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Abstract

Similarity search in texts, notably in biological sequences, has received substantial
attention in the last few years. Numerous filtration and indexing techniques have

been created in order to speed up the solution of the problem. However, previous
filters were made for speeding up pattern matching, or for finding repetitions be-
tween two strings or occurring twice in the same string. In this paper, we present an

algorithm called Nimbus for filtering strings prior to finding repetitions occurring
twice or more in a string, or in two or more strings. Nimbus uses gapped seeds that

are indexed with a new data structure, called a bi-factor array, that is also pre-
sented in this paper. Experimental results show that the filter can be very efficient:
preprocessing with Nimbus a data set where one wants to find functional elements

using a multiple local alignment tool such as Glam, the overall execution time can
be reduced from 7.5 hours to 2 minutes.
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1 Introduction

Finding approximate repetitions (motifs) in strings is one of the most challeng-
ing tasks in text mining. Its relevance grew recently because of its application
to biological sequences. Although several algorithms have been designed to
address this task, and have been extensively used, the problem still deserves
investigation for certain types of repetitions. Indeed, when the latter are long
and the number of allowed differences among them grows proportionally to
their length, there is no exact tool that can efficiently manage to detect such
repetitions. Widely used efficient algorithms for multiple alignment are heuris-
tic, and offer no guarantee that false negatives are avoided. On the other hand,
exhaustive inference methods cannot handle queries where the differences al-
lowed among the occurrences of a motif are as many as 5−10% of the length of
the motif, and the latter is as “long” as, say, 100 DNA bases. Indeed, exhaus-
tive inference is done by extending or assembling in all possible ways shorter
motifs that satisfy certain conditions. When the number of differences allowed
is relatively high, this can therefore result in too many false positives (of in-
termediate length) that saturate the memory. In this paper, we introduce a
preprocessing filter, called Nimbus, where most of the data containing such
false positives are discarded in order to perform a more efficient exhaustive
inference. Our filter is designed for finding repetitions distant pairwise by a
maximal Hamming distance, occurring in r ≥ 2 input strings, or occurring
possibly more than twice in one string. To our knowledge, one finds in the
literature filters for local alignment between two strings [23,17,15], or for ap-
proximate pattern matching [20,3] only (that is a different task). Heuristic
methods such as Blast [1,2] and Fasta [16] filter the input data and ex-
tend only seeds that are repeated short fragments satisfying some constraints.
Nimbus is based on similar ideas but uses different requirements concerning
the seeds; among the requirements are frequency of occurrence of the seeds,
concentration and relative position. Similarly to [17,15], we use also a concept
related to gapped seeds that has been shown in [4] to be particularly effi-
cient for pattern matching. The filter we designed is lossless: unlike Blast or
Fasta, Nimbus guarantees not to discard any repetitions meeting the input
parameters. It uses necessary conditions based on combinatorial properties
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of multiple and approximate repetitions, and an algorithm that checks such
properties in an efficient way. The efficiency of the filter relies on an origi-
nal data structure, the bi-factor array, that is also introduced in this paper,
and on a labelling of the seeds similar to the one employed in [8]. This new
data structure can be used to speedup other tasks such as the inference of
structured motifs [19] or for improving other filters [14].

It is worth mentioning that Nimbus is meant as a preprocessing to any tool
that searches for long motifs with mismatches shared by several strings, or that
performs multiple alignments based on the detection of such repetitions. The
goal of Nimbus is to reduce the input size for these tools in order to obtain
an overall significant speed up. For example, we shall see in Section 6 that
preprocessing a data set where one wants to find a multiple local alignment
with a tool such as Glam ([7]), the overall execution time can be reduced from
7.5 hours to 2 minutes. The latter shortened time includes both the running
time of the filtering of Nimbus, and that of the tool applied to the filtered
strings. Notice that we chose Glam as a representatively good software for
multiple alignment, but the filter could be used as preprocessing step for any
other multiple alignment algorithm.

A preliminary version of this paper appeared in [22].

2 Necessary Conditions for Long Repetitions

A string is a sequence of zero or more symbols from an alphabet Σ. A string
s of length n on Σ is represented also by s[0]s[1] . . . s[n − 1], where s[i] ∈
Σ for 0 ≤ i < n. The length of s is denoted by |s|. We denote by s[i, j] the
substring, or factor, s[i]s[i + 1] . . . s[j] of s. In this case, we say that the string
s[i, j] occurs at position i in s. We call k-factor a factor of length k. If s = uv
for u, v ∈ Σ∗, we say that v is a suffix of s.

Definition 1 Given r input strings s1, . . . , sr, a length L, and a distance d,
we call a (L, r, d)-repetition a set {δ1, . . . , δr} such that 0 ≤ δi ≤ |si| − L,

and for all i, j ∈ [1, r] we have that

dH(si[δi, δi + L − 1], sj [δj , δj + L− 1]) ≤ d.

where by dH we mean the Hamming distance between two strings, that is, the

minimum number of letter substitutions that transform one into the other.

