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Arithmetic properties related to the shuffle-product

Roland Bacher

Abstract1: Properties of the shuffle product in positive characteristic

suggest to consider a p−homogeneous form σ : Fp〈〈X1, . . . ,Xk〉〉 −→ Fp〈〈X1, . . . ,Xk〉〉
on the vector space Fp〈〈X1, . . . ,Xk〉〉 of formal power series in k free non-

commuting variables. The form σ preserves rational elements in Fp〈〈X1, . . . ,Xk〉〉,
algebraic series of Fp[[X]] = F〈〈X〉〉 and induces a bijection on the affine

subspace 1 + m of formal power series with constant coefficient 1. Conjec-

turally, this bijection restricts to a bijection of rational elements in 1 + m ⊂
Fp〈〈X1, . . . ,Xk〉〉, respectively algebraic elements in 1 +XFp[[X]].

1 Introduction

The aim of this paper is to present some properties and conjectures related
to shuffle-products of power series in non-commuting variables. The shuffle
product

A B =
∑

0≤i,j

(

i+ j

i

)

αiβjX
i+j

of two power series A =
∑∞

n=0 αnX
n, B =

∑∞
n=0 βnX

n ∈ K[[X]] in one
variable over a commutative field K turns the set K∗ + XK[[X]] into a
commutative group which is not isomorphic to the commutative group on
K∗+XK[[X]] associated to the ordinary product of (multiplicatively) invert-
ible formal power series if K is of positive characteristic. Shuffle products
of rational (respectively algebraic) power series are rational (respectively al-
gebraic). The shuffle product turns the affine subspace 1 +XK[[X]] into a
group which is isomorphic to an infinite-dimensional Fp−vector space if K is
a field of positive characteristic p. Rational (respectively algebraic) elements
in 1+XK[[X]] (or more generally in K∗ +XK[[X]]) form thus a group with
respect to the shuffle product if K is of positive characteristic.

The first interesting case is given by a subfield K ⊂ F2 contained in the
algebraic closure of the field F2 with two elements. The structure of the
F2−vector space induced by the shuffle product on 1+XF2[[X]] suggests to

1Keywords: Shuffle product, formal power series, rational fraction, algebraic power

series, quadratic form, automaton sequence, Math. class: 11B85, 11E08, 11E76
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consider the quadratic form

σ

(

∞
∑

n=0

αnX
n

)

=

∞
∑

n=0

α2
2nX2n+1

+
∑

0≤i≤j

(

i+ j

i

)

αiαjX
i+j

= α2
0 +

∞
∑

n=0

α2
2nX2n+1

+
∑

0≤i<j

(

i+ j

i

)

αiαjX
i+j .

The quadratic form σ : F2[[X]] −→ F2[[X]] thus defined preserves the vector
space of rational or algebraic power series. It induces a bijection of infinite
order on the affine subspace 1 + XF2[[X]]. Orbits are either infinite or of
cardinality a power of two. Conjecturally, the inverse bijection σ−1 of the
set 1+XF2[[X]] preserves also rational elements and algebraic elements. We
present experimental evidence for this conjecture. An analogous construc-
tion yields a homogeneous p−form (still denoted) σ : Fp[[X]] −→ Fp[[X]]
with similar properties for p an arbitrary prime.

In a second part of the paper, starting with Section 6,we recall the defi-
nition of the shuffle product for elements in the vector space K〈〈X1, . . . ,Xk〉〉
of formal power series in free non-commuting variables. The shuffle product
preserves again rational formal power series, characterised for instance by a
Theorem of Schützenberger. The p−homogeneous form σ considered above
has a natural extension σ : Fp〈〈X1, . . . ,Xk〉〉 −→ Fp〈〈X1, . . . ,Xk〉〉. This ex-
tension of σ still preserves rational elements and induces a bijection on 1+m

where m ⊂ Fp〈〈X1, . . . ,Xk〉〉 denotes the maximal ideal of formal power se-
ries without constant coefficient in Fp〈〈X1, . . . ,Xk〉〉. Conjecturally, the map
σ restricts again to a bijection of the subset of rational elements in 1 + m.

2 Power series in one variable

We denote by K[[X]] the commutative algebra of formal power series over a
commutative field K with product

(

∞
∑

n=0

αnX
n

)(

∞
∑

n=0

βnX
n

)

=

∞
∑

n,m=0

αnβmX
n+m

given by the usual (Cauchy-)product extending the product of the polyno-
mial subalgebra K[X] ⊂ K[[X]]. Its unit group K∗ + XK[[X]] consists of
all (multiplicatively) invertible series and decomposes as a direct product
K∗ × (1 + m) with m = XK[[X]] denoting the maximal ideal of the algebra
K[[X]].

A subalgebra containing the field of constants K of K[[X]] is rationally
closed if it intersects the unit group K∗+XK[[X]] in a subgroup. The rational
closure of a subset S ⊂ K[[X]] is the smallest rationally closed subalgebra
of K[[X]] which contains S and the ground-field K.
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The rational closure of X, called the algebra of rational fractions in X or
the rational subalgebra of K[[X]], contains the polynomial subalgebra K[X]
and is formed by all rational fractions of the form f

g
with f, g ∈ K[X], g 6∈ m.

The expression f
g

of such a rational fraction is unique if we require g ∈ 1+m.
An element y ∈ K[[X]] is algebraic if it satisfies a polynomial identity

P (X, y) = 0 for some polynomial P ∈ K[X, y]. Algebraic series in K[[X]]
form a rationally closed subalgebra containing all rational fractions.

3 The shuffle product

The shuffle product, defined as

A B =
∞
∑

n,m=0

(

n+m

n

)

αnβmX
n+m

for A =
∑∞

n=0 αnX
n, B =

∑∞
n=0 βnX

n ∈ K[[x]], yields an associative and
commutative bilinear product on the vector space K[[x]] of formal power
series. We call the corresponding algebra (K[[x]], ) the shuffle-algebra.
The shuffle-group is the associated unit group. Its elements are given by the
set K∗+XK[[x]] underlying the multiplicative unit group and it decomposes
as a direct product K∗ × (1 +XK[[X]]).

