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Quantifying the reversibility phenomenon for 

the repeat-sales index 

 

 

Abstract 

The reversibility phenomenon for the repeat-sales index (RSI) is a serious obstacle for the 

derivatives products; it could hinder their introduction or their success. It is also an 

undesirable characteristic for the management of the real estate risk. This article provides a 

general solution for this problem, using an informational reformulation of the RSI framework. 

We present first a theoretical formula, easy to interpret and easy to handle, before 

implementing it. Our methodology is robust in the sense that its conclusions are not 

conditioned by any specific dataset; moreover, the numerical estimations of the reversibility 

percentages are reliable. For the derivatives our technique has strong implications for the 

choice of the underlying index. Indeed, even if the reversibility of the RSI is probably higher 

compared to the hedonic one, this index remains a challenger because of the predictability and 

the quantifiability of its revisions.   

 

 

 

 

Key words: reversibility, quantification, information, Monte Carlo simulations, Markovian 

process  
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1. Introduction 

With the repeat-sales technique, the past seems to change. But actually it is not the past itself 

that is changing; it is only its knowledge (its representation). This phenomenon is the 

consequence of the arrival of the new data in the estimation set that are relevant for the past. 

This mechanism of revision is an obstacle to the introduction of the derivatives written on a 

RSI and more generally it is an undesirable characteristic for the management of the real 

estate risk. Thus, it would be profitable to have at one’s disposal an empirical methodology 

that could allow anticipating the size of the potential fluctuations, as mentioned in Clapham et 

al. (2005) : “If a futures market requires index stability, it would be useful to know how often 

revision – either period-by-period or cumulative – exceeds some level. Say, for example, that 

futures markets could tolerate 0.5 percent revision in any one quarter and 2 percent 

cumulative revision to the initial estimate”. But at the present time, such a methodology does 

not exist in the RSI literature. This article provides a general solution for this problem, using 

an informational reformulation of the RSI framework. Our methodology is robust in the sense 

that its conclusions are not conditioned by a single dataset; indeed in Clapham et al. (2005) 

one can ask if the empirical results are still valid for a non-Swedish sample. What’s more the 

authors of this article also conclude to the superiority of the hedonic indexes because the 

reversibility fluctuations are smaller. However they do not provide a methodology which 

would make the anticipations of these variations conceivable. As we will see, the RSI 

technique makes possible these estimations. Consequently, even if the reversibility for the 

RSI is probably higher, this index can still challenge the hedonic approach because of its 

forecasting feature. The rest of this article is organized as follows. In the second paragraph we 

present more precisely the reversibility problem, with a literature review. The results of Clapp 

and Giaccotto (1999) are the subject of a particular attention. The third section presents firstly 

the theoretical reformulation of the RSI. Then, this new formalism is applied more 
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specifically to the reversibility problem; a simple and easy to handle formula is established. 

The fourth part is devoted to the empirical implementation. In this section, a simulation 

algorithm is presented and we will also answer to the above problem, mentioned in Clapham 

et al. (2005), establishing the law for the distributions of the reversibility percentages.          

 

 

2. The reversibility phenomenon, state of the art 

 

2.1. The phenomenon 

One of the specificities of the RSI is its time dependence to the estimation horizon; a past 

value Indt is not fixed once and for all. When the horizon is extended from T1 to T2 (T2 > T1), 

the new repeat-sales will not only bring information on the interval [T1,T2] but also1 on [0,T1]. 

And unfortunately, there is no reason why the new value Indt(T2) should be equal to the old 

one Indt(T1). This phenomenon of retroactive volatility is called reversibility. Figure 1 is an 

illustration of this instability for the Los-Angles County (Clapp and Giaccotto (1999)) and 

Figure 2 for Paris (Baroni et al. (2004)). As we can see, the magnitude of the variations can be 

substantial, up to 10% in Clapp and Giaccotto for example.      

 

2.2. Literature review 

The two seminal articles for the repeat-sales technique are Bailey et al. (1963), in an 

homoscedastic situation, and Case, Shiller (1987) for the heteroscedasctic context. Since these 

two papers the repeat-sales approach has become of one most popular index because of its 

quality and its flexibility. It used not only for residential but also for commercial real estate, 

cf. Gatzlaff, Geltner (1998). One can also refer to Chau et al. (2005) for a recent example of a 
                                                 
1 For instance, a data with a purchase at t < T1 and a resale at t’ (T1 < t’ < T2) will be informative for [t,T1]. But, 
as the resale occurs after T1, this repeat-sale cannot be used in the first index estimation.     
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multisectorial application of the RSI and to Baroni et al. (2004) for the French context. The 

reversibilty phenomenon had been analysed more specifically by Hoesli et al. (1997), in a two 

periods model. This very simplified environment allows studying rigorously the mathematics 

of the RSI; Meese and Wallace (1997) choose for instance the same model in their 

appendixes. But when the number of dates increases, the RSI equations become quickly 

burdensome. Clapham et al. (2005) tried to compare the sizes of the reversibility phenomenon 

for the various index methodologies. They conclude that the hedonic one was probably the 

less affected, but as their article is empirical their conclusion probably depends on the 

Swedish sample they used. And this is maybe the major concerns because a robust and 

general conclusion can only comes from theoretical arguments. Generally, in the literature, 

the theoretic approach is not the most frequent situation. We can mention the very interesting 

article of Wang and Zorn (1997), but others examples are globally scarce. For the reversibility 

problem there is an exception, namely the article of Clapp and Giaccotto (1999) ; their results 

are presented in the next paragraph.          

 

2.3. The solution of Clapp and Giaccotto (1999) 

This paper deals with a BMN2 context, but its formulas can be generalised to a CS3 model. 

The first step consists in running, for the interval [0,T1],  the regression Y(T1) = 

D(T1)LInd(T1) + ε(T1), where the unknown is the vector of the logarithms of the index: 

LInd(T1). Within Y(T1) we have the log-returns realised for the repeat-sales of the sample. 

The lines of the matrix D(T1) correspond to each data. In each line +1 indicates the resale 

date, -1 the purchase date and the rest is made of zeros4. In a second step, the estimation 

interval is extended to [0,T2] and the regression becomes Y(T2) = D(T2) LInd(T2) + ε(T2). The 

                                                 
2 Bailey, Muth and Nourse 
3 Case, Shiller 
4 The purchases at t = 0 are not included to avoid a singular matrix in the estimation. 
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vector of the log-returns can be written Y(T2)’ = ( Y(T1)’ ; Y(T2/T1)’ ) : the old observations 

Y(T1) completed with the new ones Y(T2/T1). The matrix D(T2) is a four blocks matrix: 

                   

              

 

In the upper left hand side corner we have the old matrix D(T1). The lower part of D(T2) is 

associated to the new repeat-sales. D1(T2/T1) is for the transactions realised before T1 (only 

purchase in that case) and D2(T2/T1) for the transactions realised after T1 (purchase and 

resale). The new data are of two types : purchase before T1 and resale after T1, or purchase 

and resale after T1. For the first case, the -1 is registered in D1(T2/T1) and the +1 in 

D2(T2/T1), whereas both are in D2(T2/T1) for the second. We denote ∆(T2) = (D(T1)’ ; 

D1(T2/T1)’)’  the left part of the matrix and F(T2) = ( 0’ ; D2(T2/T1)’)’ its right part. The vector 

LInd(T2) gives the logarithms of the index values for the second estimation. It can be 

separated in two pieces, the first one gives the levels of the index on [0,T1] and the second on 

]T1,T2] : LInd(T2)’ = (LInd1(T2)’ ; LInd2(T2)’). The Clapp and Giaccotto’s formula establishes 

the link between the vectors LInd(T1) and LInd1(T2), which both give the index values on the 

interval [0,T1], but using only the information embedded in Y(T1) for LInd(T1) while 

LInd1(T2) uses the completed dataset Y(T2). This formula requires an auxiliary regression 

Y(T2/T1) = D1(T2/T1)AUX + ε’. But, even if it looks like to the previous regressions, “AUX is 

not an index of any kind. It’s just the vector of coefficients in the artificial regression of 

Y(T2/T1) on D1(T2/T1)” –  Clapp,Giaccotto (1999). We also have to introduce a matrix Ω, 

quite hard to interpret: Ω = [ D(T1)’ D(T1) + D1(T2/T1)’ D1(T2/T1) ]-1 D(T1)’ D(T1). With all 

these elements the relation for the reversibility is:      

LInd1(T2) = Ω LInd(T1) + (I-Ω) AUX + [∆(T2)’∆(T2)]-1∆(T2)’F(T2) LInd2(T2)     

 

D(T1) 0 

D1(T2/T1) D2(T2/T1)
D(T2) = 
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3. The theoretical solution 

 

3.1. An informational reformulation of the RSI 

In this paragraph we summarize briefly the theoretical framework established in 

Simon(2007).   

