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Abstract. The influence of bond-dilution (which is assumed both on the surface and in the

bulk) on the phase transitions of a semi-infinite d-dimensional q-state Potts model is investigated.

Phase diagrams and critical exponents have been calculated within an exension of Migdal's

approch to disordered systems. We find that the percolation effects in a semi-infinite system are

characterised by phase diagrams of striking similarity to that of the pure system. Indeed, for the

three-dimensional cubic lattice we observe four different phase transitions, irrespective of the

number of Potts state, which can be designated using the same known terminology, namely the

ordinary, surface, extraordinary, and special phase transitions.

1. Introducdon.

Phase transitions and critical behaviour in semi-infinite systems have been the subject of much

recent interest, and a detailled review article containing an extensive list of references has

been published by Binder [~]. Such systems are important for their theoretical richness and

experimental utility, besides various applications such as catalysis and corrosion. Most works

have been devoted to non-random systems ~pure Ising, q-state Potts, anisotropic Heisenberg
models), winch have been studied using a variety of approximations and mathematical

techniques, such as the mean field approximation, the high-temperature series $xpansion
method, Monte Carlo simulations and various real-space renormalisation-grbup (RG)
schemes.

On the other hand, the diluted semi~infinite systems have not been studied as extensively as

the pure systems, and the theory of surface with disordered magnetic composition seems to be

far from complete, although some progress has been noted recently [2-9]. These studies have

focused on the criticality corresponding to the particular case where dilution is assumed only

on the surface, namely the free-surface problem (semi-infinite bulk). Almost no attempts are

available in the literature concerning the more general problem, where we have to consider

the presence of bond inhomogeneity both on the surface and in the bulk, which presents
interesting features. It is our purpose to perform such a study and to check whether such

systems can exhibits surface magnetism. We exhibit some rather simple calculations to study
the criticality associated with the quenched bond~diluted q-state Potts ferromagnet model on

a semi-infinite d~dimensional hypercubic lattice. We investigate the influence of bond-dilution
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on the phase diagrams, and we calculate the critical exponents using an approximate real-

space renormalisation-group method based on the MigdaLKadanoff (MK) [10, 11] recursion

relations. We find that the percolation effects in a semi-infinite system are characterised by
phase diagrams similar to that of the pure system. The results for the Ising model and bond

percolation are recovered for q =

2 and q =
I, respectively.

The outline of this paper is as follows : In section 2 we introduce the model and derive the

recursion relations. Sections 3 contains our main results and conclusion.

2. Model and recursion relations.

Consider a nearest-neighbor q-state Potts model on a semi-infinite d-dimensional hypercubic
lattice and subject to randomly inhomogeneous pair coupling. The appropriate reduced

Hamiltonian is

-pH= ~j K;~(q3~~ -1); («,=1,2,..,q;Vi (I)

<11

'~

where the sum runs over all pairs of first-neighboring sites and K,~ is a random variable whose

probability distribution is given by

its(K;j)
=

(' -Ps) 3 (K,j) +Ps 3 (K;j KS) (2a)

when both sites I and j belong to the surface. Otherwise the probability distribution reads

ltB(K,j)
"

(i -P B) 3 (K;y) +PB 3 (K,j KB) (2b)

with Ks m 0 (resp. KB m 0) and 0
« ps « I (resp. 0 « pB « I) are the reduced coupling

constant and bond concentration on the surface (resp. in the bulk).
As is very common in the real-space renormalisation-group studies on the Potts model, we

introduce the convenient variable

t
=

ii e~~~j ii + (q I ) e~~~j~
=

f(K) (3)

which defines ts and tB from Ks and KB, respectively.
The renormalisation-group recursion relations are obtained using the usual bond-moving

Migdal-Kadanoff approximation, which consists in successive contractions by a scale factors

b along each of the d Cartesian directions, resulting in a volume contraction by an overall

factor b~. Each contraction involves a bond shifting perpendicular to the contraction and a

decimation along the contraction.