Remark 3.1. Over a field K of characteristic zero, the map

K[[X]] ∋
∞
∑

n=0

αnX
n 7−→

∞
∑

n=0

n!αnX
n ∈ (K[[X]], )

defines an isomorphism of algebras between the usual (multiplicative) alge-
bra of formal power series and the shuffle algebra (K[[X]], ). The shuffle
product of ordinary generating series

∑

αnX
n corresponds thus to the or-

dinary product of exponential generating series (also called divided power
series or Hurwitz series, see eg. [5])

∑

αn
Xn

n! . This shows in particular the

identity (1 − X) (
∑∞

n=0 n!Xn) = 1. The shuffle inverse of a rational
fraction is thus generally transcendental in characteristic 0.

Remark 3.2. The inverse for the shuffle product of 1 − a ∈ 1 +XK[[x]] is
given by

∞
∑

n=0

a
n

= 1 + a+ a a+ a a a+ . . .

where a
0

= 1 and a
n+1

= a a
n

for n ≥ 1.
The shuffle inverse of 1−a ∈ A+XK[[X]] can be computed by the recur-

sive formulae B0 = 1, C0 = a,Bn+1 = Bn +Bn Cn, Cn+1 = Cn Cn =

a
2n+1

with Bn =
∑2n−1

k=0 a
k

converging (quadratically) to the shuffle-
inverse of 1 − a.
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Proposition 3.3. The shuffle-group 1+XK[[X]] is isomorphic to an infinite-
dimensional Fp−vector-space if K is a field of positive characteristic p.

Corollary 3.4. The shuffle-group 1+XK[[X]] is not isomorphic to the mul-
tiplicative group structure on 1 +XK[[X]] if K is of positive characteristic.

Proof of Proposition 3.3 We have

A
p

=
∑

0≤i1,i2,...,ip

(

i1 + i2 + · · · + ip

i1, i2, . . . , ip

)

αi1αi2 · · ·αipX
i1+···+ip .

for A =
∑∞

n=0 αnX
n ∈ K[[X]] where

(

i1+i2+···+ip
i1,i2,...,ip

)

=
(i1+···+ip)!

i1!···ip! . Two

summands differing by a cyclic permutation of indices (i1, i2, . . . , ip) 7−→

(i2, i3, . . . , ip, i1) yield the same contribution to A
p

. Over a field K of
positive characterstic p we can thus restrict the summation to i1 = i2 =
· · · = ip. Since

(

ip
i,i,...,i

)

= (ip)!
(i!)p ≡ 0 (mod p) except for i = 0, we have

A
p

= α
p
0 for A =

∑∞
n=0 αnX

n ∈ K[[X]]. This implies the result . 2

Remark 3.5. Proposition 3.3 follows also easily from Satz 1 in [7] where a
different proof is given.

Proposition 3.6. Shuffle products of rational power series are rational.

Proof Suppose first K of characteristic zero. The result is obvious for the
shuffle product of two polynomials. Extending K to its algebraic closure, de-
composing into simple fractions and using bilinearity, it is enough to consider
shuffle products of the formXh

(
∑∞

n=0 n
kαnX

n
)

=
∑∞

n=0

(

n+h
h

)

nkαnXn+h

which are obviously rational and shuffle products of the form

(

∞
∑

n=0

nhαnXn

) (

∞
∑

n=0

nkβnXn

)

=
∑

0≤m≤n

(

n

m

)

mh(n−m)kαmβn−mXn

which are evaluations at y = α, z = β of

(

y
∂

∂y

)h(

z
∂

∂z

)k ( 1

1 − (y + z)X

)

and are thus rational for K of characteristic zero.
In positive characteristic, one can either consider suitable lifts into in-

teger rings of fields of characteristic zero or deduce it as a special case of
Corollay 7.3. 2

Remark 3.7. The proof of proposition 3.6 implies easily analyticity of shuf-
fle products of analytic power series (defined as formal power series with

strictly positive convergence radii) if K ⊂ C or K ⊂ Q̂p.
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Proposition 3.8. Shuffle products of algebraic series in Fp[[X]] are alge-
braic.

Sketch of Proof A Theorem of Christol (see Theorem 12.2.5 in [2])
states that the coefficients of an algebraic series over ⊂ Fp define a q−automatic
sequence with values in Fq for some power q = pe of p. Given a formal power
series C =

∑∞
n=0 γnX

n ∈ Fp[[X]], we denote by Ck,f the formal power series
∑∞

n=0 γk+nqfXn.

The result follows then from the observation that the series (A B)k,f

are linear combination of Ak1,f Bk2,f and span thus a finite-dimensional
subspace of Fp[[X]] for algebraic A,B ∈ Fp[[X]]. 2

Propositions 3.3 and 3.6 (respectively 3.3 and 3.8) imply immediately
the following result:

Corollary 3.9. Rational (respectively algebraic) elements of the shuffle-
group 1 +XK[[X]] form a subgroup for K ⊂ Fp.

Remark 3.10. A rational fraction A ∈ 1 + XC[[X]] has a rational in-
verse for the shuffle-product if and only if A = 1

1−λX
with λ ∈ C. (Idea

of proof: Decompose two rational series A,B satisfying A B = 1 into
simple fractions and compute A B using the formulae given in the proof
of Proposition 3.6.)

4 A quadratic form

The identity A A = α2
0 for A =

∑∞
n=0 αnX

n ∈ F2[[X]] (see the proof of
Proposition 3.3) suggests to consider the quadratic map

K[[X]] ∋ A =

∞
∑

n=0

αnX
n 7−→ σ(A) = α2

0 +

∞
∑

n=1

βnX
n ∈ K[[X]] ⊂ F2[[X]]

defined by
(

∞
∑

n=0

α̃nX
n

) (

∞
∑

n=0

α̃nX
n

)

= α̃2
0 + 2

∞
∑

n=0

β̃nX
n

where α̃n and β̃n are lifts into suitable algebraic integers of αn, βn ∈ K ⊂ F2.
For A =

∑∞
n=0 αnX

n, we get

σ(A) = α2
0 +

∞
∑

n=1

1

2

(

2n

n

)

α2
nX

2n +
∑

0≤i<j

(

i+ j

i

)

αiαjX
i+j

and
(2n

n

)

≡ 2 (mod 4) if and only if n is a power of 2. This yields the formula

σ(A) = α2
0 +

∞
∑

n=0

α2
2nX2n+1

+
∑

0≤i<j

(

i+ j

i

)

αiαjX
i+j .
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Proposition 4.1. The formal power series σ(A) is rational (respectively
algebraic) if A ∈ F2[[X]] is rational (respectively algebraic).

