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EXISTENCE AND DECAY OF SOLUTIONS OF A NONLINEAR
VISCOELASTIC PROBLEM WITH A MIXED
NONHOMOGENEOUS CONDITION

NGUYEN THANH LONG, ALAIN PHAM NGOC DINH, LE XUAN TRUONG

ABSTRACT. We study the initial-boundary value problem for a nonlinear wave
equation given by

t
Utt — Uz +/ k(t — s)uaza(s)ds + |ut\q72ut = f(z, t,u),
0

uz(0,t) = u(0,t), uz(1,t) + nu(l,t) = g(t),

u(z,0) = uo(z), ut(x,0) = ui (),
where n > 0, ¢ > 2 are given constants and uo,u1, g, k, f are given functions.
In this paper, we consider two main parts. In Part 1, under a certain local
Lipschitzian condition on f with (W, u1) € H' x L?; k,g € H*(0,T), n > 0;
q > 2, a global existence and uniqueness theorem is proved. The proof is
based on the paper [10] associated to a contraction mapping theorem and
standard arguments of density. In Part 2, the asymptotic behavior of the
solution u as t — 400 is studied, under more restrictive conditions, namely
=0, f(z.t,u) = —|ulP~2u+ F(z,1), p > 2, F € L'(Ry; L) () L*(Ry; L2),
JF e et |P()]2dt < +o00, with o > 0, and (T, @1) € H' x L2, k € H'(Ry.),
and some others (|| - || denotes the L?(0, 1) norm). It is proved that under these
conditions, a unique solution u(t) exists on Ry such that ||u/(#)| + |luz(®)]|
decay exponentially to 0 as ¢ — 4oco. Finally, we present some numerical
results.
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1. INTRODUCTION

In this paper we will consider the following initial and boundary value problem:

Ut — Ugy + /t E(t — 8)uge(s)ds + |ug| T 2us = f(x,t,u),0 <2z < 1;,0<t <T,
’ (1.1)
e (0,1) = u(0, 1), ux (1,8) + nu(l,t) = g(t), (1.2)
u(®,0) = uo(x), ur(z,0) = w1 (), (1.3)

nal-00136410

where n > 0, ¢ > 2 are given constants and wug,u1,9,k, f are given functions
satisfying conditions specified later.
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In a recent paper [1], Berrimia and Messaoudi considered the problem

t

use — Au +/ k(t — s)Au(s)ds = |u[P~2u,x € Q,t > 0, (1.4)
0

u=0, on 09, (1.5)

u(z,0) = uo(z), u(x,0) = u1(z),xz € Q, (1.6)

where p > 2 is a constant, k is a given positive function, and 2 is a bounded domain
of R™ (n > 1), with a smooth boundary 9. This type of problems have been
considered by many authors and several results concerning existence, nonexistence,
and asymptotic behavior have been established. In this regard, Cavalcanti et al.
[3] studied the following equation

¢
upe — Au + / E(t — s)Au(s)ds + [ulP?u+a(t)u; =0, in Qx (0,00), (1.7)
0

for a : 2 — Ry, a function, which may be null on a part of the domain Q. Under
the conditions that a(z) > ap > 0 on w C ), with w satisfying some geometry
restrictions and
—Gik(t) = K/ (t) = —Cok(t), > 0, (1.8)

the authors established an exponential rate of decay.

In [2] Bergounioux, Long and Dinh studied problem (1.1), (1.3) with £k =0,¢ =
2, f(z,t,u) = —Ku + F(x,t), and the mixed boundary conditions (1.2) standing
for

ug(0,t) = g(t) + hu(0,t) — /0 H(t — s)u(0, s)ds, (1.9)
ua(1,1) + Kyu(l,t) + Aug(1,) = 0, (1.10)

where h > 0, K, A\, K1, A1 are given constants and g, H are given functions.

In [7], Long, Dinh and Diem obtained the unique existence, regularity and as-
ymptotic expansion of the problem (1.1), (1.3), (1.9) and (1.10) in the case of k = 0,
fla,t,u) = —K|u|P~2u + F(x,t), with p > 2, ¢ > 2; K, \ are given constants.

In [8], Long, Ut and Truc gave the unique existence, stability, regularity in time
variable and asymptotic expansion for the solution of problem (1.1)- (1.3) when
k=0,q=2, f(z,t,u) = —Ku+ F(x,t) and (ug,u;) € H?> x H'. In this case, the
problem (1.1)- (1.3) is the mathematical model describing a shock problem involv-
ing a linear viscoelastic bar.