In what follows we specialize in the case which consists by first performing the decimation

and then moving the bonds. Thus when the system is homogeneous the recursion relations are

tj
=

fjbd- i f- i(i()j (4a)

~, ~j~d-2 ~- i~~b~ ~
(b 1)

~_ i
~~~j

~~~~
~ ~ 2 ~

For the bond-diluted semi-infinite Potts model the analogs of equations (4) determine each

new local coupling (tj)~p and (t))~~ in terms of a set of original couplings ((tB);~, (ts),j).

(tj)~~
=

f ~j f~~~fl
tB)y)

(5a)
~"

J l

(ti)all
"

f
~z f~ ij

(tS)<j +
~~ j f~ ij

(tB )<k (5b)

' ' J I k
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A straightforward but tedious analysis of all the possible values for the interactions taking
into account their respective probabilities gives the expression for the renormalised

probability distributions Xi (t[~) and S)(t[~) which are not of the same form as the initial

ones given by (2).

«I(tl~)
=

~z Cf~~~Pl)~' (I -Pl)~~~~~~ 3 Yj~ f jmf- i(i()j (6a)

x
(P])~ (l -P])~~~~~'~ 3 (ij~ f(nf- '(i()

+ fl~~j f- i(i()) (6b)

To render the computations tractable we make an additional approximation at each

iteration by forcing the transformed distributions back to a two~peak form. Namely,

(fl~i)approx (tiff
"

(' Pi 3 (tip ) + Pi 3 (ti~ ti) (7&)

( fl~i)approx tip )
"

( ' Pi ) ~ ( ti
p

) + Pi 3 ti
p

ti (7b)

Equating the zero and first moments of Sj(t[p and (Sj)~~~~~~ (t[p ) on the one hand and of

S)(t[p) and (S))~~~~~~ (t[p) on the other we obtain the recursion relations for the variables

pB, ps, tB and ts within the two-peak approximation

Pi
"

I (I p()~~ (8a)

Pi
"

i (i -P()~~~~ (' -P()~~~~ (8b)

Pi ii
=

~z Cl~~~Pl)~' (' -Pl)~~~~ ~~'flmf~ ~(tl)) (9a)

pill
"

jj) Cl~~ Cl~~~~pll'~~ (i ~pl)~~~~~'~~ ~pll'~ (i ~pl)~~~~~~
X

x f [nf ~(t]) +
'~ ~~) f~ ~(

it )j (9b)

The correlation lenght exponents v can be calculated at all the relevant fixed points by
calculating the Jacobian matrix for the recursion relations (8) and (9).

M
=

j'> '> Pi>
P'j ~io)