The statement of this proposition in the case of a rational series is a
particular case of Proposition 8.1.

Proposition 4.1 can be proven by modifying slightly the arguments used
in the proof of Propositions 3.6 and 3.8 and by applying them to a suitable
integral lift Ã ∈ Q[[X]] of A. 2

Finally, one has also the following result whose easy proof is left to the
reader:

Proposition 4.2. The quadratic form A 7−→ σ(A) commutes with the
Frobenius map A 7−→ A2.

4.1 The main conjecture

Proposition 4.3. The quadratic form A 7−→ σ(A) induces a bijection on
the affine subspace 1 +XK[[X]] for a subfield K ⊂ F2.

Remark 4.4. Omitting the restriction to 1 +XK[[X]], the quadratic form
σ is neither surjective nor injective: One has σ−1(X) = ∅ and σ(A) = 0
if A ∈ X3K[[X2]]. (The example for non-injectivity is related to the easy
observation that σ(A) = 0 if and only if σ(1 +A) = 1 +A for A ∈ F2[[X]].)

Proof of Proposition 4.3 This follows from the identity

σ(A) − σ(B) = (αn − βn)Xn +Xn+1F2[[X]]

if A = 1 +
∑∞

n=1 αnX
n, B = 1 +

∑∞
n=1 βnX

n coincide up to Xn−1 (ie. if
αj = βj for j = 1, . . . , n− 1). 2

Experimental evidence (see Sections 4.5, 4.6 and 4.7 for a few exemples)
suggests the following conjecture:

Conjecture 4.5. If A ∈ 1 + F2[[X]] is rational (respectively algebraic) then
its preimage σ−1(A) ∈ 1 + F2[[X]] is rational (respectively algebraic).

This conjecture, in the case of rational power series, is a particular case
of Conjecture 8.2 (which has, to my knowledge, no algebraic analogue).

Remark 4.6. There is perhaps some hope for proving this conjecture in the
rational case using the formulae of the proof of Proposition 3.6: Considering
integral lifts into suitable algebraic integers and assuming a bound on the
degrees of the numerator and denominator of σ−1(A) (for rational A ∈ 1 +
XF2[[X]]) one gets a system of algebraic equations whose reduction modulo
2 should have a solution.
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4.2 Orbits in 1 + XF2[[X]] under σ

The purpose of this Section is to describe a few properties of the bijection
defined by σ on 1 +XF2[[X]].

Proposition 4.7. (i) The orbit of A ∈ 1+XF2[[X]] is infinite if it involves

a monomial of the form X2k
.

(ii) The orbit of a polynomial A ∈ 1 +XF2[X] is finite if it involves

no monomial of the form X2k
.

(iii) The cardinal of every finite orbit in 1 +XF2[[X]] of σ is a power
of 2.

Remark 4.8. (i) All elements of the form 1 + X3F2[[X
2]] are fixed by σ,

cf. Remark 4.4.
(ii) The algebraic function A = 1+

∑∞
n=0X

3·4n
(satisfying the equation

A + A4 +X3 = 0) contains no monomial of the form X2k
and has infinite

orbit under σ. I ignore if the affine subspace 1+XF2[[X]] contains an infinite

orbit formed by rational fractions without monomials of the form X2k
.

Proof of Proposition 4.7 Associate to A = 1 +
∑∞

n=1 αnX
n ∈ F2[[X]]

the auxiliary series PA =
∑∞

n=0 α2ntn ∈ F2[[t]]. It is easy to check that
Pσk(A) = (1 + t)kPA for all k ∈ Z. This implies assertion (i).

Consider a polynomial A containing only coefficients of degree < 2n and
no coefficient of degree a power of 2. The formula for σ(A) shows that σ(A)
satisfies the same conditions. This implies that the orbit of A under σ is
finite and proves assertion (ii).

If A ∈ 1 + F2[[X]] is such that σ2k
(A) ≡ A (mod XN−1), then σ2k

(A+

XN ) = σ2k
(A) +XN (mod XN+1). This implies easily the last assertion.2

4.3 A variation

The series PA =
∑∞

n=0 α2ntn associated to an algebraic power series A =
∑∞

n=0 αnX
n ∈ F2[[X]] as in the proof of proposition 4.7 is always ultimately

periodic and thus rational. This implies algebraicity of
∑∞

n=0 α2nX2n+1
for

algebraic
∑∞

n=0 αnX
n ∈ F2[[X]]. The properties of the quadratic form

A =

∞
∑

n=0

αnX
n 7−→ σ̃(A) =

∑

0≤i≤j

(

i+ j

i

)

αiαjX
i+j

with respect to algebraic elements in F2[[X]] should thus be somewhat sim-
ilar to the properties of σ. It particular σ̃ preserves algebraic series and
induces a bijection on 1 + XF2[[X]] which is of infinite order. Orbits are
either infinite or finite and the cardinality of a finite orbit is a power of 2.
Conjecture 4.5 (if true), together with Proposition 3.8, would imply that
σ̃−1(A) is algebraic for algebraic A ∈ 1 +XF2[[X]]. Remark however that
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σ̃(A) is in general not rational for rational A ∈ 1 + XF2[[X]]: An easy
computation shows indeed that σ̃( 1

1+X
) = 1+

∑∞
n=0X

2n
which satisfies the

algebraic equation y + y2 +X = 0 but is irrational since coefficients of ra-
tional power series over (the algebraic closure of) finite fields are ultimately
periodic. On the other hand, σ̃−1( 1

1+X
) is the irrational algebraic series

y = 1 +X +X2 +X4 +X7 + · · · ∈ F2[[X]] satisfying the equation

X + (1 +X +X2)y + (1 +X2 +X4)y3 = 0 .

The quadratic map σ̃ behaves however better than σ with respect to
polynomials: One can show easily that it induces a bijection of order a
power of 2 (depending on n) on polynomials of degree < 2n in 1+XF2[[X]].