 

3.1.1. The classical estimation of the repeat-sales index 

In the repeat-sales approach, the price of a property k at time t is decomposed in three parts: 

   Ln(pk,t) = ln(Indext) + Gk,t + Nk,t    

Indext  is the true index value, Gk,t is a Gaussian random walk representing the asset’s own 

trend and Nk,t is a white noise associated to the market imperfections. If we denote Rate = 

(rate0, rate1, …, rateT-1)’ the vector of the instantaneous continuous rates for each elementary 

time interval [t,t+1], we have Indext  = exp(rate0 + rate1 + … + rate t-1), or equivalently ratet = 

ln(Indext+1 /Indext). For a repeat-sale we can write at the purchase time ti : Ln(pk,i) = ln(Indexi) 

+ Gk,I + Nk,i and at the resale time tj : Ln(pk,j) = ln(Indexj) + Gk,j + Nk,j. Thus, subtracting, we 

get Ln(pk,j/pk,i) = Ln(Indexj/Indexi) + (Gk,j - Gk,i) + (Nk,j - Nk,i). The return rate realised for the 

property k is equal to the index return rate during the same period, plus the random walk and 

the white noise variations. As each repeat-sales give a relation of that nature, we can express 

them under a matrix form  Y = D*LIndex  + ε. Here, Y is the column vector of the log return 

rates realised in the estimation dataset and LIndex = ( ln(Index1), … , ln(IndexT) )’. ε is the 

error term and D is a non singular matrix5. Moreover, if we remark that there exists an 

invertible matrix6 A, such that LIndex = A Rate, we can also write7 Y = (DA) (A-1 LIndex) + ε 

                                                 
5 D is a matrix extracted from another matrix D’; the first column has been removed to avoid a singularity in the 
estimation process. The number of lines of D’ is equal to the total number of the repeat-sales in the dataset and 
its T+1 columns correspond to the different possible times for the trades. In each line -1 indicates the purchase 
date, +1 the resale date and the rest is completed with zeros.  
6 A is a triangular matrix whose values are equal to 1 on the diagonal and under it, 0 elsewhere. 
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= (DA) Rate + ε. In the estimation process, the true values Index and Rate will be replaced 

with their estimators, respectively denoted Ind = (Ind1,… , IndT)’ and R = (r0, r1, …, rT-1)’. 

The usual estimation of Y = D*LIndex  + ε or Y = (DA) Rate + ε is carried out in three steps 

because of the heteroscedasticity of ε. Indeed, the specification of the error term leads to the 

relation Var(εk) = 2σN²+ σG²(j-i) in which the values σN and σG are the volatilities associated 

with Gk,t and Nk,t , and j-i is the holding period for the kth repeat sales. Thus, the first step 

consists in running an OLS that produces a residuals series. These residuals are then regressed 

on a constant and on the length of the holding period to estimate σN, σG and the variance-

covariance matrix8 of ε denoted Σ. Finally the last step is an application of the generalised 

least squares procedure with the estimated matrix Σ. This approach is the traditional one. In 

Simon (2007) we established that it was equivalent to an algorithmic decomposition (cf. 

Figure 3), where the informational framework becomes explicit. The next paragraphs present 

briefly the mechanism of this algorithm.        

 

3.1.2. Notations, basic concepts and decomposition of the RSI 

3.1.2.1. Time of noise equality 

The variance of the residual εk measures the quality of the approximation Ln(pk,j/pk,i) ≈ 

Ln(Indj/Indi) for the kth repeat-sales . This quantity 2σN² + σG²(j-i) can be interpreted as a 

noise measure for each data. As a repeat-sales is compound of two transactions (a purchase 

and a resale), the first noise source Nk,t appears twice with 2σN². The contribution of the 

second source Gk,t depends on the time elapsed between these two transactions : σG²(j-i). 

Consequently, as time goes by, the above approximation becomes less and less reliable. To 

make the interpretation easier it is useful to modify slightly the expression of the total noise, 
                                                                                                                                                         
7 The basic rules of linear algebra imply that the matrix DA gets as many lines as the number of repeat sales in 
the sample, and that the columns correspond to the elementary time intervals. In each line of DA, if the purchase 
occurs at ti and the resale at tj, we have ( 0  …  0    1(ti)    1  …  1(tj-1)    0  …  0). Therefore, the relation Y = 
(DA) Rate + ε  simply means that Log(return) = ratei+  … + ratej-1+ ε 
8 ∑ is a diagonal matrix with a dimension equal to the size of the repeat sales sample. 
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factorising by σG² : 2σN²+σG²(j-i) = σG²[(2σN²/σG²)+(j-i)] = σG²[Θ+(j-i)]. What does Θ = 

2σN²/σG² represent? The first noise source provides a constant intensity (2σN²) whereas the 

size of the second is time-varying (σG²(j-i)). For a short holding period the first one is louder, 

but as this one is constant and the second is increasing regularly with the length of the holding 

period, we can find a time where the two sources will reach the same levels. Thereafter, the 

Gaussian noise Gk,t will exceed the white noise. This time is the solution of the equation:  

2σN² = σG² * time  time = 2σN²/ σG² = Θ. For that reason, Θ will be called the “time of noise 

equality”. In the below formula the function G(x) = x/(x+Θ) will sometimes appear. For an 

holding period j-i we have G( j – i ) = (j-i)/(Θ+(j-i)) = σG²(j-i)/[2σN²+σG²(j-i)]. Actually, G(j-i) 

will represent the proportion of the time-varying noise in the total noise; these numbers will 

be used subsequently as a system of weights.      

3.1.2.2. Quantity of information delivered by a repeat-sale  

The theoretical reformulation developed in this article brings to the fore the concept of 

information. As Θ+(j-i) is a noise measure, its inverse can be interpreted as an information 

measure. Indeed, if the noise is growing, that is if the approximation Ln(pk,j/pk,i) ≈ 

Ln(Indj/Indi) is becoming less reliable, the inverse of Θ + ( j – i ) is decreasing. Consequently, 

(Θ+(j-i))-1 is a direct measure9 (for a repeat-sale with a purchase at ti and a resale at tj) of the 

quality of the approximation or, equivalently, of the quantity of information delivered. Within 

the estimation process, the smaller weights associated to the long holding periods make these 

observations less contributive to the index values.  

3.1.2.3. Subsets and algorithmic decomposition of the RSI 

The set of repeat-sales with a purchase at ti and a resale at tj will be denoted by C(i,j). For a 

time interval [t’,t], an observation is relevant only if its holding period includes [t’,t] ; in other 

words, if the purchase occurs at ti ≤ t’ and the resale at tj ≥ t. This sub-sample will be denoted 

                                                 
9 These measures are relative ones. The matter is the relative sizes and not the absolute levels. They can be 
defined dividing by a constant in order to standardize the quantities.     
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Spl[t’,t]. For an elementary time-interval [t,t+1], we will also used the simplified notation 

Spl[t,t+1] = Splt. If we organize the dataset in an triangular upper table, the sub-set Spl[t’,t] will 

correspond to the cells indicated in Table 1. From the optimization problem associated to the 

general least squares procedure, we demonstrated in Simon (2007) that the repeat-sales index 

estimation could be realised using the algorithmic decomposition presented in Figure 3. The 

left-hand side is related to the informational concepts (for example the matrix Î), whereas the 

right-hand side is associated to the price measures (for example the mean of the mean rates 

ρt). The final values of the index come from the confrontation of these two parts.  

 

3.1.3. The real distribution and its informational equivalent   

The time is discretized from 0 to T (the present), and divided in T sub-intervals. 