In [9], Long and Giai obtained the unique existence and asymptotic expansion for
the solution of problem (1.1), (1.3) when k =0, ¢ = 2, f(x,t,u) = —Ku+ F(x,t)
and (up,u1) € H* x L?, and the mixed boundary conditions (1.2) standing for

1, (0,1) =g(t) + K1]u(0,1)[*2u(0,1) + Ay |u(0,1)|°~2u. (0, 1)

t
—/ H(t — s)u(0, s)ds,
0
u(l,t) =0, (1.12)
where K, A\, K1, A1, a, § are given constants and g, H are given functions. In this
case, the problem (1.1), (1.3), (1.11), (1.12) is the mathematical model describing
a shock problem involving a nonlinear viscoelastic bar.

In [10], Long and Truong obtained the unique existence and asymptotic expan-
sion for the solution of problem (1.1) -(1.3) when f(z,t,u) = —K|u[P"2u+ F(x,t),

(1.11)
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(wo,u1) € H?* x HY; F,F, € L*(Qr), k € W»(0,T), g € H*(0,T); K, n > 0,
no > 0;p,q 22

In this paper, we consider two main parts. In Part 1, under a certain local Lip-
schitzian condition on f with (ug,u;) € H' x L% k,g € H*(0,T),A > 0, 0o > 0;
n > 0; ¢ > 2, a global existence and uniqueness theorem is proved. The proof is
based on the paper [10] associated to a contraction mapping theorem and standard
arguments of density. In Part 2, the asymptotic behavior of the solution u as t — oo
is studied, under more restrictive conditions, namely f(z,t,u) = —|u|P~2u+F(x,1),
p>2 Fe L' R L) N LA(Ry; L2), [ e[| F(t)]?dt < 400, with o > 0, and
(g, 1) € H' x L?, g =0, k € H*(R,, and some others (|| - || denotes the L?(0,1)
norm). It is proved that under these conditions, a unique solution u(t) exists on
R, such that |lu/(t)|| + ||us(t)|| decay exponentially to 0 as ¢t — -+oco. The results
obtained here relatively are in part generalizations of those in [1-3, 6-10]. Finally,
we present some numerical results.

2. PRELIMINARY RESULTS

Put Q =(0,1), Qr = Q2 x(0,7), T > 0. We omit the definitions of usual function
spaces: C™(Q), LP(Q), W™P(Q)). We denote W™P = WmP(Q), LP = WOP(Q),
H™ = Wm™2(Q),1 < p<oo, m=0,1,... The norm in L? is denoted by || - .
We also denote by (-,-) the scalar product in L? or pair of dual scalar product of
continuous linear functional with an element of a function space. We denote by
I -]l x the norm of a Banach space X and by X’ the dual space of X. We denote by
L?(0,T;X), 1 < p < oo for the Banach space of the real functions u : (0,7) — X
measurable, such that

T 1/p
p
fulroon = ([ Tuoligar) " <0 for1<p<oc,
0

and
lull Lo (0,75 x) = esssup [lu(t)||x  for p = oo.
0<t<T
Let u(t), u/(t) = wus(t), u"(t) = up(t), uy(t), and ug,(t) denote u(z,t), L% (x, 1),
i12‘(373,t), 9u (. t), and %(x,t}, respectively.

ot ox

Without loss of generality, we can suppose that ng = A\ = 1. For every n > 0, we
put

an(u,v) = /0 Uy () (2)dz + u(0)v(0) + nu(1)v(1),Yu,v € H, (2.1)

vl = (an(v,v))1/2. (2.2)

On H' we shall use the following equivalent norm

o]l = (UQ(O) +/01 Ivm(:v)lzdw) - (2.3)

Then we have the following lemmas.

Lemma 2.1. The imbedding V — C°([0,1]) is compact and
HUHCO([O,I]) < H’U”V, fOT all veV. (24)
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Lemma 2.2. Letnp > 0. Then, the symmetric bilinear form a,(-,-) defined by (2.1)
is continuous on H' x H' and coercive on H', i.e.,

(l) |an(u=v)|:CﬂHquHU”lv Jor all u7U€H17

(ii) an(v,v) = ||v||3, forall veH!,

where Cy) = 14 2.

The proofs of these lemmas are straightforward, and we omit the details.