Given m input strings, the goal is to find the substrings of length L that are
repeated in at least r ≤ m strings with at most d substitutions between each
pair of the r repetitions, with L, r and d given. In other words, we want to
extract all the (L, r, d)-repetitions from a set of r strings among m ≥ r input
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strings. The goal of the filter is therefore to eliminate from the input strings
as many positions as possible that cannot contain (L, r, d)-repetitions. Since
in most interesting applications, the value of the parameter d can be as big as
10% of L, a direct inference of repetitions of length L with L/10 substitutions
based on a traditional algorithm would be unfeasible due to the big number of
approximate short patterns that could contribute to a longer repetition. The
main idea of our filter is based on checking necessary conditions on the number
of exact k-factors that a (L, r, d)-repetition must share. Since there are only
a linear number of exact factors and they are easy to find, this results in an
efficient filtering. A string w of length k is called a shared k-factor for s1, . . . , sr

if for all i ∈ [1, r] we have that w occurs in si. Obviously, we are interested in
shared k-factors that occur within substrings of length L of the input strings.
Let pr be the minimum number of non-overlapping shared k-factors that a
(L, r, d)-repetition must have. It is intuitive to see that a (L, 2, d)-repetition

contains at least
⌊

L
k

⌋

− d shared k-factors, that is, p2 =
⌊

L
k

⌋

− d. We now
compute the value of pr for r > 2.
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Fig. 1. Example of stained positions and shared k-factors for r = 2. Two strings
of length L = 16 distant by d = 2 substitutions: the number of stained positions

(represented by black squares) is 2. Let us consider, say, k = 3 for which we have
that

⌊

L
k

⌋

−d =
⌊

16
3

⌋

−2 = 3. The figure shows indeed one of the worst case scenario

in which the placement of the stains limits the number of shared non-overlapping
k-factors (represented by hashed rectangles) to 3.

Before stating the lemma, we give an intuition for the key observations that
sustain the proof. Let us consider the (virtual) alignment of r strings of length
L corresponding to an (L, r, d)-repetition. If they were identical, they would

clearly share
⌊

L
k

⌋

non-overlapping k-factors. Let us now assume that the Ham-
ming distance between any two of the r strings is d. This is the worst case
scenario for the minimum number of shared k-factors when all allowed substi-
tutions are present, which is what we need to compute. If at position i (with
0 ≤ i ≤ L− 1), there is a substitution between any pair of strings among the
r, then we say that position i is stained. In this case, no k-factor involving
this position can be shared by all the r strings. The worst case scenario ap-
plies when the stained positions (or stains for short) are spread in such a way
that they eliminate distinct (i.e. non overlapping) k-factors, that is we loose

as many potential
⌊

L
k

⌋

non-overlapping k-factors as the number of stained
positions in the alignment. We therefore need only to count the maximum
number of stains. If r = 2, this number is simply d, and indeed we have that
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p2 =
⌊

L
k

⌋

− d. This case is shown in Figure 1. The key observation is that

adding a third string (then a fourth, fifth, and so on up to the rth) creates

at most
⌊

d
2

⌋

new stained positions. This is surprising because one could think
that a single “new” string that presents d substitutions with each one of, say,
r−1 previously considered strings, can stain up to (r−1)d positions. Instead,

it can stain only up to
⌊

d
2

⌋

previously unstained positions independently from

r (provided this is greater than 2). The reason is that, as we show below, many
substitutions necessarily occur at positions that are already stained.

Let φ(r, d) denotes the maximal number of distinct positions that can be
stained given that we have r strings such that any two of them have Hamming
distance at most d. We have that r ≥ 2 and clearly φ(2, d) = d. In the following
lemma we give tight numbers for φ(r, d).

Lemma 2 Let r ≥ 2 and d ≥ 0 be integers. We have that φ(r, d) = dd/2e +

(r − 1)bd/2c. In other words, φ(r, d) = rd
2

if d is even and φ(r, d) = r
⌊

d
2

⌋

+ 1
if d is odd.

PROOF. First, consider the following set of r sequences, all of them with
length dd/2e + (r − 1)bd/2c. Let i be any integer such that 1 ≤ i ≤ r. All
positions of a sequence si are A, except those in the following positions, which
are T: the first dd/2e letters of s1; the next bd/2c letters of s2, instead of s1;
the next bd/2c letters of s3, instead of s2; and so on until the last bd/2c letters
of sr. More formally, s1[0] = T and, for every 1 ≤ i ≤ r and j > 0, we set
si[j] = T iff dd/2e+(i−2)bd/2c ≤ j < dd/2e+(i−1)bd/2c; all other positions
are set to A. One can verify that the Hamming distance from s1 to any other
sequence is d and the Hamming distance from any two sequences except s1

is 2bd/2c. Since every position is a stain in these sequences, this proves that
φ(r, d) ≥ dd/2e + (r − 1)bd/2c and that the provided bound is tight.

