations in d
- co

Emit.

The values of the order parameters bo~f~ and Q(hap;; are determined by the extremum of the

Fe j j, together with the equation of constraint relating Xaap to these order parameters.
Assuming that the replica symmetry breaking does not occur until higher order in I Id,

as

it happens in the random anisotropy axis model, [34-35] we look for the saddle point replica
symmetric solution of the following form,

f~
=

(z°ia
,

(3. la)

xl«p
=

x6«p
,

(3.ib)

Qlboflij "
~6afl6ij(~ dab) (3.lC)

This ansatz leads to an integral expression for Fe~,

Fe~((, x, q) /L~
=

~ ~
nDx((~ l) X~(o + flD) + n(n 1)

~
(bq~ 2bq(~)

n 2 8T
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In the above equation we introduced a large momentum cutoff A which is inversely proportional

to the underlying lattice spacing of the membrane. We now
take the limit n -

0 as
required

by the identity in equation (2A), obtaining the final expression for the effective free energy of

the membrane jn the limit d
- co. The extrema of Fe~ lead to saddle point equations which

determines the value of these order parameters,

Fe~(<> xi
~)/L~

"
d )x(<~ i) x~(~X + flD) ~)(~~ 2~<~)

~~
~ ~~(D ~

~~~~~~ ~ ~ ~ ~~~
~k2

(~~
&q

~
~~'~~

We calculate the saddle point equations, with (, X and q as
variational parameters, by setting

the first derivatives ofthe Fe~ with respect to these variables to zero.

~~ ~~~ ~ ~~~~ ~ ~~~
~ ~ ~~)D ~k2

+ + bq ~
(~k2

/$~ q)21'
~~'~~~

<~
- ~ Ii 1£~ S

~~~~ +

/+ q~~)
(3.4b)

lx + ~~) (
=

0. (3Ac)
2T

4. Analysis of phase diagram and critical exponents.

Before analyzing the saddle point equations in their full generality
we

look at the special
case

of b
=

0. This corresponds to a
membrane without disorder, and the equations (3.4) reduce

to the saddle point equations obtained by Guitter et al. in the d
- co study of crumpling

transition of pure phantom membranes [6]

~~ ~ ~~~~ ~ ~~~ ~K(D k2~+

x '

~~'~~~

x(
=

0

~ ~

(4.lb)

As was found in reference [6] these equations lead to two phases for D > 2. The crumpled
phase of the membrane is characterized by a vanishing order parameter (

=
0 and

a
finite

correlation length proportional to x~Q~ In the flat phase however, the average value of a

tangent vector is nonzero and thb tangent correlation length diverges. Using equation (4.lb)
for ( # 0 inside equation (4. la)

we obtain the temperature dependence of the order parameter
( in the flat phase,

(~
=

l
~

(4.2)
Tc

We have defined the crumpling temperature, Tc

~ ~

D (2K)D ~k2
~~'~~
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Equation (4.2) immediately leads to fit
=

1/2- We also reproduce the exponents 7, =
2/(D-2),

St =
(D + 2)/(D 2), v, =

I/(D 2) and q, =
0 characterizing the flat and crumpled phases

for D < Du. Du
=

4 is the upper critical dimension for the pure membrane above which the

membrane is described by classical critical exponents.
We now analyze the full set of saddle point equations for a disordered membrane, equa-

tions (3A). There are three distinct solutions to these equations corresponding to three different

possibilities for the values of the pair of order parameters ( and q.

(
=

0
,

q =
0

,

(4Aa)

( # 0
,

q # 0
,

(4.4b)

(
=

0
,

q # 0 (4.4c)

We identify these three solutions in equations (4.4) with the crumpled phase, flat phase and

crumpled spin-glass phase of the membrane, respectively.
We first examine the flat phase with ( # 0, q # 0. Equation (3Ac) then implies that

X + qb/2T
=

0. Using this fact and equation (3Ab) inside equation (3Aa)
we obtain the

temperature and disorder dependence of the order parameters ( and q inside the flat phase.