Remark 4.9. The definition of the quadratic forms σ and σ̃ suggests to
consider the quadratic form ψ(

∑∞
n=0 αnX

n) =
∑

i≤j αiαjX
i+j of F2[[X]].

Using the fact that rational elements of F2[[X]] have ultimately periodic co-
efficients, it is not hard to show that ψ preserves rationality. It is also easy
to show that ψ induces a bijection on 1 +XF2[[X]]. However, the preimage
ψ−1(1 +X) ∈ F2[[X]] is apparently neither rational nor algebraic.

4.4 Algorithmic aspects

The integral Thue-Morse function tm(
∑

j=0 ǫj2
j) =

∑

j ǫj is defined as the

digit sum of a natural binary integer n =
∑

j=0 ǫj2
j ∈ N. Setting tm(0) = 0,

it can then be computed recursively by tm(2n) = tm(n) and tm(2n + 1) =
1 + tm(n). Kummer’s equality

(

i+j
i

)

≡ 2tm(i)+tm(j)−tm(i+j) (mod 2) (which
follows also from a Theorem of Lucas, see page 422 of [2]), allows a fast
computation of binomial coefficients modulo 2. We have thus

σ(A) = α2
0 +

∞
∑

n=0

α2
2nX2n+1

+
∑

0≤i<j

(

i+ j

i

)

αiαjX
i+j

= α2
0 +

∞
∑

n=0

α2
2nX2n+1

+
∑

0≤i<j, tm(i+j)=tm(i)+tm(j)

αiαjX
i+j

forA =
∑

n=0 αnX
n ∈ F2[[x]]. The last formula is suitable for computations.

The preimage σ−1(A) of A ∈ 1 +XF2[[X]] can be computed iteratively
as the unique fixpoint in F2[[X]] of the map

Z 7−→ Z +A− σ(Z) .

Starting with an arbitrary initial value Z0 (eg. with Z0 = A), the sequence
Z0, Z1, . . . , Zn+1 = Zn + A − σ(Zn), · · · ⊂ F2[[X]] converges quadratically
(roughly doubling the number of correct coefficients at each iteration) with
limit the attractive fixpoint σ−1(A).
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4.4.1 Checking identities in the rational case

Define the degree of a non-zero rational fraction A = f
g

∈ F2[[X]] with

f ∈ F2[X], g ∈ 1+F2[X] coprime, by deg(A) = max(deg(f), deg(g)). Propo-
sition 8.1 and Remark 7.1 imply the equality

deg(σ(A)) ≤ 1 +

(

deg(A) + 2

2

)

.

This inequality can be used to prove identities of the form σ(A) = B in-
volving two rational fractions A,B ∈ F2[X] by checking equality of the first
2 +

(

deg(A)+2
2

)

+ deg(B) coefficients of the series σ(A) and B.

4.4.2 Checking identities in the algebraic case

Given a power series A =
∑∞

n=0 αnX
n ∈ F2[[X]], we consider the power

series Ak,f =
∑∞

n=0 αk+n·2fXn for k, f ∈ N such that 0 ≤ k < 2f . The vector
space K(A) (called the 2−kernel of A, see [2]) spanned by all series Ak,f is
finite-dimensional if and only if A is algebraic and one has the inequality

dim(K(σ(A))) ≤ 1 +

(

1 + dim(K(A))

2

)

.

This inequality, together with techniques of [3], reduces the proof of equal-
ities σ(A) = B involving algebraic series A,B ∈ F2[[X]] to the equality
among finite series developpements of sufficiently high order N (depending
on combinatorial properties) of A and B. The typical value for N is of order

22+(1+dim(K(A))
2 ) and is thus unfortunately of no practical use in many cases.

4.5 Examples involving rational fractions in 1 + F2[[X]]

4.5.1 A few preimages of polynomials

σ−1(1 + X) = 1
1+X

, σ−1((1 + X)3) = 1 + X + X3, σ−1((1 + X)5) = (1 +

X)2(1+X+X2)(1+X2 +X3), σ−1((1+X)7) = 1+X3+X6

(1+X)7
, σ−1((1+X)9) =

(1+X)6(1+X+X9), σ−1(1+X+X2) = 1+X, σ−1(1+X2+X3) = 1+X2+X3

(1+X)4
,

σ−1(1 + X + X3) = 1+X+X2

(1+X)4
, σ−1(1 + X + X4) = 1 + X + X2 + X3,

σ−1(1+X3+X4) = 1+X+X2

(1+X)3
, σ−1(1+X+X2+X3+X4) = 1+X+X3

(1+X)4
, σ−1(1+

X+X2+X3+X5) = (1+X)(1+X3+X4), σ−1(1+X+X3+X4+X5) = (1+
X+X2+X5+X7), σ−1(1+X2+X3+X4+X5) = (1+X+X3)(1+X+X4),

σ−1(1 + X2 + X5) = (1+X+X2)(1+X+X3)
(1+X)6 , σ−1(1 + X + X2 + X4 + X5) =

(1+X+X4)
(1+X)8

, σ−1((1 + X + X2)3) = 1+X2+X3

(1+X)7
, σ−1((1 + X)(1 + X + X2) =

(1+X)(1+X +X2), σ−1((1+X)2(1+X +X2)) = (1+X +X2), σ−1((1+

X)3(1+X+X2) = 1+X3+X4

(1+X)6
, σ−1((1+X)4(1+X+X2) = 1+X+X4+X6+X7

(1+X)8
,

These examples suggest the following conjecture:
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Conjecture 4.10. For P ∈ 1+XF2[X] a polynomial of degree ≤ 2k, we have
σ−1(P ) = QP

(1+X)αP
with 0 ≤ αP ≤ 2k and QP ∈ 1 + XF2[X] a polynomial

of degree < 2k.