We now show that φ(r, d) ≤ dd/2e + (r − 1)bd/2c. In order to prove it, we
apply an induction on d. If, d = 0, φ(r, d) is clearly 0 and the proof is trivial.
Since we are seeking an upper bound for φ(r, d), let us choose r sequences with
the largest possible number of stains with the restriction that every pair of
them has Hamming distance at most d. In order to evaluate the actual number
φ(r, d) of stains, we have to consider two subcases. In the first case, no two of
these sequences have Hamming distance exactly d, and hence we can state that
φ(r, d) ≤ φ(r, d−1) ≤ d(d−1)/2e+(r−1)b(d−1)/2c ≤ dd/2e+(r−1)bd/2c due
to the induction hypothesis. In the second case, at least one pair of sequences
is at Hamming distance d. Without loss of generality, let us assume that - say
- s1 and s2 are such that their Hamming distance is d. This leads to d stains
at d such positions j where we have s1[j] 6= s2[j]. Let J be the set of such
positions. If there is no other stain, the proof is finished since we have already
proved that φ(r, d) = d = dd/2e + bd/2c ≤ dd/2e + (r − 1)bd/2c. Suppose
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from now on that there is a stain j ′ 6∈ J . Hence, s1[j
′] = s2[j

′]. By definition
of a stain, there are two integers i′′ > i′ such that si′′ [j

′] 6= si′ [j
′]. Hence,

i′′ > 2 and we can suppose that 3 ≤ i′′ ≤ r. (This in particular implies that
r ≥ 3.) If i′ ≤ 2, we take i = i′′ and we have that si′ [j

′] = s1[j
′] = s2[j

′] differs
from si[j

′] = si′′ [j
′]. If i′ > 2, we have that s1[j

′] = s2[j
′] differs either from

si′′ [j
′] or from si′ [j

′] and we can take i ∈ {i′′, i′} such that s1[j
′] = s2[j

′] differs
from si[j

′]. Anyway, there is i ∈ {3, . . . , r} such that s1[j
′] = s2[j

′] differs
from si[j

′]. For all j ∈ J , we have that s1[j] 6= s2[j] and that si[j] 6= s1[j]
or si[j] 6= s2[j]. Hence, there is i′′′ ∈ {1, 2} such that si differs from si′′′

in at least dd/2e positions in J and also differs in j ′. This implies that si

cannot differ from si′′′ in more than d−dd/2e = bd/2c positions not in J . For
(r−2) possible values for i, we have (r−2)bd/2c possible values for j ′. Hence,
φ(r, d) ≤ d + (r − 2)bd/2c = dd/2e + (r − 1)bd/2c.

The following theorem follows from Lemma 2.

Theorem 3 Let L > 0, r ≥ 2 and d > 0 be integers. The minimum number

of non-overlapping shared k-factors that a (L, r, d)-repetition must have is

pr =
⌊

L

k

⌋

− d − (r − 2) ×

⌊

d

2

⌋

.

PROOF. Since there are bL/kc possible non-overlapping common factors in
a (L, r, d)-repetition and that we have that any stain can hit at most one of

them, then we have that pr =
⌊

L
k

⌋

− φ(r, d), and hence the result follows.

Observe that the theorem applies also to the case where one is interested in
finding (L, r, d)-repetitions occurring in a single string.

3 The Algorithm

We start by describing the algorithm for the case where we are looking for
repetitions occurring in a set of strings. We call the corresponding algorithm
Multi-Nimbus. Later, we describe how to modify the algorithm to find a
(L, r, d)-repetition occurring in a single string thus obtaining an algorithm we
call Mono-Nimbus.

Multi-Nimbus takes as input the parameters L, r and d, and m (with m ≥ r)
input strings. Given such parameters, it decides automatically the best value of
k to apply Theorem 3 and compute the number of k-factors that are necessarily
shared by a (L, r, d)-repetition.
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The goal of Multi-Nimbus is to quickly and efficiently filter the strings in or-
der to remove regions which cannot contain a (L, r, d)-repetition applying the
necessary conditions described in Section 2 and keeping only the regions which
satisfy these conditions. We compute the minimum number pr of repeated k-
factors each motif has to contain to possibly be part of a (L, r, d)-repetition.
A set of pr k-factors contained in a region of length L is called a pr-set≤L.
Multi-Nimbus searches for all the pr-sets≤L that are repeated in r of the m
strings. All the positions where a substring of length L contains a pr-set≤L

repeated at least once in r strings are kept by the filter, the others are re-
jected. The algorithm extracting the positions of all the pr-sets≤L is presented
in Figure 2.

Multi-Nimbus Initialise()

1. for g in [(pr − 2)k, L − 2k]
2. for all (k, g)-bi-factors bf

3. Multi-Nimbus Recursive(g − k, positions(bf), 2,
4. firstKFactor(bf))
Multi-Nimbus Recursive (gmax, positions, nbKFactors, firstKFactor)

1. if |Strings(positions)| < r then return // not in enough strings
2. if nbKFactors = pr then save positions and return

3. for g in [(pr − (nbKFactors + 1)) × k, gmax] // possible gaps length
4. for (k, g)-bi-factors bf starting with firstKFactor
5. positions = intersection(positions, positions(bf))

6. Multi-Nimbus Recursive (g − k, positions, nbKFactors + 1,
7. firstKFactor)

Fig. 2. Extract the positions of all the pr-sets≤L

To improve the search for the pr-set≤L, we use what we call bi-factors, as
defined below.

Definition 4 A (k, g)-bi-factor is a concatenation of a factor of length k,

a gap of length g and another factor of length k. The factor s[i, i+ k − 1]s[i +
k + g, i+ 2× k + g− 1] is a bi-factor occurring at position i in s. For the sake

of simplicity, we also use the term bi-factor omitting k and g.