1/2
We also note that on H', [[v]1, o]l = ([v]> + [/ [2)"%, [0lly = /{a (v, 0)) are
three equivalent norms.
[ll¥ < llolly < Cyllwll,  forall v e HY, (2.5)
1
sl < [l < 3Jolf:,  forall veH', (2.6)

3. THE EXISTENCE AND UNIQUENESS THEOREM OF THE SOLUTION

In this section we study the global existence of solutions for problem (1.1)-(1.3).
For this purpose, we consider, first, a related nonlinear problem. Then, we use the
well-known Banach’s fixed point theorem to prove the existence of solutions to the
nonlinear problem (1.1)-(1.3).

We make the following assumptions:

(H1) n>0,q>2,

(H2) k,g € H(0,T),
(H3) ug € H' and uy € L2,
(H4) f € C°(Q x Ry x R) satisfies the conditions Dy f, D3f € C°(2 x Ry x R).

For each T' > 0, we put

W(T) =ve L®(0,T;H") : vy € L™(0,T; L) [ | LY(Qx). (3.1)
Then W(T') is a Banach space with respect to the norm (see[5)):
[ollwr) = lvllLe(o,rm) + vl 0,7522) + [0t La(r), v € W(T).  (3.2)

For each v € W(T'), we associate with the problem (1.1)-(1.3) the following varia-
tional problem.
Find v € W(T') which satisfies the variational problem

</ (t),w > +ay(u(t), w) _/O E(t — 8)ay(u(s), w)ds+ < ¢, (v (), w >

(3.3)
=g )w)+ < f(-,t,v(1),w> forall we H',
u(0) = g, u(0) = un, (3.4)
where .
bq(2) = 27722, 01(t) = g(1) —/ k(t —s)g(s)ds. (3.5)
0

Then, we have the following theorem

Theorem 3.1. Let (H1)-(H/) hold. Then, for everyT > 0 andv € W(T'), problem
(3.3)- (3.5) has a unique solution uw € W(T) and such that

u//vumx S Lq/ (Oa Ta (Hl)/)a where q/ = Q/(q - 1) (36)
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Furthermore, we have

t
lu/ )11 + [[u(®)15 + 2/ [w/ (s)[[%4ds < Crr exp(TCar),¥t € [0,T),  (3.7)
0

where
aTzcu«mmahamzz@mmﬁﬂmﬂ%+mmmwan
/ , (3.8)
461|911 0,7y + 2ll91 172 (0.1) +/O ||f(',8,11(5))||2d5] :
Cor = Cor(k) = 2 [34 20RO + 61kZ20.2 + TIH 30| - (3.9
and
t
gwhw@—/kWﬂm®%- (3.10)
0

Proof of theorem 3.1. The proof consists of steps two steps
a. The existence of solution. We approximate ug, u1, k, g by sequences
{uom} € C§° (Q), urm C C§°(Q), km, gm C C°([0, T]), respectively, such that
Uom — Up strongly in  H?,
Uy — Uy strongly in L2
" T (3.11)
km — k strongly in H*(0,T),
gm — g strongly in  H(0,T).

Then we consider the following variational problem: Find u,, € W(T') which satis-
fies the variational problem

<ull (), w > +ay(um(t), w) — /0 km (t — 8)an(um(s), w)ds

3.12
+ < Pg(ufy (1), w >= gim(Ow(1)+ < f( 1,00 1), w >, Vw € HY, o
u(0) = wom, u/ (0) = Uiy, (3.13)
and
U € L0, T; H?), ul, € L=(0,T; HY),u// € L=(0,T; L?), (3.14)
where
gmm—%m—A%Mw@%@@. (3.15)

The existence of a sequence of solutions u,, satisfying (3.12)-(3.15) is a direct result
of the theorem 2.1 in [10]. We shall prove that w,, is a Cauchy sequence in W (T).
(i) A priori estimates.
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We take w = ur/n(t) in (3.12), afterwards integrating with respect to the time
variable from 0 to ¢, we get after some rearrangements

om(t) =07 (0) = 2g1m (0)uom (1) + 2g1m () um(1,1)
[

t
2/gm Yt (1, 7)dr — 2k, /um ||dr

0
—|—2/0 ko (t — 8)an (um(s), um(t))ds (3.16)
tr L (r = 8)an (tm(s), um(r))ds
2/0d/0km ot (), (1)) d
+2/0 <f ), ul, (s) > ds,
where .
om(t) = [[uf (O + [um D] +2/0 [ (5)]|Fadls. (3.17)

Proving in the same manner as in [10], we have the following results:

om(t) = Cir(m) + CQT(m)/O om(8)ds, ¥t € [0,T], (3.18)
where

Cir(m) =2 [Ilmmll2 + [[wom 1z + 2191m (0)uom (1)] + 6| g1ml 7 (0,7
(3.19)