 

        0        1        2      …                t       t + 1          …        T - 1      T 

We assume that the transactions occur only at these moments, and not between two dates (the 

step can be for example a month or a quarter, depending on the data quality). Each 

observations give a time couple (ti;tj) with 0 ≤ ti < tj ≤ T, thus we have T*(T+1) possibilities 

for the holding periods. The number of elements in C(i,j) is ni,j, and we denote N = ∑
i<j

nij the 

total number of the repeat-sales in the dataset. Table 2a is a representation of the real 

distribution of the {nij}. As each element of C(i,j) provides a quantity of information equal to 

(Θ+(j-i))-1, the total informational contribution of the ni,j observations of C(i,j) is ni,j (Θ+(j-i))-1 

= ni,j /( Θ + ( j – i )) = Li, j. Therefore, from the real distribution {ni,j} we get directly the 

informational distribution {Li,j} (cf. Table 2b), just dividing the ni,j by Θ+(j-i). The total 

quantity of information embedded in the dataset is then I = ∑
i<j

Lij.     
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3.1.4. Averages for the noise proportions, the periods and the frequencies 

The number of repeat-sales included in Splt is n
t
 = ∑

i  ≤ t < j
ni,j. For an element of C(i,j), the 

length of the holding period is j – i. With the function G, we can define the G-mean10 ζt of 

these lengths in Splt by ∑ 
i ≤ t < j ∑k’

 G(j-i) = nt G(ζt). The first sum enumerates all the classes 

C(i,j) that belong to Splt, the second all the elements in each of these classes. Moreover, as 

G(j-i) measures the proportion of the time varying-noise Gk,t in the total noise for a repeat-

sales of C(i,j), the quantity G(ζt) can also be interpreted as the mean proportion of this 

Gaussian noise in the global one, for the whole sub-sample Splt. In the same spirit, we define 

the arithmetic average F
t
 of the holding frequencies 1/(j-i), weighted by the G(j-i), in Splt: F

t
 = 

( nt G(ζt) )
-1  
∑

i ≤ t < j
∑

k’
G(j-i)*( 1 /(j-i) ) = I

t
 / (nt G(ζt)) . Its inverse τt = (F

t 
)

-1  is then the 

harmonic average11 of the holding periods j-i, weighted by the G(j-i), in Splt. If at first sight 

the two averages ζt and τt can appear as two different concepts, in fact it is nothing of the sort. 

We always have, for each sub-sample Splt , ζt = τt.  

 

3.1.5. Two matrixes 

The matrix η is a diagonal one, its T diagonal coefficients are: n0G(ζ0) , … , nT-1G(ζT-1). The 

ith element gives the number of repeat-sales relevant for [i,i+1], multiplied by G(ζi). Now, if 

we are working with the interval [t’,t+1], a given repeat-sales provides information on it if the 

purchase is at t’ or before and if the resale takes place at t+1 or after. The quantity of 

information relevant for [t’,t+1] is thus I
[t’,t+1] = ∑

i  ≤  t’ ≤  t < j
Li,j  (for an interval [t,t+1] we 

                                                 
10 We recall here that the concept of average is a very general one. If a function G is strictly increasing or 
decreasing the G-mean of the numbers {x1 , x2 , … , xn}, weighted by the (α1 , α2 , … , αn), is the number X such 
that: αG(X) = α1G(x1) + α2G(x2) +…+ αnG(xn) with α = ∑

i=1,...,n
αi. An arithmetic mean corresponds to G(x) = x, a 

geometric one to G(x)= ln(x) and the harmonic average to G(x) = 1/x 
11 We have ( nt G(ζ t) ) / τ

t
 = ∑

i ≤ t < j
∑

k’
G(j-i) * ( 1/(j-i) ) = I

t 
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simply denote I
t
 for I

[t,t+1] 
).  As exemplified in Table 3, I

[t’,t+1] can be calculated buy-side with 

the partial sums B0
t , B1

t , … , Bt
t’  or sell-side with St’

T, St’
T-1, … , St’

t+1 :  we have I[t’,t+1] =  

B0
t + … + Bt

t’ = St’
T + … + St’

t+1. For all the intervals included in [0,T] we get this way the 

quantities of information related. These values are arranged in a symmetric matrix Î.  

I
[0,1]

 I
[0,2]

 I
[0,3]

  I
[0,T]

 

I
[0,2]

 I
[1,2]

 I
[1,3]

  I
[1,T]

 

I
[0,3]

 I
[1,3]

 I
[2,3]

  I
[2,T]

 

¦     

I
[0,T]

 I
[1,T]

 I
[2,T]

  I
[T-1,T]

 

3.1.6. The mean prices 

Within each repeat-sales class C(i,j), we calculate the geometric and equally weighted 

averages of the purchase prices hp
(i,j) = (Π

k’ 
pk’,i)

1/ni,j  and of the resale prices hf
(i,j) = 

(Π
k’

pk’,j)
1/ni,j. For an elementary time-interval [t,t+1], the relevant classes C(i,j) are the ones 

that satisfy to the inequalities i ≤ t < j. With these classes, we calculate the geometric average 

Hp(t) of the hp
(i,j), weighted by the corresponding Li,j   (the total mass of the weights is It = 

∑
i≤t< j

Li,j):  

Hp(t) = ( Π
i ≤ t < j

(hp
(i,j))

 Li,j )
1/It

 = ( Π
i ≤ t < j

(Π
k’

pk’,i)
1 /( Θ + (j-i)) 

)
 1 / It

      

As indicated in the second part, Hp(t) is also the geometric mean of the purchase prices, 

weighted by their informational contribution 1/(Θ+(j-i)), for the investors who were owning 

real estate during at least [t,t+1]. Similarly, we also define the mean resale price Hf(t):  

Hf(t) = ( Π
i ≤ t < j

(hf
(i,j))

 Li,j )
1/It

 = ( Π
i ≤ t < j

(Π
k’

pk’,j)
1 /(Θ + ( j - i ))

)
 1 / It

     

     Î  =
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As we can see, Hp(t) can be interpreted as a mean purchase price weighted by the 

informational activity, buy-side, of the market. The interpretation is the same for Hf(t), with 

the informational activity of the market, sell-side.  

3.1.7.  The mean of the mean rates 

For a given repeat-sales k’ in C(i,j), with a purchase price pk’,i and a resale price pk’,j , the mean 

continuous rate realised during its holding period j-i is rk'
(i,j)

 = ln(pk’,j /pk’,i) / (j-i). In the subset 

Splt, we calculate the arithmetic mean of these mean rates rk'
(i,j)

, weighted12 by the G(j-i) : ρt = 

(ntG(ζt))
-1
∑

i≤t<j
∑

k’
G(j-i)rk'

(i,j)
. This value is a measure of the mean profitability of the 

investment for the people who were owning real estate during [t,t+1], independently of the 

length of the holding period. The weights in this average depend on the informational 

contribution of each data. We demonstrate in Simon (2007) that ρt can also be written, in a 

simpler way, with the following formula: ρt =  ( 1/ τt ) * ( ln Hf(t) – ln Hp(t)). For Splt, this 

relation is actually the aggregated equivalent of rk'
(i,j)

 = ln(pk’,j /pk’,i) / (j-i), with the harmonic 

mean of the holding periods τt, the mean purchase price Hp(t) and the mean resale price Hf(t). 

All these averages are weighted by the informational activity of the market. We denote the 

vector of these mean rates P = (ρ0, ρ1, …, ρT-1).    

 

3.1.8. The index and the relation Î R = η P 

The global estimation of the RSI can now be realised just solving the equation: ÎR = ηP     

R = (Î
-1
η) P. The single unknown is the vector R = (r0, r1, …, rT-1)’ of the monoperiodic 

growth rates of the index. The three others components of this equation (Î, η and P) are 

calculated directly from the dataset. The main advantages of this formalism are its 

interpretability and its flexibility: the matrix Î gives us the informational structure of the 

                                                 
12 The total mass of these weights is ntG(ζt) 
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dataset, the matrix η counts the relevant repeat-sales for each time interval [t,t+1] and the 

vector P provides the levels of profitability of the investment, for the people who are owning 

real estate at the different dates.  

 

3.2. The reversibility formulas 

 

3.2.1. Notations 

We are now going to study how we can deal with the reversibility phenomenon using the 

above reformulation of the RSI. In all this section we assume that the initial horizon T1 is 

extended to T2 > T1. Table 4 illustrates this extension for the informational distribution. We 

will keep the same notations, however the horizon will be added as a parameter; for example 

Hp(t) will be denoted Hp(t;T1) or Hp(t;T2) according to the associated horizon of the 

estimation. There exists two kinds of new repeat sales: the ones with a purchase before T1 and 

a resale after T1 (i < T1 < j ≤ T2), delimited by the continuous lines in Table 4, and those with 

a purchase and a resale realised between T1 and T2 (T1 ≤ i < j ≤ T2), delimited by the dotted 

lines. In Table 4 the relevant repeat sales for [t,t+1], if the horizon is T1, are represented with 

a light grey. And if the horizon becomes T2, the dark grey cells should also be included in this 

set.    