For instance, the (2, 1)-bi-factor occurring at position 1 in AGGAGAG is
GGGA. The bi-factors occurring in at least r strings are indexed by means
of a bi-factor array (presented in Section 4) that allows us to have access in
constant time to the bi-factors starting with a specified k-factor. The main
idea is to first find repeated bi-factors with a big gap g that may still contain
(pr − 2) k-factors (g ∈ [(pr − 2)k, L − 2k]). We call these border bi-factors.
A border bi-factor is a 2-set≤L that we then try to extend to a pr-set≤L. To
extend a i-set≤L to a (i + 1)-set≤L, we find a repeated bi-factor (called an
extending bi-factor) starting with the same k-factor as the border bi-factor
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of the i-set≤L and having a gap length shorter than all the other gaps of
the bi-factors already composing the i-set≤L. The occurring positions of the
(i + 1)-set≤L are the intersection of the extending bi-factor positions and of
the positions of the i-set≤L. An example of this construction is presented in
Figure 3.

Step 1

Step 2

Step 3

 L

A

A

A

D

C

B

B

BC

Seq (AC) : 1, 3, 5, 6

Seq (AD) : 2, 3, 5, 8

Seq (AB) : 1, 3, 4, 5

Seq (ACB) 1, 3, 5

Seq (ADCB) 3, 5

Fig. 3. Example of the construction of a 4-set≤L. In the first step, we find
a bi-factor occurring at least once in at least r = 2 strings among m = 8 strings.
During the second step, we add a bi-factor starting with the same k-factor (here

called A), included inside the first one, and we intersect the positions. We repeat this
once again (as pr = 4) and obtain a 4-set≤L occurring in strings 3 and 5. Actually,

it is not only the string numbers that are checked during the intersection but also
the positions in the strings, not represented in this figure for clarity.

In order to extract all the possible pr-set≤L, we iterate the idea described above
on all the possible border bi-factors: all bi-factors with gap length in [(pr −
2)k, L − 2k] are considered as a possible border of a pr-set≤L. Furthermore,
while extending a i-set≤L to a (i+1)-set≤L, all the possible extending bi-factors
have to be tested.

If the user runs Multi-Nimbus searching for very frequent repetitions (that
is, r is large) with a high rate of substitutions (d is also large), the program has
to choose a small value of k to avoid pr = 0. However, a small value for k (e.g.,
k ≤ 4) leads to a slow and inefficient filter. In order to avoid this problem,
we proceed in two steps as follows. In the first step, we start by running
Multi-Nimbus assuming r = 2 (that is, with a weaker condition), which in
general allows to increase the value of k while improving the sensitivity and
the execution time. In the second step, the remaining strings are filtered using
the initial parameters asked by the user. This results in an efficient strategy
that we refer to as the double pass strategy. More in general, the best choice
of the value of k and the consequent value of pr changes from one application
to another. Depending upon the parameters L, r and d as well as on the input
size, there exist values of k that are not useful in practice, either because they
are so small that they lead to a (too strong) condition which becomes hard
to check, or conversely because they lead to a too weak condition (the reader
can think of pr = 0 as an extreme case) which is fast to check but useless.
In between these cases, there is in general a range of “reasonable” values for
k. This range in practice is not so big, as we show in Section 5.3 together
with the performances of the filter the different values lead to. As we shall
see, the best k to be used is hard to establish a priori, as one should find
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the best tradeoff between specificity and speed, which depends on the specific
application. Thus, the choice for k may be set by the program or left to the
user.

Finding (L, r, d)-repetitions inside a single string: Mono-Nimbus

Multi-Nimbus needs only a few modifications to obtain the Mono-Nimbus

algorithm finding (L, r, d)-repetitions occurring inside the same string instead
of occurring distributed over r ≤ m strings. Theorem 3 remains true for a
single string. The fact that a repetition is distributed over more than one
string or not, does not change the value of pr. The modifications to apply
on the Multi-Nimbus algorithm in order to obtain Mono-Nimbus are the
following:

• index the bi-factors occurring at least r times (instead of occurring in at
least r strings),

• the recursive part of the algorithm stops if the number of positions is lower
than r (instead of the number of strings lower than r).

The double pass strategy is the same for Mono-Nimbus as for Multi-

Nimbus.

Complexity analysis

Since the complexity analysis applies either to Mono or to Multi Nimbus,
we use the general Nimbus name. Let us assume Nimbus has to filter m
strings 3 , each of length `. The total input size is then n = `× m.

Memory analysis, average case. For each possible gap length of the bi-
factors considered by the algorithm, a bi-factor array for one starting k-factor
is stored in memory (taking in average O( n

|Σ|k
) space, as showed in Section (4)).

The possible bi-factor gap lengths are in [0, L− 2k]. The total memory used
by Nimbus is therefore in O( n

|Σ|k
× L).

Time analysis, worst case. We here give an upper bound of the worst case
time complexity. This bound is actually far from being tight in practice and
is therefore a bit rough. Some future work should focus on improving this
time complexity analysis, focusing on the average case and computing a more
accurate complexity, possibly by means of an amortized analysis.