4.5.2 A few examples of rational fractions

σ−1
(

1
(1+X)3

)

= (1+X)2(1+X+X4)
(1+X+X2)4

, σ−1
(

1
1+X+X2

)

= (1+X)3

1+X3+X4 , σ−1
(

1+X
1+X+X2

)

=

(1+X)2

1+X3+X4 , σ−1
(

1+X+X2

1+X

)

= 1+X
1+X+X2 , σ−1

(

1+X+X2

(1+X)2

)

= 1+X+X3

(1+X)2 , σ−1
(

1+X+X2

(1+X)3

)

=

1+X3+X7

(1+X+X2)4 , σ−1
(

1+X+X2

(1+X)4

)

= (1+X+X3)(1+X3+X4)
(1+X+X2)4 ,

σ−1
(

1+X+X2

(1+X)5

)

= 1+X+X2+X3+X4+X5+X6+X12+X13

(1+X+X2)7 , σ−1
(

(1+X+X2)2

1+X

)

= 1+X+X2+X3+X4

(1+X+X2)4 ,

σ−1
(

(1+X+X2)2

(1+X)3

)

= (1+X+X2)(1+X2+X5)
(1+X)4 .

4.6 A few iterations of σ and σ−1 on rational fractions in

1 + XF2[X]

4.6.1 Example

Iterating σ−1 on 1 +X yields the following rational fractions given by their
simplest expression, corresponding not necessarily to the complete factori-
sation into irreducible polynomials of their numerators and enumerators
(such a factorisation makes sense when working in the multiplicative alge-
bra F2[[X]] and is probably irrelevant for the map σ, related to the shuffle
algebra structure (F2[[X]], )).

σ−1(1 +X) = 1
1+X

σ−2(1 +X) = 1
1+X+X2

σ−3(1 +X) = (1+X)3

1+X3+X4

σ−4(1 +X) = 1+X+X4+X5+X7

1+X4+X6+X7+X8

σ−5(1 +X) = 1+X+X2+X3+X4+X5+X7+X8+X14

1+X15+X16

σ−6(1 +X) = (1+X)2(1+X+X2+X14+X17+X20+X21+X24+X25+X26+X29)
1+X16+X30+X31+X32
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4.6.2 Example

Iterating σ−1 or σ on 1+X+X2

(1+X)2 = 1 + X + X3 + X5 + X7 + . . . yields the

following (not necessarily completely factored) results:

σ−4
(

1+X+X2

(1+X)2

)

= 1+X+X3+X5+X6+X8+X9+X10+X13+X14

1+X8+X12+X14+X16

σ−3
(

1+X+X2

(1+X)2

)

= 1+X+X2+X3+X5

(1+X3+X4)2

σ−2
(

1+X+X2

(1+X)2

)

= (1+X)3

(1+X+X2)2

σ−1
(

1+X+X2

(1+X)2

)

= 1+X+X3

(1+X)2

σ1
(

1+X+X2

(1+X)2

)

= 1+X+X4

(1+X)2

σ2
(

1+X+X2

(1+X)2

)

= 1+X+X8

(1+X)4

σ3
(

1+X+X2

(1+X)2

)

= 1+X+X2+X4+X10+X12+X16

(1+X)8

σ4
(

1+X+X2

(1+X)2

)

= 1+X+X3+X5+X6+X10+X11+X12+X13+X22+X26+X28+X32

(1+X)16

4.6.3 Example

Iterating σ−1 on 1
1+X+X3 yields the following (not necessarily completely

factored) rational fractions:

σ−3
(

1
1+X+X3

)

= (1+X+X2+X4+X6+X12+X15)(1+X2+X5+X6+X10+X12+X15)
1+X24+X28+X31+X32

σ−2
(

1
1+X+X3

)

= 1+X+X2+X3+X5+X8+X10+X11+X15

1+X8+X14+X15+X16

σ−1
(

1
1+X+X3

)

= (1+X)5

1+X7+X8

σ1
(

1
1+X+X3

)

= 1+X+X2+X3+X4

1+X2+X3

σ2
(

1
1+X+X3

)

= 1+X+X2+X3+X4+X6+X8

(1+X2+X3)2

σ3
(

1
1+X+X3

)

= 1+X+X4+X5+X6+X8+X9+X10+X12+X13+X14+X16

(1+X2+X3)4

σ4
(

1
1+X+X3

)

= P4
(1+X2+X3)8

Remark 4.11. Define the degree of a rational fraction A ∈ F2[[x]] as
deg(A) = max(deg(f), deg(g)) if A = f

g
with f, g ∈ F2[x] without common

factor. For rational A ∈ 1+XF2[[X]] we have limn→±∞
1
|n| log(deg(σ

nA)) =
0 if the orbit of A under σ is finite. The three examples of Section 4.6 sug-
gest that this limit exists (and equals log(2)) for these examples). It would
be interesting to prove the existence of this limit (or to exhibit a counterxam-
ple) for an arbitrary rational fraction A ∈ 1+F2[[X]]. Since we have clearly
limn→∞

1
n
log(deg(σn(A))) = log(2) for A ∈ F2[X] a polynomial with infi-

nite orbit, one can also ask for the existence of values other than 0, log(2) for
this limit which defines obviously an invariant of orbits under the bijection
σ on rational fractions in 1 + F2[[X]].
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4.7 Examples with algebraic series in 1 + XF2[[X]]

An algebraic power series A =
∑∞

n=0 αnX
n ∈ F2[[X]] can be conveniently

described by a basis of the finite-dimensional vector space K(A) introduced
in Section 4.4.2. More precisely, given a word ǫ1 . . . ǫl ∈ {0, 1}l of finite
length l ∈ N, we consider the power series

Aǫ1...,ǫl
=

∞
∑

n=0

α
n2l+

∑l
j=1 ǫj2j−1X

n.

Properties of the Frobenius map imply the identity

Aǫ1...,ǫl
= A2

ǫ1...,ǫl0
+XA2

ǫ1...,ǫl1
.

The expression of these identities in terms of a basis for K(A) gives a fairly
compact descriptions for algebraic series in F2[[X]] as illustrated by a few
examples below.

A minimal polynomial of an algebraic series A ∈ F2[[X]] can be of degree
2dim(K(A)) in the variable A. One can recover such a minimal polynomial
for A by applying an algorithm for Gröbner bases to the identities described
above associated to polynomial relations in K(A) (in terms of a basis or of
a generating set).

4.7.1 Example

The preimage z = σ−1(1 +
∑∞

n=0X
2n

) satisfies the polynomial equation
1 + (1 +X)z3 = 0.