 

3.2.2. Reversibility for I 
t
, n

t
 , Hp(t) and Hf(t) 

For an interval [t,t+1], t < T1, the quantities of relevant information are I
t
(T1) = ∑

i ≤ t < j ≤ T1
Li,j  

for the first horizon and I
t
(T2) = ∑

i  ≤  t  < j ≤ T2 
Li, j = I

t
(T1) + ∑

i  ≤  t  <  T1 < j ≤ T2
Li,j  for the second. The 

sum with i ≤ t < T1 < j ≤ T2 corresponds to the additional information (dark grey). If we 

denote it I
t
(T2\T1), we simply get the relation I

t
(T2) = I

t
(T1) + I

t
(T2\T1). Similarly, for the real 
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equivalents of  I
t
(T2), I

t
(T1), I

t
(T2\T1), that is n

t
(T2), n

t
(T1) and n

t
(T2\T1), we have exactly the 

same kind of formula : n
t
(T2) = n

t
(T1) + n

t
(T2\T1). In the following, the notation T2\T1 will 

refer to the dataset of the new repeat sales that appear when the horizon is extended.      

 

3.2.3. Reversibility for the mean prices Hp(t) and Hf(t) 

We first calculate Hp(t) with the purchase prices for the two horizons : 

[Hp(t,T1)]
It(T1) 

= Π
i ≤ t < j ≤T1

( Π
k’ 

pk’,i )
1/ (Θ + (j – i ))                  

[Hp(t,T2)]
It(T2 )= Π

i ≤ t < j ≤T2
( Π

k’ 
pk’,i )

1/ (Θ + ( j – i )) 
      

Therefore we have :  [Hp(t,T2)] I
t(T2 )  =  [Hp(t,T1)] I

t(T1 )  Π
i  ≤  t  <  T1 < j ≤ T2 

( Π
k’ 

pk’,i )
1/ (Θ + (j – i ))

 

Introducing hp
(i,j), this product becomes : Π

i ≤ t < T1 < j ≤ T2
(Π

k’ 
pk’,i)

1/(Θ+(j-i))
 = Π

i  ≤ t < T1 < j ≤ T2 
(hp

(i,j) )Li,j 

The total mass of these weights Li,j is equal to I
t
(T2\T1). We denote this geometric average by: 

[Hp(t, T2 \ T1)] I
t( T2 \ T1)

  = Π
i  ≤  t  <  T1 < j ≤ T2 

( hp
(i,j)  )

 Li,j  = Π
i  ≤  t  <  T1 < j ≤ T2 

( Π
k’ 

pk’,i )
1/ (Θ + (j – i ))

  

For the interval [t,t+1], Hp(t, T2\T1) represents the mean purchase price for the new relevant 

repeat sales. Thus the reversibility formula is: [Hp(t,T2)]
I
t
(T2) 

= [Hp(t,T1)]
I
t
(T1)

[Hp(t,T2\T1)]
I
t(T2\T1)

. 

As we can see, the new value Hp(t,T2) is actually the geometric average between the old value 

Hp(t,T1) and a term which represents the new data Hp(t,T2\T1). Their respective contributions 

are measured by the informational weights I
t
(T1) and I

t
(T2\T1). Similarly, for the resale prices, 

if we introduce  [Hf(t,T2\T1)]
It(T2\T1)

= Π
i ≤  t < T1 < j ≤ T2

(hf
(i,j))Li,j = Π

i ≤ t < T1 <  j ≤ T2
( Π

k’
pk’,j )

1/(Θ+(j-i))
     

we have: [Hf(t,T2)] I
t(T2 )  =  [Hf(t,T1)] I

t(T1 )  [Hf(t, T2 \ T1)] I
t
( T2 \ T1)
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3.2.4. Reversibility for τ t 

We study in this paragraph the link between the mean holding periods τ
t
(T1) and τ

t
(T2). We 

have: I
t
(T2\T1) = ∑

i  ≤ t < T1 < j ≤ T2 
Li,j = ∑

i ≤ t < T1 < j ≤ T2 
∑

k’
 G( j – i ) * ( 1 / ( j – i )). Thus I

t
(T2\T1) is 

almost the arithmetic average of the 1/(j-i) weighted by the G(j-i). It just lacks in this formula 

the total mass of the weights, that is ∑
i ≤ t < T1 < j ≤ T2 

∑
k’

 G(j-i) = n
t
(T2\T1) G(ζ t(T2\T1)), with 

ζt(T2\T1) the G-average of the holding periods for the new repeat sales13. Therefore, as in the 

basic situation, I
t
(T2\T1) / [nt

(T2\T1) G( ζ t(T2\T1))] is a mean frequency F
t
(T2\T1), and its 

inverse a mean harmonic holding period τ
t
(T2\T1), for the new repeat-sales. We can now 

establish the formal link between τ
t
(T1) and τ

t
(T2) with the relations I

t
(T2\T1) = 

[nt
(T2\T1)G(ζt(T2\T1))] / τt

(T2\T1)  and I
t
(T2) = I

t
(T1) + I

t
(T2\T1). We get the formula: 

[n
t
(T2)G(ζt(T2))]/τ

t
(T2) = [n

t
(T1)G(ζt(T1))]/τ

t
(T1) + [n

t
(T2\T1)G(ζt(T2\T1))]/τt

(T2\T1). And as 

we have n
t
(T2)G(ζt(T2)) = n

t
(T1)G(ζt(T1)) + n

t
(T2\T1)G(ζt(T2\T1)), we can assert that τ

t
(T2) is 

simply the harmonic weighted average of τ
t
(T1) and τ

t
(T2\T1).  

 

3.2.5. Reversibility for ρt 

3.2.5.1.  Scalar formula for t < T1 

For t < T1 we have14: ρt(T2) = [(1/τ
t
(T1))*(lnHf(t,T1)-lnHp(t,T1))]*[ (I

t
(T1)τ

t
(T1)) /(I

t
(T2)τ

t
(T2))] 

          + [(1/ τ
t
(T2\T1)) * (ln Hf(t, T2\T1) – ln Hp(t, T2\T1))]*[(I

t
(T2\T1)τ

t
(T2 \T1)) / (I

t
(T2)τ

t
(T2))]   

In the first square brackets we recognize ρt(T1). Moreover, we can easily prove that the third 

brackets are also equal to [n
t
(T2\T1)G(ζ t(T2\T1))]

-1 
∑ 

i ≤ t < T1 < j ≤ T2
∑

k’
G(j-i)rk'

(i,j)
. This expression 

                                                 
13 Here also, the quantity G(ζt(T2\T1)) can be interpreted as the mean proportion of the Gaussian noise in the 
whole noise, for the new data.  
14 ρt (T2) = [I

t
(T2)/( n

t
(T2)G(ζt(T2)))] * ln[Hf(t,T2)/Hp(t,T2)] = [ I

t
(T2)/( n

t
(T2)G(ζt(T2)) ) ] * [lnHf(t,T2) – lnHp(t,T2)] 

= [ I
t
(T1)lnHf(t,T1)+I

t
(T2\T1)lnHf(t,T2\T1) ]/[I

t
(T2)τ

t
(T2)] – [ I

t
(T1)lnHp(t,T1)+I

t
(T2\T1)lnHp(t,T2\T1) ]/[I

t
(T2)τ

t
(T2)] 
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is simply the weighted mean of the mean rates rk'
(i,j) for the new repeat sales, and of course it 

will be denoted ρt(T2\T1). Thus, the reversibility formula for ρt , t < T1, is: 

    ρt(T2) = [I
t
(T1) / I

t
(T2)][τ

t
(T1) / τ

t
(T2)]ρt(T1) + [I

t
(T2\T1) / I

t
(T2)][τ

t
(T2\T1) / τ

t
(T2)]ρt(T2\T1) 

The quantity I
t
(T1)/I

t
(T2) represents the percentage of the total information I

t
(T2) already 

known when the horizon is T1. I
t
(T2\T1)/I

t
(T2) is the percentage of the information revealed 

between T1 and T2. The ratios τ
t
(T1)/τ

t
(T2) and τ

t
(T2\T1)/τ

t
(T2) measure the lengths of the 

holding periods for the old data and for the new ones, relatively to the lengths of the whole 

sample. If we assume that the average holding periods are all equal, the relation simply 

becomes: ρt(T2) = [I
t
(T1)/I

t
(T2)]ρt(T1) + [I

t
(T2\T1)/I

t
(T2)]ρt(T2\T1). 