)

T
209l nlZa0my + / 1£(s,0(s))|ds

Car(m) =2 3+ 2lkm(O)] + 6llkm 320,z + TkA 22 0.2)] - (3.20)

From the assumptions (H1)-(H4), afterwards using Gronwall’s lemma, we deduce
from (3.11), that

om(t) < Cp, forall m and te0,T], (3.21)

where Cr is a constant independent of m.
On the other hand, we deduce from (3.12), (3.21), that, for all w € H!, we have

t
| < uff (t),w > | <Jum®lyllwlly +/0 |k (8 = 8)[[[wm (s) ][l w]ds
) s g 0 ey + g O 0] 52
+1FCotv( ) Jwl]
< Ory/BCy) [1+ 100l s | Nl
This implies that
p ‘< u,/n/(t),w >‘
ul) (¢ = sup ——F——
[z (Dl 1)/ I T (3.23)

< CT\/?)C [1 + ||'€/Jq )HLq/ Q)}
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Hence

/]| /()17
11 ey = / 0119, at

- (CT\/E>(1/ ga/ —1 /OT [1 + ||u7/n(t)||‘iq(m} dt

S CT7

(3.24)

where C1 always indicating a constant depending on T'.

(i) The convergence of sequence {um,}

We shall prove that u,, is a Cauchy sequence in W(T'). Let & = uym, — uy. Then @
satisfies the variational problem

<!/ (t),w > +a,(U(t), w) — / Ko (t — 8)ay, (T(s), w)ds
0
= [ R Dantunlo)wldst < v, 0) - vl )w> O
=g (Hw(1) forall we H,
@(0) = o,/ (0) = @, (3.26)

where N R
U = Uom — Uy, U1 = Ulm — Uiy,

k:km—fu,’g\:gm—g#,gl :flm_gly; (327)
G (t) = §(0) / o — $)g(s)ds — / R(t — 5)gu(s)ds.

We take w = u/(t) in (3.25), after integrating with respect to the time variable
from 0 to t, we get after some rearrangements

2(t) =Z(0) — 251(0Yiio (1) + 25 (a(1, 1) — 2 /O 31/ (r)a(1, r)dr
— 2k (0) / [0 2dr + 2 / o (£ — )y (@(s), (1) )ds
—2/ dr/ k/ (r — s)ay(u(s), u(r))ds (3.28)
—2k(0) / (it (s), A(s))ds + 2 / Rt — 5)an(u,(5), @(1))ds
—2/0 dr/O E/(r—s)an(uu(s),ﬂ(r))ds,

where

2(t) =@ (0)]1? + 3012
Lo / < g(ul,(5)) — Vgt (), ula(5) — ul (5) > ds.
0

Using the following inequality
Vg >2,3C, > 0: (|z|9 %2 — |y|92y)(z — y) > Cylz — y|9, Vz,y € R, (3.30)

(3.29)
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it follows from (3.29) that

Z(t) = @/ O + a5 +2Cq / @/ () 70dls. (3.31)
Using the inequality
2ab < ea® + %b%w,b €R,Ve> 0, (3.32)
and the following inequalities
Jan (u, 0)] < [lullyl|olly, Y, v € HY, (3.33)
[a(L,1)] < [[at)llooi) < V20a) < V2|, < v22(0), (3.34)

we shall estimate respectively the following terms on the right-hand side of (3.28)
as follows

Z(0) = 2g1(0)tio (1) <Jlurm — u|l* + [[uom — uoplly

(3.35)
+2|g91m (0) = 91(0)[[uom (1) — uou(1)],
PPN N 1 . 1
201 (1)a(1,t) < 8[G1llF (0.7 + ZZ(t), with €= 3 (3.36)
t / t
_2/0 /(a1 rydr < 2|5 12 0T>+/ Z(rdr, (3.37)

t

t 1 )
2 [ ialt =)o @), 80D < 20 + 81kl [ Z)s (339

2k (0) /0 |G| 2dr < 2k (0) /O Z(rdr, (3.39)
—2/0 dr/o K}, (r — 8)a,(@(s), a(r))ds < (1+T||km||L2 OT))/ Z(s)ds, (3.40)

2 [ (= 9oy u(s). 50)s < 5200 +5Cr R0y, (341

—2k(0) /0 ay(u,(s),7(s))ds < TCr|k(0)|? + /0 Z(s)ds, (3.42)