4.7.2 Example

Consider the algebraic series y = 1 +
∑∞

n=0X
3·4n

satisfying y + y4 +X3 =
0 already considered in Remark 4.8. The series z = σ−1(y) satisfies the
algebraic equation 1 + (1 +X3)z3.

4.7.3 Example

Consider the algebraic power series y =
∑∞

n=0X
2n−1 = 1 +X +X3 +X7 +

X15+X31+· · · ∈ F2[[X]] satisfying the polynomial equation 1+y+Xy2 = 0.
The formal power series z = σ−1(y) = 1+X+X2+. . . satisfies the algebraic
equation

1 +X2 +X3 + (1 +X)4z +X(1 +X)4z2 = 0

and is given by

z =
1

1 +X
+X3

(

∞
∑

n=0

(tm(n) + tm(n+ 1))Xn

)4

∈ F2[[X]]

12



where tm
(

∑

j=0 ǫj2
j
)

=
∑

j=0 ǫj is the Thue-Morse sequence (see also [1]

for the sequence n 7−→ tm(n) + tm(n+ 1) (mod 2)).

Remark 4.12. For all n ∈ N, one can show that σn(y) = y + Pn(X) with
Pn(X) ∈ F2[X] a polynomial where y =

∑∞
n=0X

2n−1. (The series σn(y) is
of course algebraic for all n ∈ N, see Proposition 4.1.)

4.7.4 Example

Consider the algebraic power series y =
∑∞

n=0 tm(n+ 1)Xn = 1 + x+ x3 +
x6 + · · · ∈ F2[[X]] (satisfying (1 + (1 + x)2y + x(1 + x)3y2 = 0) related to
the Thue-Morse sequence. The preimage z = σ−1(y) yields the algebraic
system of equations

z = z2
0 +Xz2

1

z0 = z2
0 +Xz2

01

z1 = z2
10 +Xz2

11

z01 = z2
01 +X(z0 + z10)

2

z10 = z2
10 +X(z0 + z1 + z01 + z11)

2 = z1 +X(z0 + z1 + z01)
2

z11 = (z1 + z10 + z11)
2 +X(z01 + z10 + z11)

2 = z1 + (z1 + z11)
2 +X(z01 + z10)

2

4.7.5 Example

Consider the algebraic series y = σ−1 (
∑∞

n=0(tm(n) + tm(n+ 1))Xn) ∈
F2[[X]] (satisfying 1 + (1 + X)y + X(1 + X)y2 = 0). The preimage z =
σ−1(y) ∈ F2[[X]] satisfies the algebraic system of equations:

z = z2
0 +Xz2

1 ,

z0 = z2
00 +Xz2

0 ,

z1 = Xz2
11,

z00 = z2
0 +X(z0 + z00)

2,

z11 = z2
00 +X(z0 + z1 + z00)

2

which, together with the constant terms z(0) = z0(0) = z00(0) = z11(0) =
1, z1(0) = 0, determines the series z, z0 = 1

1+X+X2 , z1, z00 = 1+X
1+X+X2 , z11 =

z + X2(1+X)
(1+X+X2)2

uniquely. Eliminating the series z0, z1, z00, z11 by Gröbner-

basis techniques yields the algebraic equation

1+X2+X6+X10+X11+X12+X15+(1+X+X2)8z+X3(1+X+X2)8z4 = 0

for z.

4.7.6 Example

The series y =
∑∞

n=0

(3n
n

)

Xn ∈ F2[[X]] satisfies the algebraic equation y =
1 + Xy3 (cf. page 423 of [2]). Its preimage z = σ−1(y) gives rise to the
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algebraic system

z = z2
0 +Xz2

1 ,

z0 = z2 +Xz2
01,

z1 = z2
10 +Xz2

11,

z01 = z2
010 +Xz2

011,

z10 = (z0 + z010)
2 +Xz2

011 = z01 + z2
0 ,

z11 = z2
010 = (1 +X)2z4 + z2

1 ,

z010 = (z + z10)
2 +X(z + z11)

2 = (1 +X)z2 + z1,

z011 = (z + z10)
2 +X(z01 + z10)

2

5 Other primes

There exists an analogue of the quadratic map σ : F2[[x]] −→ F2[[x]] for p an
arbitrary prime. It corresponds to the p−homogenous form (still denoted)
σ : Fp[[X]] −→ Fp[[X]] defined by

σ(A) ≡ α̃
p
0 +

∞
∑

n=1

β̃nX
n (mod p)

for A =
∑∞

n=0 αnX
n ∈ Fp[[X]] with

∑∞
n=1 β̃nX

n ∈ XQ[[X]] given by the
equality

Ã
p

= α̃
p
0 + p

(

∞
∑

n=1

β̃nX
n

)

for Ã ∈ Q[[X]] an integral lift of A ≡ Ã (mod p).
The p−homogeneous form σ restricts to a bijection of 1 +XFp[[X]] and

shares most properties holding for p = 2. In particular, we have:

Proposition 5.1. The formal power series σ(A) is rational (respectively
algebraic) if A ∈ Fp[[X]] is rational (respectively algebraic).

Conjecture 5.2. If A ∈ 1 + Fp[[X]] is rational (respectively algebraic) then
its preimage σ−1(A) is rational (respectively algebraic).

5.1 A few examples for p = 3

Values of σ−1(A) ∈ F3[[X]] for a few rational A ∈ 1 +XF3[[X]] are:

σ−1(1 + X) = 1
1−X

, σ−1((1 +X)2) = 1−X−X2

(1+X)3
, σ−1( 1

1+X
) = (1+X)2

1−X2+X3 ,

σ−1( 1
(1+X)2

) = 1+X+X2−X4+X5+X7+X8

(1−X2+X3)3
, σ−1(1+X

1−X
) = 1−X−X2

1−X2+X3 , σ−1( 1+X
1+X2 ) =

(1−X)2

(1+X)(1−X−X2)
.
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5.1.1 Two algebraic examples for p = 3

The algebraic series
∑∞

n=0X
3n−1 = 1 +X2 +X8 +X26 + . . . is fixed by σ.