3.2.5.2.  Vectorial formula 

The above formulas are valid for t < T1. However the expressions that define I
t
(T2\T1), 

τ
t
(T2\T1), ζ t(T2\T1), n

t
( T2 \ T1 ) and ρt(T2\T1) can be generalized for t ≥ T1. Indeed, for these 

quantities the sums concern the classes C(i,j) such that i  ≤ t < T1 < j ≤ T2 , that is the new 

repeat-sales relevant for [t,t+1], with t < T1. Now, if we choose t ≥ T1, the relevant cells will 

be the ones satisfying15 to i ≤ t < j ≤ T2. But, what we get this way is not new ;  it is just I
t
(T2), 

τ
t
(T2), ζt(T2), n

t
( T2) and ρt(T2). For instance I

t
(T2\T1 ) = ∑

i  ≤ t < T1 < j ≤ T2
Li,j  gives for t ≥ T1 :     

∑
i  ≤ t < j ≤ T2

Li,j = I
t
( T2). We can now write the formulas in a more synthetic manner. We gather 

the values ρt(T2), for 0 ≤ t < T2, in a T2-vector P(T2) and the values ρt(T1), for 0 ≤ t < T1, in a 

T1-vector P(T1). From the vector P(T1), a T2-vector is created adding at its end T2-T1 zeros; it 

will be noted in italics P(T1). The numbers ρt(T2\T1) are gathered in a T2-vector P(T2\T1), and 

actually its last T2-T1 coordinates are simply equal to ρt(T2). Thus, for t < T1 we have: 

 τ
t
(T2) I

t
(T2) ρt(T2)  = I

t
(T1) τ

t
(T1) ρt(T1) + I

t
(T2\T1) τ

t
(T2\T1) ρt(T2\T1) 

                                                 
15 i ≤ T1 ≤ t < j ≤ T2 is not correct because it would exclude the repeat-sales with a purchase at i, such that T1 < i 
≤ t. As these couples belong to the new data and are perfectly relevant for [t,t+1], we cannot forget it.   
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  n
t
(T2) G(ζt(T2)) ρt(T2) = n

t
(T1) G(ζt(T1)) ρt(T1) + n

t
(T2\T1) G(ζt(T2\T1)) ρt(T2\T1) 

And for t ≥ T1: n
t
(T2) G(ζt(T2)) ρt(T2) = n

t
(T2\T1) G(ζt(T2\T1)) ρt(T2\T1) 

The diagonal matrix η(T1) can be injected in a T2-matrix, completing it with zeros, and 

denoted in italics by η(T1). η(T2) is the usual T2-diagonal matrix and we denote η(T2\T1) the 

T2-diagonal matrix built with n0(T2\T1) G(ζ0(T2\T1),…,nT2-1(T2\T1) G(ζT2-1(T2\T1)). We can 

now write simultaneously these two kinds of equations (for t < T1 and for t ≥ T1):  

   η(T2) P(T2) = η(T1) P(T1) + η(T2\T1) P(T2\T1)          

 

3.2.6. Reversibility for the informational matrix Î 

For an interval [ti, tj] the relevant information is denoted I
[ti, ti](T1) or I

[ti, ti](T2), according to the 

horizon. The associated informational matrixes are Î(T1) and Î(T2), dimension T1 and T2 

respectively. A third matrix Î(T2\T1), dimension T2, is the link between Î(T1) and Î(T2). Its 

values are computed only with the new Li,j (cf. Table 5), and for each interval [ti, tj] C [0,T2]  

they represent the additional quantity of information. Î(T2\T1) can be written with three sub-

matrix Îa(T2\T1), Îb(T2\T1) and Îc(T2\T1) (cf. Figure 4). Îa(T2\T1) and Îc(T2\T1) are two square 

matrixes of dimension T1 and T2-T1, whereas Îb(T2\T1) is a T1*(T2-T1) matrix and its transpose 

t
 Îb(T2\T1)  a (T2-T1)*T1 matrix. Îa(T2\T1) is symmetric and its diagonal elements correspond to 

the first column of  Îb(T2\T1) ; from one of these diagonal elements, the matrix values are the 

same on the right and below. The matrixes Îb(T2\T1) and Îc(T2\T1) are simply extracted from 

Î(T2). Îa and Îc respectively represent the additional information for an interval [ti,tj] C [0,T1] 

and  [ti,tj] C [T1,T2], whereas Îb is for the intervals [ti,tj] C [0,T2] with T1 C ]ti,tj[; that is the 

ones which straddle the first horizon T1. If we inject now the matrix Î(T1) in a T2*T2 matrix, 

completed it with zeros and denoted in italics Î(T1), the reversibility formula for the 

informational matrix is simply: Î(T2) = Î(T1) + Î(T2\T1).  
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3.2.7. Reversibility for the RSI  

The last step consists in establishing the reversibility formula for the index. For an horizon T1 

and t < T1, the building blocks I
t
(T1), τ

t
(T1), ζ t(T1), n

t
(T1) and ρt(T1) give the repeat sales 

index R(T1)16. Similarly I
t
(T2), τ

t
(T2), ζ t(T2), n

t
(T2) and ρt(T2), calculated for t < T2, give the 

repeat sales index R(T2). The link between these two families of intermediate measures is 

known thanks to the quantities I
t
(T2\T1), τ

t
(T2\T1), ζ t(T2\T1), n

t
(T2\T1) and ρt(T2\T1). But if we 

examine precisely their definitions, we can notice that they are corresponding exactly to the 

quantities I
t
, τ

t
, ζt, n

t
, ρt that we can get if the dataset is restricted only to the new repeat sales, 

as illustrated in Table 5. Thus, it suggests that it is useful to estimate the RSI on the interval 

[0,T2] just with the sample T2\T1; we get this way a T2-vector R(T2\T1)17. If we now use the 

general relation ÎR = ηP and the reversibility formula established for the vector P, η(T2)P(T2) 

= η(T1)P(T1) + η(T2\T1)P(T2\T1), we finally get a very simple reversibility formula for the 

repeat-sales index :             Î(T2) R(T2) = Î(T1) R(T1) + Î(T2\T1) R(T2\T1)  

 

3.3. Comments 

The above formalism allows summing up the logic of the reversibility phenomenon as 

follows. First we estimate the RSI with the old data on [0,T1]; we get an informational matrix 

Î(T1) and a vector R(T1). Then, only with the new data T2\T1, we estimate the index on [0,T2] ; 

it gives Î(T2\T1) and R(T2\T1). At last, using the whole dataset (old data + new data), we 

calculate the RSI on [0,T2] with Î(T2) and R(T2). What is expressed in the reversibility 

formula is simply that the quantity Î R is additive when the horizon is extended from T1 to T2. 

In their article of 1999, Clapp and Giaccotto proposed a formula to deal with this problem (cf. 

paragraph 2.3). How should we understand these two different approaches? At the theoretical 

                                                 
16 In order to have a T2-vector R(T1), we will sometimes complete the T1-vector R(T1) with T2-T1 final zeros.     
17 We saw above that I

t
, τ

t
, ζ t, n

t
 and ρt are equal for T2 and T2\T1 when t ≥ T1. Unfortunately, for the repeat-sales 

index, this relation is not true.          
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level they are of course equivalent because they are measuring the same phenomenon. But in 

an empirical point of view, things are quite different. The Clapp and Giaccotto’s formula is 

rather complex and its financial interpretation is not obvious. For instance, what does the 

matrix Ω represent? Moreover, as it is pointed in this article of 1999, the auxiliary regression 

is just an abstract estimation which does not correspond to an index of any kind. On the other 

hand, the formula Î(T2)R(T2) = Î(T1)R(T1) + Î(T2\T1)R(T2\T1)  is simple, easy to handle and 

easy to interpret. The basic concepts are simply the informational matrix and the vector of the 

monoperiodic growth rates of the index; these two notions are strongly intuitive. What is 

more, the equivalent of the auxiliary regression AUX, namely R(T2\T1), can be interpreted as 

the RSI for the interval [0,T2] that we get if we run the estimation only with the new dataset 

T2\T1. Thus, this new formula seems to be very interesting for the empirical applications. 