The overall worst case time complexity is in O(L × ` × n × Zpr−1) with Z =
L × min(|Σ|k, `). We shall see later (Fig. 6) that in practice computations

3 In the case of Mono-Nimbus, m = 1.
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require much smaller time consumption.

4 The Bi-Factor Array

Since we make heavy use of the inference of repeated bi-factors, we have used
a new data structure, called a bi-factor array (BFA), that directly indexes
the bi-factors of a set of strings. This data structure is a modified suffix array.
Indeed, in its original version [18], a suffix array does not permit to find objects
such as bi-factors. We therefore adapted the algorithmic ideas developed for
this data structure to create the bi-factor array. A bi-factor array is a suffix
array adapted for (k, g)-bi-factors (with k and g fixed) that stores them in
lexicographic order (without considering the characters composing the gap
region). This data structure allows to access the bi-factors starting with a
specified k-factor in constant time. Nimbus never needs to consider at a same
time bi-factors that start with different k-factors. Thus one BFA is constructed
for each possible starting k-factor. Notice that the same data structure can
be used to index bi-factors where the two factors have different sizes (say,
(k1, g, k2)-factors with k1 6= k2); we restrict ourselves here to the particular
case of k1 = k2 because this is what we need for Nimbus. For the sake of
simplicity, we present the algorithm of construction of the bi-factor array for
one string. The generalisation to multiple strings is straightforward.

We start by recalling the properties of a suffix array. Given a string s of length
n, let s[i . . . ] denote the suffix starting at position i. Thus s[i . . . ] = s[i, n−1].
The suffix array of s is the permutation π of {0, 1, . . . , n−1} corresponding
to the lexicographic order of the suffixes s[i . . . ]. If ≤

l
denotes the lexicographic

order between two strings, then s[π(0) . . . ]≤
l

s[π(1) . . . ]≤
l

. . .≤
l

s[π(n−1) . . . ].

In general, another information is stored in the suffix array: the length of the
longest common prefix (lcp) between two consecutive suffixes (s[π(i) . . . ]
and s[π(i + 1) . . . ]) in the array. The construction of the permutation π of a
text of length n is done in linear time and space [9][11][12]. A linear time and
space lcp row construction is presented in [10].

In order to compute the BFA for bi-factors starting with a given k-factor using
a suffix array and its lcp, we perform the following steps:

(1) Give every k-factor a label. For instance, in a DNA sequence with k = 2,
AA has the label 0, AC has label 1 and so on. An array is created con-
taining, for every suffix, the label of its starting k-factor. In the remaining
of this paper, we call a (label1, label2)-bi-factor a bi-factor of which the
two k-factors are denoted by label1 and label2.

(2) For each suffix, the label of the k-factor occurring k + g positions before
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the current position is computed and stored in a virtual 4 array we refer
to as the predecessor label array.

(3) Construct the BFA for the bi-factor starting with the k-factor called label1
as follows: the predecessor label array is traversed from top to bottom,
each time the predecessor label value is equal to label1, a new position is
added to the part of the BFA where bi-factors start with label1. Due to
the suffix array properties, two consecutive bi-factors starting with label1
are sorted with respect to the label of their second k-factor. The creation
of the BFA is done such that for each (label1, label2)-bi-factor, a list of
corresponding positions is stored.

We now explain in more detail how we perform the three steps above.

Labelling the k-factors. In order to give each distinct k-factor a different
label, the lcp array is read from top to bottom. The label of the k-factor
corresponding to the ith suffix in the suffix array, called label[i], is created as
follows for i ∈ [0, n − 1]:

label[i] =



























0 if i = 0

label[i − 1] + 1 if lcp[i] ≤ k

label[i − 1] ow

Giving each suffix a predecessor label. For each suffix, the label of the
k-factor occurring k + g positions before has to be known. Let pred be the
array containing the label of the predecessor for each position. It is filled as

follows: ∀ i ∈ [0, |s|−1], pred[i] = label
[

π−1
[

π[i]−k−g
]

]

(π−1[p] is the index

in the suffix array where the suffix s[p . . . ] occurs). Actually, the pred array is
not stored in memory. Instead, each cell is computed on line in constant time.
An example of the label and pred arrays is given in Figure 4.

Creating the BFA for a bi-factor starting with a k-factor called label1.
The BFA contains in each cell a (label1, label2)-bi-factor. We store the label1
and label2 values and a list of positions of the occurrences of the (label1,
label2)-bi-factor. This array is constructed on the observation that for all i,
the complete suffix array contains the information that a (pred[i], label[i])-bi-
factor occurs at position π[i]−k−g. Traversing the predecessor array from top
to bottom each time pred[i] = label1, we either create a new (label1, label[i])-
bi-factor at position π[i]−k−g, or add π[i]−k−g as a new position in the list

4 In practice these values are not stored but computed on the fly.
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i lcp π associated suffix pred label

0 0 2 AACCAC ∅ 0

1 1 6 AC 1 1

2 2 0 ACAACCAC ∅ 1

3 2 3 ACCAC 1 1

4 0 7 C 4 2

5 1 1 CAACCAC ∅ 3

6 2 5 CAC 0 3

7 1 4 CCAC 3 4

Fig. 4. Suffix array completed with the label and the pred arrays for k = 2 and

g = 1 for the text ACAACCAC.

of positions of the previous bi-factor if label2 of the latter is equal to label[i].
An example of a BFA is given in Figure 5.

position(s) (label1, label2) associated gapped-factor

0, 3 (1, 1) ACAC

1 (3, 4) ACCC

Fig. 5. BFA of bi-factors starting with AC. Here k = 2 and g = 1. The text
is ACAACCAC. One can observe that the (2, 1)-bi-factor ACAC occurs at two

different positions.