(~
=

A II
~ (l I)

,

(4.5a)
Tc ac

q =
A

1 ))
(4.5b)

c

where Tc was
defined in equation (4.3) and kc and A

are
defined by

'?~
"

( /~ ~~)D j
'

(~.~~)

~
l + (a /Dfl)b IT ~~'~~~

Since physically ( is required to be real, equations (4.5) also define the boundaries of the flat

phase. It is given by a rectangular region defined by b
=

kc, T
=

Tc and the b, T axes (see
Fig. 2a). Outside this region ( vanishes and the membrane undergoes a transition out of the

flat phase. For b < kc and as T
-

Tc the transition is to the crumpled phase, while for T < Tc
and

as b
-

kc flat phase is unstable to the crumpled spin-glass phase.
We observe from equation (4.3) that Tc

=
0 for D < 2 and therefore identify Di,T

=
2

as the lower critical dimension for the existence of finite temperature flat phase. Similarly,
equation (4.Ga) leads to kc

=
0 for D < 4 giving Di,a

=
4 as the lower critical dimension for

the existence of the flat phase in disordered membranes for d
= co.

From equations (4.5)
we obtain the value of the fl exponents, that determine how the

order parameters ( and q vanish at the transitions from the flat phase, (
+~

(Tc T)fl'>T,
(

+~
(bc b)fl<>. and q +~

(Tc T)fl~.T, where

fl,,T
"

(4.7a)

fl,,a
=

), (4.7b)

flq,T =1 (4.7c)
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O D>4

crumpled spin-glass

q~ 0, ~"0

°
crumpled

flat q=0, ("0

q~ 0, (~
0

T T

(a)

~ D<4

crumpled spin-glass

q~ 0, (=0
crumpled

q=0, (=0

~
flat T T

q~ 0
,

~~ 0
~

(b)

Fig. 2. Phase diagram for a disordered membranes (a) D > 4, (b) D < 4.

To calculate the spin-glass susceptibility
near the transition from the flat phase to the

crumpled spin-glass phase we return to the expression for the Fe~, equations (2.9) and add

an external field hi;ap
=

hb;; Sap conjugate to the spin-glass order parameter. This leads to a

modification of only equation (3.4b) which now becomes

~

~
~$ ~K(D ~j~2)2~ ~ ~ ~~ ~~'~~

This equation then immediately leads to the spin-glass susceptibility, xsg =
bq/bh

+~
(bc

b)~~"8?, where

7sg2 =
1 (4.9)
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Now we look inside the spin-glass phase where q # 0 and (
=

0. As the flat phase boundary
is approached, the tangent susceptibility x, must diverge since inside the flat phase there is

a

spontaneous ( # 0. To compute the susceptibility exponent 7, we again turn on an
external

field f that couples to the tangent qrder parameter, giving rise to dD( f additional term in the

expression for the Fe~ in equation (2.9). This leads to modification of equation (3.4c),

f qb

( ~ ~
2T

(4.10)

Using this equation inside equation (3.4b)
we

find that x, =
b(16 f

+~
(b %c)~ia j36]

7,2 #

~
(4 Ii)

(4 D(

Finally we look at the transition between the spin-glass phase and the crumpled phase.
Computing the spin-glass susceptiblity xsg as

before by turning
on a small external field h that

couples to the the spin-glass order parameter q we
find Xsg #

bq/bh
+~

(%c(T) %)~~"6', where

7sgi "
(4.12)

The result is identical to equation (4.9) except that %c has been replaced by %c(T) which is

nonzero
for any D and is defined by

~~ ~~~
2D (2K)D (~k2 + x(T))~ ~~ ~~~

Equation (4.13) together with equation (3Aa) and q =
0 actually also define the phase boundary

between the spin-glass and the crumpled phases for D > 2, (see Fig. 2)

ac(T) ac
~

(T Tc)4
,

(4.14)

where # is the
crossover exponent, [36]

(D-4(
(4.15)4"

D_2

5. Estimates of higher order corrections.

In the previous section
we

have found that Dj,a
=

4 in the limit d
- co. If this

were to carry
through for finite d, it would mean that in real physical membranes, D

=
2, the flat phase

can

only exist in the absense of disorder, and addition of any amount of impurities will destabilize

the flat phase to the crumpled spin-glass phase. However, for finite d, our d
- co

results

do not exclude the existence of
a

flat phase of size I Id. We can see how the I Id corrections

can lead to the persistence of the flat phase below D
=

4 in disordered membranes from the

following rough argument [37]. The I Id corrections are known to lead to the anomalous scaling
~(k)

+~

k~", with q =
2 Id [6,5]. If

we use this renormalized result for
~ in the expression for

%c in equation (4.6a),
we find that the lower critical dimension is reduced to Di,a

"
4 4/d,

lowering Dj,a below 4.