The preimage z = σ−1(1 +
∑∞

n=0X
3n

) satisfies the polynomial equation
(1 + X)3(1 − X)z13 − 1. (The power series y = 1 +

∑∞
n=0X

3n
∈ F3[[X]]

satisfies the algebraic equation y = X + y3.)

5.2 A few rational examples for p = 5

We give here values of σ−1(A) ∈ F5[[X]] for a few rational A ∈ 1+XF5[[X]]:

σ−1(1 + X) = 1
1−X

, σ−1((1 + X)2) = (1−X)(1+2X)(1+X+X2)
(1−2X)5

, σ−1((1 +

X)3) = (1−2X)(1+2X2−X3)
(1+2X)5

, σ−1( 1
1+X

) = (1−2X)(1+X−X2−2X3)
1−X4+X5 , σ−1( 1

(1+X)2
) =

1−2X+2X2+2X4+2X5−2X6−2X7−X8+X9+X11−2X13−2X14−2X15−X16+X18+X19−2X21+X24

(1−X4+X5)5
,

σ−1(1+X
1−X

) = 1+2X+X2+2X3−2X4

1−X4−2X5 , σ−1( 1+X
1−2X

) = 1−2X−2X3

1−X4+2X5 , σ−1( 1+X
1+2X

) =
1−X−2X2−X3−2X4

1−X4+X5 .

6 Power series in free non-commuting variables

This and the next section recall a few basic and well-known facts concerning
(rational) power series in free non-commuting variables, see for instance [8],
[4] or a similar book on the subject. Our terminology, motivated by [3],
differs however sometimes in the next section.

We denote by X ∗ the free monoid on a set X = {X1, . . . ,Xk}. We
write 1 for the identity element and we use a boldface capital X for a non-
commutative monomial X = Xi1Xi2 · · ·Xil ∈ X ∗. We denote by

A =
∑

X∈X ∗

(A,X)X ∈ K〈〈X1, · · · ,Xk〉〉

a non-commutative formal power series where

X ∗ ∋ X 7−→ (A,X) ∈ K

stands for the coefficient function.
A formal power series A ∈ K〈〈X1, . . . ,Xk〉〉 is invertible with respect to

the obvious non-commutative product if and only if it has non-zero constant
coefficient. We denote by m ⊂ K〈〈X1, . . . ,Xk〉〉 the maximal ideal consisting
of formal power series without constant coefficient and by K∗ + m the unit-
group of the algebra K〈〈X1, . . . ,Xk〉〉 which is thus the non-commutative
multiplicative group consisting of all (multiplicatively) invertible elements
in K〈〈X1, . . . ,Xk〉〉. The unit group is isomorphic to the direct product
K∗×(1+m) where K∗ is the central subgroup consisting of non-zero constants
and where 1 + m denotes the multiplicative subgroup given by the affine
subspace spanned by power series with constant coefficient 1. We have
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(1 − a)−1 = 1 +
∑∞

n=1 a
n for the multiplicative inverse (1 − a)−1 of an

element 1 − a ∈ 1 + m.

6.1 The shuffle algebra

The shuffle-product X X′ of two non-commutative monomials X,X′ ∈
X ∗ of degrees a = deg(X) and b = deg(X′) (for the obvious grading given
by deg(X1) = · · · = deg(Xk) = 1) is the sum of all

(

a+b
a

)

monomials of
degree a+ b obtained by “shuffling” in every possible way the linear factors
(elements of X ) involved in X with the linear factors of X′. Such a monomial
contribution to X X′ can be thought of as a monomial of degree a + b

whose linear factors are coloured by two colours with X corresponding to
the product of all linear factors of the first colour and X′ corresponding to
the product of the remaining linear factors. The shuffle product X X′

can also be recursively defined by X 1 = 1 X = X and

(XXs) (X′Xt) = (X (X′Xt))Xs + ((XXs) X′)Xt

where Xs,Xt ∈ X = {X1, . . . ,Xk} are monomials of degree 1.
Extending the shuffle-product in the obvious way to formal power series

endows the vector space K〈〈X1, . . . ,Xk〉〉 with an associative and commuta-
tive algebra structure called the shuffle-algebra which has close connections
with multiple zeta values, the algebra of quasi-symmetric functions etc, see
eg. [6]. In the case of one variable X = X1 we recover the definition of
Section 3.

The group GLk(K) acts on the vector-space K〈〈X1, . . . ,Xk〉〉 by a linear
change of variables. This action induces an automorphism of the multi-
plicative (non-commutative) algebra or of the (commutative) shuffle algebra
underlying K〈〈X1, . . . ,Xk〉〉.

Identifying all variables Xj of a formal power series A ∈ K〈〈X1, . . . ,Xk〉〉
with a common variable X yields a homomorphism of algebras (respectively
shuffle-algebras) from K〈〈X1, . . . ,Xk〉〉 into the commutative algebra (respec-
tively into the shuffle-algebra) K[[X]].

The commutative unit group (set of invertible elements for the shuffle-
product) of the shuffle algebra is given by the set K∗ + m and is isomorphic
to the direct product K∗ × (1 + m). The inverse of an element 1− a ∈ 1 + m

is given by
∑∞

n=0 a
n

= 1 + a+ a a+ a a a+ . . . , cf. Remark
3.2.

The following result generalises Proposition 3.3:

Proposition 6.1. Over a field of positive characteristic p, the subgroup
1 + m of the shuffle-group is an Fp−vector space of infinite dimension.

Proof Contributions to a p−fold shuffle productA1 A2 · · · Ap

are given by monomials with linear factors coloured by p colours {1, . . . , p}
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keeping track of their “origin” with coefficients given by the product of
the corresponding “monochromatic” coefficients in A1, . . . , Ap. A permuta-
tion of the colours {1, . . . , p} (and in particular, a cyclic permutation of all
colours) leaves such a contribution invariant if A1 = · · · = Ap. Forgetting the

colours, coefficients of degree > 0 in A
p

are thus zero in characteristic
p. 2

7 Rational formal power series

A formal power series A is rational if it belongs to the smallest subalgebra in
K〈〈X1, . . . ,Xk〉〉 which contains the free associative algebra K〈X1, . . . ,Xk〉 of
non-commutative polynomials and intersects the multiplicative unit group
of K〈〈X1, . . . ,Xk〉〉 in a subgroup.