The space complexity is in O(n), as all the steps use linear arrays. Furthermore,
no more than four arrays are simultaneously needed, thus the effective memory
used is 16×n bytes. The first two steps are done in O(n) time (simple traversals
of the suffix array). The last step is an enumeration of the bi-factors found (no
more than n). The last step is therefore in O(n) as well. Hence the total time
construction of the suffix array is in O(n). With the following parameters:
L = 100 and k = 6, Nimbus has to construct BFAs for around 90 different
g values, which means 90 different BFAs. This operation takes, for strings of
length 1Mb, around 1.5 minutes on a 1.2 GHz Pentium 3.

5 Testing the Filter

We tested a prototype of Nimbus on a 3 GHz Pentium 4 with 1Gb of memory.
We performed several kinds of tests in order to evaluate how specificity and
performances of the filter depend upon the input parameters. To this pur-
pose, we used real biological sequences as well as randomly generated ones
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with planted repetitions. By “planted” repetitions, we mean that we manually
inserted the repetitions in the strings so that we could know all the positions
corresponding to a repetition, and hence evaluate how many positions, other
than these, the filter (uselessly) keeps. The results of the tests made with ran-
domly generated sequences are actually the average computed between several
distinct runs (whose exact number changes from test to test since the variance
was not always the same).

5.1 Speed and space with respect to input size

The first test is an evaluation of the actual time and space required by Nimbus

which, as we show here, is in practice better than the worst case analysis made
in Section 3. Figure 6 shows the time and memory usage in function of the
input data length and of the kind of data. One can observe that the space
complexity is linear with the input length, although with a high multiplicative
constant factor. The execution time depends on the type of sequences that are
given as input to the algorithm. In Figure 6, we report the results obtained
with the same parameters but with two distinct input files. On the left, the
result refers to an experiment where the input data set consists of ten copies
of the same string: in this way, all the positions must be kept by the filter,
representing the worst case time complexity, which is a polynomial of degree pr.
On the right, the input strings are ten distinct strings, and the time complexity
is clearly linear. We should bear in mind that these first results are from a
prototype version of Nimbus that could be improved to further reduce the
time and space used.
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Fig. 6. Time and space spent by Nimbus w.r.t. the input data length. The param-
eters are L = 100, k = 6, d = 7, r = 3 which implies p3 = 6. The input file contains

10 strings of equal length. On the left, the same string is replicated 10 times and
given as input, whereas on the right, we used 10 distinct random strings.
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5.2 Specificity, time and memory with respect to input type and r

The second test aims at evaluating the performance of Nimbus in terms of the
percentage of input strings that are filtered, and how much remains thatdoes
not corresponds to repetitions, while still keeping an eye on the time and space
costs. These values are computed using r = 2, 3, 4 and four different types of
input sequences: three randomly generated with different numbers of planted
motifs (respectively 2, 5, and 100), and one real biological sequence.

In general, both time and false positive ratios (that is, the ratio, computed on
random strings with planted motifs, of non filtered data that are not part of
a real motif) are low, showing a good performance of the filter.

In Figure 7, we present the behaviour of the filter for the four kinds of input
strings of length 1 Mb. The first three strings are random and contain respec-
tively 2, 5 and 100 motifs of length 100, pairwise distant by 10 substitutions.
For each of these three strings, we ran Nimbus in order to filter searching for
motifs of length L = 100 occurring at least r = 2, 3 and 4 times with less than
d = 10 substitutions. The last string is the genomic sequence of the Neisseria

meningitidis strain MC58. Neisseria genomes are known for the abundance
and diversity of their repetitive DNA in terms of size and structure [6]. The
size of the repeated elements range from 10 bases to more than 2000 bases, and
their number, depending on the type of the repeated element, may reach more
than 200 copies. This fact explains why the N. meningitidis MC58 genomic
sequence has already been used [13] as a test case for programs identifying
repetitive elements. We ran Nimbus on this sequence in order to filter repeti-
tions of length L = 100 occurring at least r = 2, 3 and 4 times with less than
d = 10 substitutions.

For each input sequence, we compute the actual space costs and report (line
”Memory Used”) the constant multiplicative factor on the linear complexity.

For r = 2, we used k = 6 which gives a good result: around a few minutes
execution time for all the random strings. One can observe that for the MC58
sequence, the execution time is longer (15 to 23 minutes) due to its high rate
of repetitions.