More generally, our relation could be understood as a kind of « equation of energy 

preservation » for the datasets. Indeed, if we consider that the product ÎR measures the 

quantity of energy embedded in a dataset, the reversibility formula simply asserts that:     

 

This idea of energy delivered by a sample also allows interpreting the relation ÎR = η P. The 

left hand side can be understood as the energy of the informational system of the index values, 

whereas the right hand side can be analysed as the energy provided by the gross (real) dataset 

system. Here also, we have a kind of equation of preservation:    

 

  

 

Energy provided by 

the whole dataset 

Î(T2) R(T2) 

 

 = 

Energy provided 

by the old data 

Î(T1) R(T1) 

 

+ 

Energy provided 

by the new data 

Î(T2\T1) R(T2\T1)

Energy of the 

informational system

Î R 

 

= 

Energy provided by 

the real system 

η P 
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4. The empirical quantification methodology 

Leaning on these theoretical results we are now going to implement a methodology which 

allows estimating the size of the potential variations due to the reversibility phenomenon.  

 

4.1. The exponential benchmark 

In order to simulate the behaviour of the repeat-sales between T1 and T2 we introduce a 

simple model based on an exponential distribution of the resale decision. More precisely, we 

assume that: 1) the quantities of goods traded on the market at each date are constant and 

denoted K  2) the buy decisions and the sell decisions are independent between the individuals  

3) the length of the holding period follows an exponential distribution, with a parameter λ > 0 

(the same for all the owners). This last hypothesis means that, conditionally to a purchase at 

t=0, the probability of not having sold the house at time t is e-λt. This choice is unrealistic 

because it implies that the probability of selling the house in the next year is not influenced by 

the length of the holding period18. If we introduce the hazard rate19 which measures the 

instantaneous probability of a resale: λ(t) = (1/∆t)*Prob( resale > t+∆t | resale ≥ t), we can 

demonstrate that the choice of an exponential distribution is equivalent to the choice of a 

constant hazard rate. In the real world things are of course different. For the standard owner 

(cf. Figure 5) we can reasonably think that the hazard rate is first low (quick resales are 

scarce). In a second time, it increases progressively to a stationary level, maybe modified by 

the economical context (residential time). Then, as time goes by, the possibility of a moving 

associated to the retirement or even the death of the householder would bring the hazard rate 

to a higher level (ageing). However, even if our assumption is not entirely realistic, we keep it 

because it generates a simple model in which the resale decision could be compared to a 
                                                 
18 Prob ( resale > t | resale ≥ t ) = Prob ( resale > s | resale ≥ s ) 
19 λ(t) is a classical concept for the survival models, cf. Kalbfleisch, Prentice (2002). It appears for example in 
the econometrical studies for the prepayment and the default options embedded in the mortgages, cf. Deng, 
Quigley, Van Order (2000). 
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radioactive disintegration of an atom. The aim of this benchmark does not consist in 

describing precisely the reality; we just try to modelize a basic behaviour. For an interval 

[0,T], the benchmark dataset is fully determined if the parameters K and α = e – λ are known. 

We demonstrated in Simon (2006) that the number of repeat-sales in an exponential sample 

is20 N = K T ( 1 – π ) and the total quantity of information embedded in this dataset is21 I =   

K’ [ (T+Θ+1) uT – T π]. These two expressions will be useful for the calibration step.     

 

4.2. An example 

For practical reasons, we are working in this article with artificial samples, randomly 

generated22. However, the methodology can be applied directly to the real datasets, without 

any difficulties. Figure 6 presents the results of the estimation when T1 = 40 and T2 = 45. The 

green curve gives the index values on [0,40], for the old dataset. The yellow curve gives the 

index values on [0,45], using only the new data T2\T1. And the red one is for the completed 

sample. As for the black curve, it gives the percentage of reversibility (Indt(45)/Indt(40) - 1) 

for t = 0,…,40. The sample of the new data T2\T1 is smaller than the two others, thus its curve 

logically presents a higher volatility. For the majority of the dates the difference between the 

old index and the completed one is negligible; the black curve is near zero. It is only in the 

last quarter of the interval [0,40] that the two curves can diverge; the spread reach up to 1% 

with our simulated data. The direction of the variation is given by the new data. For instance, 

at t = 34 the index T2\T1 is at 110 whereas the old index is around 104. Consequently, the 

yellow curve brings the old value (104) at a higher level (105). As we can see the reversibility 

phenomenon presents a strong temporal framework. It appears essentially for the nearest 

dates. But unfortunately, in an investment point of view, these recent past values are in 

                                                 
20 π = d(T) * ( α / T(1– α) )   d(k) = 1 – α

k
 

21 K’ = K (1–α)/α  Θ = 2σN²/ σG² un = α /(Θ + 1) + α² /(Θ + 2)  + α3 /(Θ + 3) + … + αn /(Θ + n) 
22 First we first fix the numbers of transactions for each date, for the whole market. Then, the resale rates for 
each cohort are randomly generated. The estimation sample is made of the repeat-sales with a resale date before 
T.     
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general the most important ones. Therefore, it is really crucial to elaborate a methodology 

able to indicate the level of reliability of the old index values. In other words we are looking 

for a kind of confidence interval.                                

 

4.3. The simulation process 

We will use for that purpose a Monte Carlo approach; the simulation algorithm is presented in 

Figure 7. From a repeat-sales sample on [0,T1], we calculate the associated index with R(T1) 

and Î(T1). These two quantities are fixed during all the process. The present time is T1 and we 

are trying to infer what could be the variations of the index when the estimation will be 

renwed at T2. The first step consists in calibrating the exponential benchmark with the old 

data on [0,T1]. Precisely, we are looking for the values of the parameters K (constant flow on 

the market) and α (resale speed) such that the total number of repeat-sales N and the quantity 

of information I be equal between the real dataset and the benchmark sample23. 

Mathematically speaking, we can estimate the parameter α working with the quantity I/N 

which does not depend on K (numerical resolution). When α is known, we calculate K with 

the equation N = K T ( 1 – π ). Once the benchmark is calibrated, we assume that the arrival 

of the information on the interval [T1,T2] will occur according to the same rhythm than 

previously. We get this way an approximation Îbench(T2\T1) for the matrix Î(T2\T1) which 

represents the informational distribution of the new repeat-sales24. In the same time, we also 

get the matrix Î(T2) adding Î(T1) and Îbench(T2\T1). After the left-hand side of Figure 7, devoted 

to the informational matrixes, we now focus on the right-hand side dedicated to the growth 

rates vectors. R(T1) gives the index evolution on the interval [0,T1]. For the rest of the interval 

[T1,T2], we complete it in a T2-vector Rhyp = (R(T1), Rhyp(T1 ;T2)) making economical 

                                                 
23 Others choices are possible for this calibration step, according to the economical contexts.  
24 When K and α are known we demonstrated in Simon (2006) that Li,j = K’αj – i /(Θ + j - i). We first build the 
informational distribution of the {Li,j} for the benchmark and for the interval [0,T2]. Then, we just keep the 
columns between T1 and T2 (as in Table 5), which represent the new data for the exponential sample. From this 
partial table, adding its components, we get the matrix Îbench(T2\T1).    
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hypotheses on the future of the real estate prices. In Simon (2007) we established that the 

vector R(T2\T1), is a Gaussian one. It is centred on the growth rates of the theoretical index 

values25 and its variance-covariance matrix26 is σG² Î(T2\T1)
-1

. Because of its unobservability 

at T1 we have to generate it randomly as a Gaussian vector N (Rhyp ; σG² Î(T2\T1)
-1

). The 

theoretical expectation is replaced with the best estimator that we have on [0,T1], that is 

R(T1), completed with the economical assumption on [T1,T2]. For the second parameter we 

simply use the benchmark matrix as an approximation. At this stage of the process we have 

Î(T1), Î(T2\T1), Î(T2), R(T1) and R(T2\T1). The final step consists in calculating the vector 

R(T2) with the equation Î(T1)R(T1) + Î(T2\T1)R(T2\T1) = Î(T2)R(T2). Once R(T2) is known we 

can calculate the index values Intt(T2) on the interval [0,T1] and we can measure the size of 

the reversibility phenomenon for this simulation. Running many times this procedure we 

finally get an empirical distribution for the spreads.  

 

4.4. Comments 

In the above process the randomness just appears in the generation of the Gaussian vector 

R(T2\T1). For its practical implementation we have to use the Cholesky factorization27. 