The (generalised) Hankel matrix H = H(A) of

A =
∑

X∈X ∗

(A,X)X ∈ K〈〈X1, . . . ,Xk〉〉

is the infinite matrix with rows and columns indexed by the free monoid X ∗

of monomials and entries HXX′ = (A,XX′). In analogy with the terminol-
ogy of [3], we call the rank rank(H) ∈ N ∪ {∞} the complexity of A. The
row-span, denoted by A, of H is the recursive closure of A. It corresponds
to the syntaxic ideal of [4] and its dimension dim(A) is the complexity of A.

Remark 7.1. In the case of one variable, the complexity dim(A) of a non-
zero rational fraction A = f

g
with f ∈ K[X] and g ∈ 1 +XK[X] is given by

dim(A) = max(1 + deg(f), deg(g)).

Rational series coincide with series of finite complexity by a Theorem of
Schützenberger (cf. [4], Theorem 1 of page 22).

We call a subspace A ⊂ K〈〈X1, . . . ,Xk〉〉 recursively closed if it contains
the recursive closure of all its elements.

Given a monomial T ∈ X ∗, we denote by

ρ(T) : K〈〈X1, . . . ,Xk〉〉 −→ K〈〈X1, . . . ,Xk〉〉

the linear application which associates toA =
∑

X∈X ∗(A,X)X ∈ K〈〈X1, . . . ,Xk〉〉
the formal power series ρ(T)A =

∑

X∈X ∗(A,XT)X. We have ρ(T)ρ(T′) =
ρ(TT′). It is easy to check that the set {ρ(T)A}T∈X ∗ spans the recursive
closure A of a power series A.

Theorem 7.2. We have the inclusion

A B ⊂ A B

for the shuffle product A B of A,B ∈ K〈〈X1, . . . ,Xk〉〉.
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Corollary 7.3. We have

dim(A B) ≤ dim(A) dim(B)

for the shuffle product A B of A,B ∈ K〈〈X1, . . . ,Xk〉〉.
In particular, shuffle products of rational elements in K〈〈X1, . . . ,Xk〉〉 are

rational.

Proof of Theorem 7.2 The shuffle product A B is clearly contained
in the vector space

A B = {Y Z |Y ∈ A,Z ∈ B} .

For Y ∈ A,Z ∈ B and Xs ∈ X = {X1, . . . ,Xk}, the recursive definition of
the shuffle product given in Section 6.1 shows

ρ(Xs)(Y Z) = (ρ(Xs)Y ) Z+Y (ρ(Xs)Z) ∈ A Z+Y B ⊂ A B

and the vector space A B is thus recursively closed. 2

Remark 7.4. Similar arguments show that the set of rational series is also
closed under the ordinary product (and multiplicative inversion of invert-
ible series), Hadamard product and composition (where one considers A ◦
(B1, . . . , Bk) with A ∈ K〈〈X1, . . . ,Xk〉〉 and B1, . . . , Bk ∈ m ⊂ K〈〈X1, . . . ,Xk〉〉).

Remark 7.5. The shuffle inverse of a rational element in K∗ + m is in
general not rational in characteristic 0. An exception is given by geometric

progressions 1
1−
∑k

j=1 λjXj
=
∑∞

n=0

(

∑k
j=1 λjXj

)n

since we have

1

1 −
∑k

j=1 λjXj

1

1 −
∑k

j=1 µjXj

=
1

1 −
∑k

j=1(λj + µj)Xj

.

(This identity corresponds to the equality eλXeµX = e(λ+µ)X in the case of
a unique variable X = X1, see Remark 3.1.)

By Remark 3.10, there are no other such elements in 1+m in the case of
a unique variable X = X1. I ignore if the maximal rational shuffle subgroup
of 1 + m ⊂ K〈〈X1, . . . ,Xk〉〉 (defined as the set of all rational elements in
1 + m with rational inverse for the shuffle product) contains other elements
if k ≥ 2 and if K is a suitable field of characteristic 0.

Remark 7.6. Any finite set of rational elements in K〈〈X1, . . . ,Xk〉〉 over
a field K of positive characteristic is included in a unique minimal finite-
dimensional recursively closed subspace of K〈〈X1, . . . ,Xk〉〉 which intersects
the shuffle group K∗ + m in a subgroup.
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8 The p−homogeneous form σ : Fp〈〈X1, . . . , Xk〉〉 −→
Fp〈〈X1, . . . , Xk〉〉

Considering an integral lift Ã = α̃+ ã ∈ Q〈〈X1, . . . ,Xk〉〉 with coefficients in
algebraic integers of A = α+ a ∈ α+ m ⊂ Fp〈〈X1, . . . ,Xk〉〉, we define σ(A)
by the reduction of α̃p + b̃ modulo p where

Ã
p

= α̃p + pb̃ ∈ α̃p + m ⊂ Q〈〈X1, . . . ,Xk〉〉 .

This definition corresponds to the definition of σ given in Section 5 in
the case of one variable X = X1.

Proposition 8.1. One has

dim(σ(A)) ≤ 1 +

(

dim(A) + p− 1

p

)

for A ∈ Fp〈〈X1, . . . ,Xk〉〉.
In particular, σ(A) is rational for rational A ∈ Fp〈〈X1, . . . ,Xk〉〉.

Proof It is always possible to choose an integral lift Ã ∈ Q〈〈X1, . . . ,Xk〉〉

of A ∈ Fp〈〈X1, . . . ,Xk〉〉 such that dim(Ã) = dim(A). The inclusion

(

Ã
p)

⊂
(

Ã
)

p

implies then easily the result. 2

It is easy to show that σ induces a bijection on the subset 1 + m ⊂
K〈〈X1, . . . ,Xk〉〉 for a field K ⊂ Fp. Computations of a few examples in
F2〈〈X1,X2〉〉 suggest:

Conjecture 8.2. The formal power series σ−1(A) is rational for rational
A ∈ 1 + m ⊂ Fp〈〈X1, . . . ,Xk〉〉.
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UMR 5582 (UJF-CNRS)
BP 74
38402 St Martin d’Hères Cedex (France)

e-mail: Roland.Bacher@ujf-grenoble.fr

20