For r = 3 and 4, to avoid a long and inefficient filter, we apply the double pass
strategy described earlier, and start the filtration with r = 2 and k = 6. The
time results are therefore divided into two parts: the time needed for the first
pass and the one needed for the second pass. The time needed for the second
pass is negligible with respect to the time used for the first one. This is due
to the fact that the first pass filters from 89 % to 99 % of the string, thus
the second pass works on a string at least 10 times shorter than the original
one. This also explains why no extra memory space is needed for the second
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pass. For r = 3, the second pass uses k = 5 while for r = 4, the second pass
uses k = 4. With r = 4 the necessary condition (p4 = 5 shared 4-factors) is
weaker than for r = 3 (p3 = 5 shared 5-factors). That is why for MC58, more
positions are kept while searching for motifs repeated 4 times, than for motifs
repeated 3 times. Without using the double pass, for instance on MC58, with
r = 3 the execution time is around 6 hours (instead of 15.9 minutes). The false
positive ratio observed in practice is very low (less than 1.3 %). In general,
many of the false positives occur around a (L, r, d)-repetition motif and not
elsewhere in the strings.

Filtered Seq. 2 Motifs 5 Motifs 100 Motifs MC58

Memory Used 29 30 30 30

Time (Mn) 1.7 1.7 1.8 15

r = 2 Kept 436 (0.04 %) 1 090 (0.11 %) 22 474 (2.2 %) 129 085 (12.91 %)

FP 0.02 % 0.06 % 1.25 % unknown

Time (Mn) 1.7 + 0 1.7 + 0.1 1.8 + 0.1 15 + 0.9

r = 3 Kept 0 (0 %) 1 085 (0.11 %) 22 445 (2.2 %) 93 794 (9.38 %)

FP 0 % 0.06 % 1.24 % unknown

Time (Mn) 1.7 + 0 1.7 + 0.1 1.8 + 0.1 15 + 7.3

r = 4 Kept 0 (0 %) 1 086 (0.11 %) 22 456 (2.2 %) 113 369 (11.34 %)

FP 0.0 % 0.06 % 1.25 % unknown

Fig. 7. Nimbus behaviour on four types of strings while filtering in order to find
r = 2, 3 and 4 repetitions. The first three strings are random and have length 1

Mb. They contain respectively 2, 5 and 100 motifs of length 100 distant pairwise by
10 substitutions. The last string is a segment of the genomic sequence of the strain
MC58 of Neisseria meningitidis also of length 1 Mb. “FP” stands for False Positive

ratio and the “Kept” lines give the number and percentage of positions kept.

5.3 Time and false positive rate with respect to k

We then evaluated the range of possible values to be chosen for k, and the
relative performances these lead to. We generated three random sequences,
each of length 50000, with planted (1000, 3, 10)-repetitions. We ran Nimbus

with parameters L = 100, r = 3, d = 10, and k = 3, 4, 5, 6, 7. For k = 7, we
have p3 = 0 and thus the filter is useless. For k = 3 or less there are so many
shared k-factors that the filter becomes too slow. Figure 8 shows the results
for the other values.

As anticipated earlier in the paper (Section 3), the observed actual range of
reasonable values of k is not big. In this test, we have three such values: from
the smallest k = 4 which takes more than seven hours and has a very low false
positive ratio, to the fastest (6 seconds) which leads also to a more sensitive
filter. As a general remark, low values of k are advised when specificity is the
issue, and the extra time it costs is anyway lower than that of the tool for
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k=4 k=5 k=6

Time (seconds) 25655 32 6

False positive 0.12 0.15 0.20

Memory 11,524 11,744 11,160

Fig. 8. Speed and false positive ratio for several values of k.

which the filter is preprocessing. On the other hand, higher values of k lead
to a very fast filter which, in a negligible time, can already sensibly shrink the
sequences. Finally, and not surprisingly, the memory taken by Nimbus does
not depend on k.

5.4 Time and false positive rate with respect to L

We now show how the performance of Nimbus depends on the length L of
the repetition. We generated three random sequences, each of size 50000, with
planted (L, 3, d = L/10)-repetitions for several values of L, and we ran the
filters with parameters L, r = 3, d = L/10 using k = 5. The results concerning
time and specificity are shown in Figure 9.
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Fig. 9. Time and false positive ratio with respect to L.

We can observe that the false positive ratio is quite low (always below 0.4%),
although it grows with L. The reason for the (slow) growth is the fact that
when a portion of the input sequence satisfies the necessary condition, what
is kept is indeed a fragment of length L. Time grows fast with respect to L. In
this case, we may actually face an exponential time complexity with respect
to pr, which on its turn grows with L.
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5.5 Time and false positive rate with respect to d

We now show the results of other runs where the tested parameter is d. We
generated three random sequences, each of size 50000, and planted there (L =
100, r = 3, d)-repetitions with growing values of d. Hence, we ran Nimbus

with parameters L = 100, r = 3, using k = 6 with d from 0 to 13 (for higher
values we have p3 = 0). The results are shown in Figure 10.
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Fig. 10. Time and false positive ratio with respect to d.

We can observe that the false positive ratio, although remaining below 0.25,
grows linearly with respect to d, due to the fact that the necessary condition
becomes more and more weak. Concerning the time performance, the pick at
d = 5 is quite interesting, especially because it was obtained in all runs for
distinct randomly generated input strings. A possible explanation is that for
this parameter set, d = 5 corresponds to an intermediate value between lower
and higher ones. When the value of d is low, we have that pr is so high (and
hence the condition strong) that very little is kept and this requires a short
time to be detected (very few shared k factors). When the value of d is high, pr

decreases and so does the time complexity (which asymptotically grows with
pr).