B, s,PB,Ps

whose eigenvalues can be written as (A
~~,

3
~~,

A~~, A~~). The correlation length exponents are

then calculated from

In (b)
~~~~~~ "

In (A~)

3. Results and conclusion.

The MK recursion relations have been established for the dilute semi-infinite Potts model for

arbitrary d, b, and q. Notice that it is well known that this scheme yields a continuous bulk

transition for all finite q and d
~

l. A discontinuous bulk transition is obtained only in the
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many component limit q - co [12]. However, it is known exactly that this bulk transition is

discontinuous for q ~
4 in d

=

2 [13]. In addition, both field theoretic RG calculations [14]
and position-space RG calculations for diluted Potts model [15] indicate that the three-

dimensional bulk transition is discontinuous for q ~
3. Therefore we will mainly focus on the

cases (d
=

2 b
=

2 ; q
=

1, 2, 3, 4) and (d
=

3 b
=

2 q
=

1, 2), (from which the Ising
model and bond percolation are recovered for q

=

2 and q =

I, respectively), where the

MKRG scheme yields the correct nature of the bulk transition.

For the pure semi~infinite Potts model, by iterating the RG equations (4) one obtains the

qualitative phase diagrams displayed in figure I for the following cases: (a) d=2,
b

=
2 and (b) d

=

3, b
=

2. For the cubic lattice, which presents interesting features, there

are three different phases : paramagnetic (PM), surface ferromagnetic (SF) where the surface

is ferromagnetic but the bulk is disordered, and bulk ferromagnetic (BF) where the bulk and

the surface both are ordered. These phases are separated by various types of transitions. The

point O represents the so~called ordinary transition where the surface and the bulk

magnetisations vanish simultaneously. E is the point characterising the «extraordinary
transition» when the bulk magnetisation vanishes and the surface continues ordered. S

corresponds to the surface transition, characterising the phase transition of a two-dimensional

system. The special transition is described by the point Sp, where the surface goes

ferromagnetic before the bulk.

t~ j

~
E £

SF k BF

~
l t

~
j

B B

a) b)

Fig. I. Flow diagrams in the (t~, ts) space of the pure semi-infinite Potts model. (a) d 2,

b 2 ; (b) d
=

3, b
=

2.

As we vary q the critical lines are displaced but the overall picture is the same. Thus, the

qualitative phase diagrams obtainedd are sinfilar for any number of Potts state, and in the

particular case q =

2 we recover the results obtained for the Ising model.

In addition to that analysis we iterated the recursion relations numerically, and identified

the locations of the non-trivial fixed points, their eigenvalues, and their associated critical

exponents. The numerical results are summarised in table I and II for the square and cubic

lattices, respectively.
For the bond-diluted semi-infinite Potts model, equations (8) and (9) give the RG

recurrence in the (tB, ts, pB, ps) space. Flows in a four-dimensional parameter space are not

easy to visualise. To get a better understanding we shall consider some invariant subspaces.

*
Subspace pB =

I, ps =
I. This corresponds to the pure system and recursion relations (9)

reduce, in this case to (4).
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Table I. Fixed points, eigenvalues and critical exponents of
a pure semi-infinite two-

dimensional Potts model.

Potts state Fixed points Exposents

tB =

0.618
A~~ =

1.528
v~~ =

1.635

ts
=

I
~~

=

l 572 v, =

5 3

q =1 ~

tB =

0. 61 8 A
=

l 528 v, =

63 5

ts
=

0.272 A)
=

0.427
~

tB "
0.544

A~~ =
1.678 v,~ =

ts
"

I A~ =

1.474
v~~ =

I.

q "

2 ~

tB =

0.544
A~~ =

1.678
v,~ =

l.338

ts
=

0.184 A,~ =

0.356

tB =
0.5

=

1.777 v~ =

1.205

ts
=

I
=

1.414 v,~ =

2

q =

3

tB "
0.5

A~~ =

1.717
v~~ =

1.205

ts
=

0.144 A~ =

0.310

tB =
0.469

=

l 852
v~~ =

124

ts
= A~ =

1.370
v~~ =

2.200

q =
4 ~

(O) tB "
°.469

A~~ = v~~ =

1.124

ts
=

0.119
A~~ =

0.279

*
Subspace pB =

0. This corresponds to the two-dimensional dilute system.

*
Subspace tB

=

I, ts
=

I. The recursion relations reduce to (8a) and (8b) which describe the

percolation effects in a semi-infinite system. The corresponding flow diagrams represented in

figure 2, for the square and cubic lattices, shows a striking similarity to that of the pure system