The same conclusion
can

be reached by applying the Harris criterion to the buckling tran-

sition studied in Ref.6. This transition is controlled by the Aronovitz-Lubensky (AL) fixed
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point, the same fixed point which describes the flat phase of a pure membrane and leads to the

anomalous scaling of the elastic moduli described above. [5] Using hyperscaling (below D
=

4),

a =
2 Dv, with

v =
I /(D 2 + qf) we relate the specific heat exponent a to the anomalous

dimension of the out-of-plane fluctuation fields. The exact relation between vf and vu (the
anomalous dimension for the in-plane fluctuation fields) vu =

4 D 2qf [38] then leads to

a =
-2qu/(D vu). Thus quite generally, using the Harris criterion, the AL fixed point is

stable as long as vu is positive and smaller than D. This is certainly true near D
=

4 since

the
e

expansion shows that vu is positive. A similar, although somewhat different argument
for the stability of the flat phase at finite temperatures was

given in reference ill.
A possible phase diagram for D < 4 that might result when the I Id corrections are

taken into

account is illustrated in figure 3. A consistency with the e =
4 D expansion of reference ill

(which was performed for arbitrary d) requires the existence of
a

finite region of flat phase,
stable to introduction of uncorrelated disorder. They find that for D > 4, at low temperatures,

the flat phase is stable to the addition of small amount of disorder. For D > 4 our
large d

results are in agreement with the
e expansion. In particular,

we
find that the scaling of the

threshold %c with d is the same as in reference ill and is another consistency check on our

approximation discussed in section 2. Also, for D < 4 it was found that at T
=

0 the flat phase
is unstable to any amount of disorder, while at finite temperatures the flat phase is stable to

weak disorder. This again is consistent with the results of calculations presented here.

D<4

cr.Jmpled spin-glass

q= o
,

(
=

0

crumpled

q=0, ~"0

flat

q~ 0, ~± 0

0
~~c

Fig. 3. Possible phase diagram for a disordered membrane D < 4 when 1Id corrections are taken

into account. There is a region of flat phase of size 1Id.

The crumpled spin-glass phase discussed in this paper deserves further investigation. An

open important question is the lower critical dimension D(£ for this phase. Our saddle point
equations, equations (3A) lead to the glass phase which persists for any D. This we believe is

an
artifact of

our
approximation of ignoring the fluctuations in the spin-glass order parameter

Qab«p;j. If these
are

properly taken into account they will lead to a finite D(£. In view of the

results for spin models it appears likely that D(£ > 2 and thus a true phase transition in D
=

2

phantom tethered membranes might not exist.

Notice however that the flat phase of
a pure membrane has a lower D)~~ than naively

expected from the analogy with conventional spin models. These differences arise from the long
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range interaction between the local Gaussian curvatures mediated by the in-plane fluctuations

ill One cannot exclude that a similar reduction of the lower critical dimension might also

occur for the glass phase of the membrane. Even if there is not a true transition most of the

characteristics of a glass phase, such
as

slow dynamics, should still be observed. If this phase
1/2

exists, an
observable quantity is the radius of gyration llg

= (((£(L) fl0))2))
,

and we

expects a nontrivial scaling Rg
+~

L"D If we suppose that the bending rigidity is irrelevant in

the crumpled glass phase, as might be natural since the phase is crumpled, then we can make

a
simple Flory (dimensional) argument by balancing the remaining terms in equation (2.I),

ba£. bpi
+~

6cbap. For uncorrelated disorder considered here, 6c
+~

L~~'~ and therefore

vD "
(4 D)/4, which gives vD =

1/2 for D
=

2. This is to be compared with the scaling

1lg +~

fi in the crumpled phase. This difference means that in the glass phase the surface

will be larger than in the crumpled phase. Note that similar Flory arguments were used recently
for polymers in disordered media and found to give reasonable approximations [39,40].

These type of Flory arguments can be extended to the discussion of a self-avoiding mem-

brane. The self-avoiding interaction is usually taken to be vo
f d~zi fd~z26~(fzi) fr2))

and scales as L~~Ri~ If we assume that Rg scales with exponent (4 D)/4, the phantom
membrane result obtained above, then we can compare the spaling of the self~avoidance term,

the disorder and elastic energy terms. We find that the self-avoiding interaction is irrelevant for

d > 8D/(4 D), and for a physical D
=

2 membrane d > 8. When the embedding dimension

is d < 8 the self-avoidance becomes relevant and will affect the scaling of Rg with L. However,
the crumpled glass, because it is an energy dominated state, is likely to be more robust to

self-avoidance than the usual crumpled phase of tethered membranes.