5.6 Time and false positive rate with respect to r

We now focus on the r parameter. We generated a set of R sequences. Each
sequence was of length 10000 and contained an occurrence of a repetition
of length 100 distant from each other by at most 3 substitutions. We let R
vary from 2 to 10. For each value, we applied Nimbus using the following
parameters: L = 100, d = 3, k = 5 and r = R. We did not use the double pass
strategy in order to focus only on the r parameter. The results are given in
Figure 11. One can observe that the parameter r has not a big influence on
time and specificity. Memory usage (data not shown) is also stable. One may
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however notice a light increase in the execution time for r = 3. This is due to
the fact that, in this case, the necessary condition is high (p3 = 16) and the
number of recursive calls (see figure 2) is important.
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Fig. 11. Time and false positive ratio with respect to r.

However, the Figure may not accurately represent how the behaviour of Nim-

bus varies with parameter r. Indeed, the previous test would not have been
possible with, for instance, d = 10. Indeed in such a case, using r = 4 would
have led to p4 = 0.

Thus, the parameter r may have a strong influence, since increasing it can
lead to a useless filter if the necessary condition p reaches zero. However, for
valid ranges of r, its influence on the performance of Nimbus is small.

6 Using the filter

In this section, we show two distinct possible applications of Nimbus. The
first concerns the inference of long biased repetitions, and the second multiple
alignments.

6.1 Filtering for finding long repetitions

When inferring long approximate motifs, the number of differences allowed
among the occurrences of a motif is usually proportional to the length of the
motif. For instance, for L = 100 and allowing for as many as L/10 substitu-
tions, one would have d = 10 which is high. This makes the task of identifying
such motifs very hard and, to the best of our knowledge, no exact method for
finding such motifs with r > 2 exists. Yet such high difference rates are com-
mon in molecular biology. The Nimbus filter can efficiently be used in such
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cases as it heavily reduces the search space. We now show some tests that
prove this claim. For testing the ability of Nimbus concerning the inference of
long approximate repetitions, we ran an algorithm for extracting structured
motifs called Riso [5] on a set of 6 sequences of total length 21 kB for finding
motifs of length 40 occurring in every sequence with at most 3 substitutions
pairwise. Using Riso, this test took 212 seconds. By previously filtering the
data with Nimbus, the same test took 3.9 seconds. The filtering time was
0.1 seconds. The use of Nimbus thus enabled to reduce the overall time for
extracting motifs from 212 seconds to 4 seconds.

6.2 Filtering for finding multiple local alignments

Multiple local alignment of r sequences of length n can be done with dy-
namic programming using O(2rnr) time and O(nr) space. In practice, this
complexity limits the application to a small number of short sequences. A few
heuristics, such as MULAN [21], exist to solve this problem. One alternative
exact solution could be to run Nimbus on the input data so as to exclude
the non relevant information (i.e. parts that are too distant from one another)
and then to run a multiple local alignment program. The execution time is
hugely reduced. For instance, on a file containing 5 random strings of cumu-
lated size 1 Mb each containing an approximate repetition 5 , we ran Nimbus

in approximately 1.5 minutes. On the remaining sequences, we ran a tool for
finding functional elements using exact multiple local alignment called Glam

[7]. This operation took about 25 seconds. Running Glam without the filter-
ing, we obtained the same results 6 in more than 7.5 hours. Thus by using
Nimbus, we reduced the execution time of Glam from 7.5 hours to less than
2 minutes.

Conclusions and future work

We presented a novel lossless filtration technique for finding long multiple ap-
proximate repetitions common to several strings or inside one single string.
The filter localises the parts of the input data that may indeed present rep-
etitions by applying a necessary condition based on the number of repeated
k-factors the sought repetitions have to contain. This localisation is done us-

5 Repetitions of length 100 containing 10 substitutions pairwise.
6 Since Glam handles edit distance and Nimbus does not, in the tests we have used
randomly generated data where we planted repetitions allowing for substitutions
only, in order to ensure that the output would be the same and hence the time cost

comparison meaningful.
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ing a new type of seeds called bi-factors. The data structure that indexes
them, called a bi-factor array, has also been presented in this paper. It is con-
structed in linear time. This data structure may be useful for various other
text algorithms that search for approximate instead of exact matches. The
practical results obtained show a huge improvement in the execution time of
some existing multiple sequence local alignment and pattern inference tools,
by a factor of up to 100. The theoretical complexity presented in the paper
is a rough upper bound of the worst case. The results show that in practice
the time consumption is much smaller than the theoretical complexity. Future
work thus includes obtaining a better analysis of this complexity.

Other important tasks remain, such as filtering for repetitions that present
an even higher rate of substitutions, or that present insertions and deletions
besides substitutions. One idea for addressing the first problem would be to
use bi-factors (and the corresponding index) containing one or two mismatches
inside the k-factors. In the second case, working with edit instead of Hamming
distance implies only a small modification on the necessary condition and
on the algorithm but could sensibly increase the execution time observed in
practice.
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