(Fig. I). For the three~dimensional cubic lattice there four non~trivial fixed points characteri~

sing four different phase transitions, which can be designated using the same terminology as

for pure Potts model. Even if pB is less than the three-dimensional percolation threshold, the

flow diagram shows that an infinite cluster connected to the surface exists if ps, being less than

the two-dimensional threshold, is however sufficiently large. The coordinates of the fixed

points with the corresponding eigenvalues and critical exponents are given in table III.

*
Subspace pB = ps = p. In this case bond concentrations on the surface and in the bulk are

equal. As pB =
is an invariant subspace, the tB and ts-coordinates of the non-trivial fixed

points listed in table I and II are not modified and for all these fixed points the bond

concentration p is not a relevant scaling field. The coordinates, eigenvalues and critical

exponents of the new fixed points characterising the percolation behaviour are fisted in

table IV.

The RG flow diagram associated with the three-dimensional Ising model in the

(tB, ts, p) space is described in figure 3. Three phases are observed characterised by trivial
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Table II. Fixed point.<, eigenvalues and critical exponents of
a pure semi-infinite three-

dimensional Potts model.

Potts state Fixed points Exposents
(O) i~

=

0.282 A~ =
I.

v~
=1.227

is
=

0.096 A
=

~R ~

° ~
il~

"
~

is
=

0.618 A,
=

1.528
v~ =

1.635

q =1 ~ ~

i~
=

0.282 A~ =

I.
v~ =

1.227

is
= A~ =

0

(Sp) iii
=

0.282 A,~ = v, =

1.227

is
=

0.545 A,,
= v,, =

2.0

(O) iB
=

0.255
A~~ = v,~ =

l.065

is
=

0.077
A~~ =

(S) iB
=

0 A~ =

0

is
=

0.544
A~~ = v~~ =

1.338
q "

2

(E) i~
=

0.255
A~~ =

1.91 v~ =

is
= A~~ =

0

i~
=

0.255 ~~~
=

1.91
v~ =

1.065

is
=

0.464
A~~ = v~ =1.639

( (
E E

i i

o

I ( °
I

P~

(a) (b)

Fig. 2. Flow diagrams in the ~p~, ps) space of a semi-infinite d-dimensional hypercubic lattice. (a)
d

=

2, b
=

2 ; (b) d
=

3, b
=

2.
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Table III. Fixed points, eigenvalues and critical exponents characterising bond percolation

behaviour of a semi-infinite two and three-dimensional cubic lattices.

Dimension Fixed points Eigenvalues Exponents

(E) pB
"

0.618 A~~ = v~,~ =

l.635

~
ps

=

I
A~~ =

1.236
v~~ =

3.270

(O) pB
=

0.618 A~~ = v~~ =

Ps "

0.618 A~ =

(O) pB =
0.282

A~,~ =
l.

v~, =

ps =

0.282
A~,~ =

(S) p~=0 A~~ =0

~ ps
=

0.618
A~~ =

1.528
v~,~ =

p~
=

0.282
=

1.759
v~,~ =

l.228

ps
= ~,~ =

o

pB
=

0.282
A~,~ =

l.759 v~,~ =

ps
=

0.384
A~~ =

1.109
v~,~ =

6.708

Table IV. Fixed points, eigenvalues and critical exponents characterising percolation
behaviour of a bond-diluted semi-infinite two and three~dimensional Potts model.

Dimension Fixed points Exposents

i~
=

0
A~~ =

0

is
=

0
A~~ =

0

p =

0.618 A
=

528
v =

635
2 ~ ~

lB
" A~~ = v~~~ =

1.635

is
=

A,
=

0.

p =

0.618
~~

=

1.528
v~, =

1.635

i~
=

0 A,~ =
0

i~ =
0 A~ =

0

p =
0.282

~

=
l 759

v =

1226
3 ~

lB
= A~~ =

1.759 v~ =

1.226

is
" A~~ =

0.88
~

p =

0.282
=

1.759
=

1.226
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ts

i

BP

I
f~

i

p

Fig. 3. RG flow diagram in the (t~, is, p) space of the diluted semi-infinite Ising model

(q 2). PM, BF and SF, respectively denote the paramagnetic. bulk ferromagnetic and surface

ferromagnetic phases.

fixed points, namely the paramagnetic [PM, (tB, ts, p =

(0, 0, )], bulk ferromagnetic [BF,

(tB, ts, p
=

(I, I, I )], and surface ferromagnetic [SF, (tB, ts, p
=

(0, ~, )] phases. The

PM-BF, SF-BF and SF-PM critical surfaces correspond to the so-called ordinary, extraordi-

nary and surface phase transitions, while the PM-BF-SF critical line corresponds to the special
transition.

Conclusion.

We have studied the critical behaviour and phase transitions of the quenched bond-diluted

semi-infinite q-state Potts model on a d-dimensional hypercubic lattice. The real-space
renormalisation-group method within the Migdal-Kadanoff scheme was applied. Various

types of phases and phase transitions were observed. For the percolation behaviour in a semi-

infinite system we find phase diagrams sinfilar to that of the pure systems.
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