However, if we are interesting in deepening the simulation, we could introduce two additional 

random sources: the vector Rhyp(T1 ;T2) and the couple (K, α). Indeed, in order to estimate the 

expectation of the vector R(T2\T1), we completed the vector R(T1) with the economical 

assumptions associated to Rhyp(T1 ;T2), foreseeing a scenario for the evolution of the real 

estate prices on [T1,T2]. However, as the future is uncertain, it could be reasonable to let these 

                                                 
25 ratet = ln(Indext+1 /Indext)        
26 This formula is a general one. The variance-covariance matrix of the vector R, whatever be the repeat-sales 
distribution, is always V (R) = σG² Î-1 
27 If Γ is a square matrix of dimension d, symmetric, positive, and with rank r 
    then we can find a matrix B, dimension d x r , rank r  such that Γ = B B’ (Cholesky factorization) 
Now, for a vector M of dimension d, and for a square matrix Γ of dimension d, symmetric, positive, rank r with 
its Cholesky factorization Γ = B B’ :  If Y ~ N ( 0 , Id )   then   M + B Y ~ N (M , Γ) 
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T2 – T1 last coordinates fluctuate randomly, rather than restricting them to a single scenario. 

The second generalisation concerns the couple (K, α). The first variable represents a constant 

level of liquidity for the market and the second the resale speed. With the calibration step on 

the interval [0,T1] we found a mean couple (K0,α0). However, on the interval [T1,T2] the 

market conditions could be slightly different. To take this possibility into account we can 

randomly choose the parameter K in an interval [K0 – ε ; K0 + ε], and α0 in [α0 – ε’ ; α0 + ε’]. 

We could even go further with this methodology, considering that the rhythm of the 

transactions depends on the economical context and especially on the future real estate prices. 

Thus, we should firstly calibrate a proportional hazard model on [0,T1], as the one developed 

by Cheung, Yau, Hui (2004). And then, according to the scenario simulated on [T1,T2], the 

rhythm of the repeat-sales could be deduced.    

 

4.5. The theoretical law of reversibility in a simplified context  

Working in the simplified context with one random source (paragraph 4.3), we can deepen the 

mathematical analysis. As previously, a repeat-sales sample ω0 is generated on the interval 

[0,T1]. Then the benchmark is calibrated on this dataset, and using the corresponding 

parameters we get an estimation for the matrix Î(T2\T1). The quantities Î(T1), R(T1), 

Îbench(T2\T1), Î(T2) are fixed and we just have one random source, that is R(T2\T1). The vector 

Rhyp(T1 ;T2) of the economical assumptions on [T1,T2] is also constant in all this paragraph. 

With the formula R(T2) = [Î(T2)]-1 [Î(T1)R(T1)+Îbench(T2\T1)R(T2\T1)] it’s easy to demonstrate that 

the vector R(T2) is Gaussian; we have:   

E[R(T2)] = R(T1) + [Î(T2)-1 Îbench(T2\T1)] Rhyp(T1;T2)   and  V [R(T2)] = σG² [Î(T2)-1Îbench(T2\T1)] [Î(T2)]-1 

The matrix Î(T2\T1) represents the new information, Î(T2) the total information. Consequently 

the product Î(T2)-1 Îbench(T2\T1), which appears in these two formulas, can be interpreted as the 

(vectorial) proportion of the new information in the total one. The first formula simply asserts 

that the expectation of R(T2) is equal to the old and constant vector R(T1), plus a quantity 
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which represents the influence of the economical hypotheses Rhyp(T1;T2) on [T1,T2]. This 

influence of Rhyp(T1;T2) is weighted by [Î(T2)]-1 Î(T2\T1) ; a relative measure of the 

informational weight of the new data. As for the variance expression, we have to compare it 

to the formula V [R(T2)]  = σG² [Î(T2)]-1 that we would have to apply if we wanted to run the 

estimation for the index on [0,T2], directly with the whole dataset, without doing an halfway 

estimation at T1. In a reversibility situation we already know a part of the total sample; the 

resulting index is thus less volatile. What is expressed with the second formula is simply that 

the attenuation coefficient for the volatility is nothing else than [Î(T2)]-1 Î(T2\T1), once more. 

Now, if we decide that on [T1,T2] the real estate growth is null, in other words Rhyp(T1;T2) = 0, 

we can demonstrate28 the following result:             

Reversibility law 

For t = 1,…,T1 the ratio Indt(T2) / Indt(T1) is log-normally distributed: LN(0; v(t))     

v(t) is the tth diagonal element of the matrix29 σG²A(T2)[[Î(T2)]-1Î(T2\T1)] [ Î(T2)]-1 [A(T2)]’ 

 

Thus, the reversibility percentage30 for the date t is a random variable that we can write 

100*(Yt – 1), with Yt ~ LN(0; v(t)). Figure 8 represents the theoretical deciles, anticipated at 

T1, using the sample ω0 on [0,T1]. The black curve gives the observed reversibility for this 

specific sample when the horizon is extended from T1 to T2. As we can see, the theoretical 

curves are a good approximation of the empirical ones. The size of the potential revisions is 

small and approximatively constant for the left side of the interval. But for its right side, 

things are different. As we go closer to T1 the fluctuations become more and more important, 

potentially, as testified by the divergence of the theoretical curves in Figure 8. With the 

                                                 
28 For that purpose we just have to use the relations LInd(T2) = A(T2) R(T2) and E[R(T2)] = R(T1) 
29 The matrix A(T2) is square and its dimension is T2. It is composed of 1 on its diagonal and below, 0 elsewhere. 
30 100*(Indt(T2) / Indt(T1) – 1) 
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methodology developed in this paragraph, it now becomes possible to anticipate and to 

quantify the reversibility effects in a very reliable way.  

   

 

5. Conclusion 

By means of an informational reformulation of the RSI framework we established first an 

intuitive and easy to handle formula for the reversibility phenomenon. Then, using an 

exponential benchmark for the resale decision and Monte-Carlo simulations, we developed a 

methodology to quantify the size of the potential revisions. In this way we answered to the 

problem31 mentioned in Clapham et al. (2005) for the repeat-sales index. For the moment, as 

we do not have such a similar technique for the hedonic indexes, we cannot assert that the RSI 

is a bad underlying for the future contracts. Indeed, if its fluctuations are probably higher they 

are nevertheless predictable, contrary to the hedonic approach. Now, if we want to go further 

in the derivatives study, the next step would consist in choosing a stochastic dynamic for the 

RSI in order to price the contingent claims. Unfortunately things are rather complex because 

of the reversibility.  If we consider the basic assumption related to the concept of market 

efficiency for the stochastic processes in finance, that is their Markovian32 behaviour, a 

problem occurs. Is it really possible to describe the dynamic of the RSI with a single 

Markovian process? The answer is no. We can understand heuristically the problem just 

rewriting the reversibility formula Î(T2)R(T2) – Î(T1)R(T1) = Î(T2\T1)R(T2\T1). The left hand-

side measures an increment between the present T1 and the future T2. If the Markovian 
                                                 
31 “If a futures market requires index stability, it would be useful to know how often revision – either period-by-
period or cumulative – exceeds some level. Say, for example, that futures markets could tolerate 0.5 percent 
revision in any one quarter and 2 percent cumulative revision to the initial estimate – how often do the four 
indexes violate these criteria?”   
32 A process is said Markovian if its future depends on its past only through its present. In others words, the path 
followed by the process to arrive at the level Xs, at the date s, will not influence the probability of realisation of 
its future Xt (t > s). Financially, this mathematical assumption is one of the formulations for the concept of 
market efficiency. The present value incorporates all the past information; it is useless to study the past in order 
to get a better level for Xs. The market already integrated all the available and relevant information with the 
fixing of Xs.          
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assumption is satisfied this variation cannot depend on the dates before T1. But we know that 

the right-hand side Î(T2\T1)R(T2\T1), associated to the new data arrived with the time 

extension, not only brings information on [T1,T2] but also on the interval [0,T1]. 

Consequently, the RSI do not have a Markovian behaviour. What follows from this result is 

that we cannot use, at least directly, the usual stochastic dynamics (geometric Brownian 

motion, Ornstein-Uhlenbeck…) to price a contingent claim. A solution could consist in 

describing the reversibility risk itself with a dynamic, and then to model the RSI as a noisy 

asset like in Childs et al. (2001, 2002a, 2002b). Using this approach, we could catch the 

mechanism of price discovery associated to the reversibility phenomenon. But in spite of 

everything and even if the technical problems are important, the stakes are real and crucial for 

the finance industry. It is nothing less than the possibility to price the real estate derivatives 

written on a RSI. We now conclude this article with two small remarks. In Clapham et al. 