Finally we observe that the crumpled glass phase
can

be destroyed by applying
an exter-

nal tension to the membrane's boundaries. The metastable degenerate ground states would

disappear and the average of the local tangent would
no

longer vanish. In this respect an

external stress would be analogous to an external magnetic field in spin systems. As the stress

is reduced the membrane would slowly return to the glassy phase but with some hysterisis.
The line separating the regions of stable and metastable degenerate states is then the analogue
of the d'Almeida-Thouless line studied in great detail for the real spin-glasses [41,14].

6. Conclusions.

In this paper we
investigated the nature of the disorder activated instability of a flat phase

of
a

random surface, motivated by the previous results of
e

expansion study of the flat phase.
At low temperatures, this phase was found to be unstable to quenched disorder described in

terms of random local modification of a ground state metric. The nature of the strong disorder

regime
was

however unclear.

Within the approximations of our model and in the limit d
- co we found that the instability

is in fact to a
crumpled spin-glass phase, characterized by Edwards-Anderson type of order

parameter. We have computed the free energy as a
function of this order parameter and the

tangent order parameter and derived the critical exponents characterizing these phases and the

transitions. The Flory type of arguments were then used to estimate the wandering exponent
and to discuss the relevance of the self-avoidance in the crumpled phase.

Our analysis suggests that a
disordered phantom membrane can undergo transitions between

crumpled, flat and crumpled spin-glass phases. At low temperature the transition is to a
glassy

crumpled phase with a vanishing average tangent order parameter but with a nonvanishing spin-
glass order parameter. In this phase the membrane is crumpled but there are finite correlations

between crumpled configurations for the different realizations of disorder. The phase diagrams
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that we obtain are consistent with the e expansion and to a leadiqg order in I Id
are very similar

to the ones found for the random axis model. However, in the spin systems it was previously
found that the ferromagnetic phase is absent below D

=
4 even if I/d corrections are taken

into account [22, 23, 37]. In other words the analogue of the qf exponent is always zero. In

this respect our polymerized membranes are very different from disordered spin systems, with

these diTerences arising due to the presence of nonlinear interactions between the in-plane
and out-of~plane phonon degrees of freedom which lead to long-range interactions between the

normals to the surface.

Much work remains. Our analysis should be extended to other types of disorder. The discli-

nations and dislocations can in principle be treated with this approach. A random quenched
fluctuations in the extrinsic curvature is another type of disorder that can appear, and might

be more relevant to the experiments of reference [20]. This type of disorder is actually more

analogous to a random field problem, by contrast with our problem which is rotationally sym-

metric and hence is closer related to the random exchange problem. The extrinsic curvature

disorder was recently studied by Bensimon et al. [42] and by Morse and Lubensky [43] within

the
e expansion. Morse and Lubensky also find a low temperature instability of a flat phase

towards
a new low temperature flat phase described by diTerent exponents. The strong dis-

order regime however, also lies outside the range of validity of their expansion. It is possible
that a large d expansion could elucidate the character of the disordered phase.

It is also possible that there exists an intermediate flat spin-glass phase for disordered mem-

branes, although the method of the present paper does not allow to distinguish between equi-
librium flat and flat glass phases. It is likely that there is a smooth crossover from the pure

flat phase to the disordered flat membrane. In this case the crossover line would be the analog
of the Gabay-Toulouse line in the vector spin~glasses [44,14]. One might be able to study the

existence of this phase by focussing directly on
the flat phase of the membrane and perturbing

with small disorder.

We have constructed rough arguments based on previous calculations about the eTect of

the I Id corrections to our leading order results. However it is important to actually compute
these corrections. It might turn out that once these corrections are taken into account it will

become necessary to break the replica symmetry with Parisi type of ansatz, [45] as was done

for spin systems in the random-axis model [35, 34].
Finally we note that recently it was shown that the spin-glass phase exhibited by the spher-

ical model limit of random anisotropy magnets is a pathology of this limit [46]. Presently it is

not clear whether similar pathologies arise in the crumpled glass phase of tethered membranes,
and if they do it is important to understand how they aTect the results of this work.
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Note added in proof
After this work was completed we received a long version of the work [43] by Morse and

Lubensky where the authors calculate, using a I Id expansion, the exponents of the new T
=

0

flat phase for random curvature disorder (not considered here). This calculation confirms their

e expansion result [43]. Since these authors are not interested in the same region of the phase
diagram the rescaling of the parameters with d is diTerent than the one considered here.
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