(2005) we can read: “This suggests that there is a link between the index revision and the 

sample selectivity of repeat-sales data”. This affirmation could clarified because we saw 

previously that the reversibility phenomenon is inherent and intrinsic to the RSI framework. If 

the sample selectivity matters it’s in a second time, through a specific information content of 

Î(T2\T1) or R(T2\T1). We probably cannot reduce the whole phenomenon to a single sample 

effect. The final remark concerns the title of the article Case, Shiller (1989): “The efficiency 

of the market for single-family homes”. If the RSI is not Markovian, can we really study the 

efficiency with this index?    
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Table 1: Relevant repeat-sales for the time interval [t’,t]  

 

 0 … t’ … t … T 

0        

¦        

t’        
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t        

¦        

T        
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Table 2a: Real distribution for the repeat-sales sample  

 0 1 2 3 … t t + 1 … T – 2 T – 1 T 
0  n0,1 n0,2 n0,3  n0,t n0,t+1  n0,T-2 n0,T-1 n0,T 

1   n1,2 n1,3  n1,t n1,t+1  n1,T-2 n1,T-1 n1,T 

2    n2,3  n2,t n2,t+1  n2,T-2 n2,T-1 n2,T 
3      n3,t n3,t+1  n3,T-2 n3,T-1 n3,T 
¦            
t       nt,t+1  nt,T-2 nt,T-1 nt,T 

t + 1         nt+1,T-2 nt+1,T-1 nt+1,T 
¦            

T – 2          nT-2,T-1 nT-2,T 
T – 1           nT-1,T 

T            
Vertical axis: purchase date     Horizontal axis: resale date  

 

 

Table 2b: Informational distribution for the repeat-sales sample  

 0 1 2 3 … t t + 1 … T – 2 T – 1 T 
0  L0,1 L0,2 L0,3  L0,t L0,t+1  L0,T-2 L0,T-1 L0,T 

1   L1,2 L1,3  L1,t L1,t+1  L1,T-2 L1,T-1 L1,T 

2    L2,3  L2,t L2,t+1  L2,T-2 L2,T-1 L2,T 
3      L3,t L3,t+1  L3,T-2 L3,T-1 L3,T 
¦            
t       Lt,t+1  Lt,T-2 Lt,T-1 Lt,T 

t + 1         Lt+1,T-2 Lt+1,T-1 Lt+1,T 
¦            

T – 2          LT-2,T- LT-2,T 
T – 1           LT-1,T 

T            
Vertical axis: purchase date     Horizontal axis: resale date  
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Table 3: Relevant repeat-sales for [t’,t+1] and quantity of information associated  

 0 … t’ … t t+1  T Sum 
0   L0,t’  L0,t L0,t+1  L0,T B0

t
 

¦         ¦ 

t’     Lt’,t Lt’,t+1  Lt’,T Bt
t’ 

¦         ¦ 

t      Lt,t+1  Lt,T ¦ 

¦         ¦ 

T         ¦ 

     Sum St’
t+1

… St’
T I[t’,t+1] 

 

B0
t
 = L0,t+1 + … + L0,T Bt’

t
 = Lt’,t+1 + … + Lt’,T sum on the lines (buy-side) 

S
t’

t+1 = L0,t+1 + … + Lt’,t+1  S
t’

T = L0,T + … + Lt’,T  sum on the columns (sell-side) 

 

I[t’,t+1] = B0
t + … + Bt

t’ = St’
T + … + St’

t+1    
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Table 4: Informational distribution when the horizon is extended from T1 to T2  

 0 1 … t t + 1 … T1 … T2 

0  L0,1 … L0,t L0,t+1 … L0,T1
… L0,T2 

1   … L1,t L1,t+1 … L1,T1 … L1,T2 

¦    … … … … … … 

t     Lt,t+1 … Lt,T1 … Lt,T2
 

t + 1      … Lt+1,T1 … Lt+1,T2
 

¦       … … … 

T1        … LT1,T2
 

¦         … 

T2          
 

 
 

Continuous lines: new repeat sales with a purchase before T1 and a resale after T1 (i<T1<j≤T2) 

Dotted lines : new repeat sales with a purchase and a resale between T1 and T2 (T1≤ i < j ≤ T2) 

 

Relevant repeat sales for [t,t+1] if the horizon is T1 : light grey. 

Relevant repeat sales for [t,t+1] if the horizon is T2 : light grey + dark grey.   
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Table 5: Informational distribution for the dataset T2\T1  

 0 1 … T1 T1 +1 … T2 

0  0 … 0 L0,T1+1 … L0,T2 

1   … 0 L1,T1+1 … L1,T2 

¦    ¦ ¦ … ¦ 

T1     LT1,T1+1 … LT1,T2
 

T1 +1      … L T1+1,T2
 

¦       ¦ 

T2        
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Figure 1: Reversibility for the Los Angeles County, Clapp, Giaccotto (1999) 
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Figure 2: Reversibility for the Paris RSI (the after bubble period) ; Baroni et al (2004) 
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Figure 3: Algorithmic decomposition of the repeat-sales index 
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Legend of the Figure 3 
 

ni,j : Number of the repeat-sales with a purchase at ti and a resale et tj, organized in an 
upper triangular table               

   
Estimation of the volatilities σN and σG for the white noise and the random-walk (step 
1 and 2 of the Case-Shiller procedure). The time of noise equality is Θ = 2σN²/ σG²   
   
Li,j = ni,j / (Θ + j - i) : Quantity of information delivered by the ni,j repeat-sales of 
C(i,j). These numbers are also organized in an upper triangular table.                
 
We get the matrix Î from the informational distribution of the {Li,j} summing for each 
time interval [t,t’] the relevant Li,j , that is the ones whose holding period is including 
[t,t’]. The diagonal elements of the diagonal matrix η are equal to the sums (rows or 
columns indifferently) of the components of the matrix Î.        
 
Dividing the diagonal elements of Î by the diagonal elements of η we obtain directly 
the mean holding periods τt.  
 
For each repeat-sales class C(i,j), the geometric averages of the purchase prices hp

(i,j), 

and the resale prices hf
(i,j)

 are: 
 

hp
(i,j) = ( Π

k’ 
pk’,i ) 

1/ni,j      hf
(i,j) = ( Π

k’ 
pk’,j  ) 

1/ni,j 
 
For the subset of the people who were owning real estate during [t,t+1], the mean 
purchase price Hp(t) (the mean resale price Hf(t)) is the geometric average of the 
hp

(i,j) (respectively the hf
(i,j)), weighted by the Li,j, for all the relevant repeat-sales 

classes:      

Hp(t) = ( Π
i ≤ t < j

( hp
(i,j) )Li,j )

1 / I t

  Hf(t) = ( Π
i ≤ t < j 

( hf
(i,j) )Li,j )

1 / I t

      
 
 
The mean of the mean rates ρt, realised by the people who were owning real estate 
during [t,t+1], can be calculated as a return rate with the fictitious prices Hp(t) for the 
purchase Hf(t) for the resale, and the fictitious holding period τt    
 
       ρt = ( 1 / τ t ) * ln [ Hf (t) / Hp (t) ]   
 
 
The vector R of the monoperiodic growth rates of the index is the solution of the 
equation:  

ÎR = ηP  R = ( Î -1η ) P        
 
where P is the vector (ρ0, ρ1, … , ρT-1) 
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Figure 4: Informational matrixes 
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Figure 5: standard hazard rate   
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Figure 6: An example of reversibility 

80

85

90

95

100

105

110

-2

-1

0

1

2

3

4

 
Left axis: index values   Right axis: percentage of reversibility  Blue curve: “true prices” 
Green curve: T1= 40 (old dataset) Red curve: T2 = 45 (completed dataset) Yellow curve: T2\T1 (new data) 
Black curve: percentage of reversibility between the red and the green curves 
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Figure 7: Algorithm for the quantification of the reversibility phenomenon 
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Figure 8: Deciles for the reversibility percentages (t = 1,…,40) 
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The black curve gives the observed empirical reversibility (at T2) and the coloured ones the theoretical deciles 
deducted from the reversibility law, just using the information known at T1. The two extreme curves are the 
percentiles at 1% and 99%; the others give the deciles from 10% to 90%.  
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