_2/ dr/ R (1 — )ay (un(s), (r))ds < T2Crl¥ |20, +/OtZ(s)ds. (3.43)
Combining (3.28), (3.29), (3.31) and (3.35)-(3.43), we obtain
2(0) < prr(mon) + per(m) | Zs)ds, vt € 0,7, (3.44)
where
prr(m, p) =2 {||u1||2 + |[doll; + 2[g1 (0)do(1)] + 8l[g1 12 (0,7
+2||§1||%2(0,T) + 80T||k||2Ll(o,T) +TCrk(0) + T2CT||I€/||L2(O,T)} ; (3.45)

par(m) = 2[4+ 20k (O)] + 81320, + TIR 20
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By Gronwall’s lemma, we deduce from (3.31), (3.44), (3.45), that

1@ ()12 + lla)l; + 26, / [/ (s)[1%.ds < Z(1)
< prr(m, p)exp(Tpar(m)), forall te[0,T].

By (3.11), (3.27) and (3.45), we obtain pir(m, u)exp(Tpor(m)) — 0 as m,u —
+o0o. Hence, it follows from (3.46) that {u,} is a Cauchy sequence in W(T).
Therefore there exists u € W(T') such that

(3.46)

Um — u  strongly in - W(T). (3.47)
On the other hand, by (3.47) and the continuity of v,, we obtain
Yoluly) — Pg(u) ae. (z,t) € Qr. (3.48)
By means of (3.21), it follows that
— ||/
a7 o = I Eur) < 5O, (3.49)

for all m. By Lions’s lemma [5, Lemma 1.3, p. 12], it follows from (3.48) and (3.49)
that

Yo(uly) — ¥g(w/) in L9 (Qr) weakly. (3.50)
Noticing (3.11)3 and (3.47) we have

/ dt / $)aty (tm (), w(t))ds
—/ dt/tk(t—s)an(u(s),w(t))ds

dt

(3.51)

8)an (Um (s) — u(s), w(t))ds

/dt/ (t —s) — k(t — s)]ay(u(s), w(t))ds

< 3Cn||w||L1(o,T;H1) [”km”Ll(O,T)”um - UHLOO(O,T;Hl)
+km — kll L1 o, 1wl Lo o,y ] — 0

for all w € L1(0,T; H).
On the other hand, by (3.11)3 4 and (3.15), we also obtain

gim — g1 strongly in  H'(0,7). (3.52)

From (3.24), we deduce the existence of a subsequence of {u,,}, still denoted by
{um}, such that

ul/ —w// i LY (0,T; (H")) weak. (3.53)

Passing to the limit in (3.12), (3.13) by (3.47) and (3.50)-(3.53) we have u satisfying
the equation

(/0.0 + a0y 0) = [ 500 )antuts) s + (vl (0),0)

=g w)+ < f(, t,v(t),w > Yw e H', in LY (0,T) weak,

(3.54)
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and
u(0) = T, u/ (0) = ;. (3.55)
On the other hand, we deduce from (3.54), that
t
Uy () — / k(t — $)uzs(s)ds = ¢(t), (3.56)
0
where
o(t) = u//(t) + [u/ |20/ — f(t,0(, 1) € L9 (0, T; (H')). (3.57)

Hence, it follows from (3.56) and (3.57), that

/

/ t q
ter Oy < (B0l + [ 50 = 9ty )

t q/
<2 160Ny, + ([ = a9y ) (3.58)

t
/_ /
<2 16Oy + W0, ([ e 35) |

This implies that
q/—1
/ ||umw ||(H1 dt <2 ||¢||Lq/(OT(H1) /)

/_
2 Yo, [ / e ()%

Using Gronwall’s lemma, we obtain

(3.59)

/_ _
[ Ten Oyt < 20 060, e (2 b 7)< O

L/ (0,T;(H")/
(3.60)
where Cr always indicating a constant depending on 7'
Thus
Use € L9 (0,T; (HY)). (3.61)

On ther other hand, the estimate (3.7) hold by means of (3.11), (3.18), (3.19),
(3.20), (3.47). The existence of the theorem is proved completely.

b. Uniqueness of the solution. First, we shall now require the following lemma.

Lemma 3.2. Let u be the weak solution of the following problem

t
u!/ —um—l—/ E(t — s)uze(s)ds =®,0 <2 <1,0<t < T,
0
ug(0,1) = u(0,t), uz(1,t) + nu(l,t) = 0,
u(x,0) = o (x), v/ (x,0) = Uy (),
we L®0,T; HY), v/ ?7L>=(0,T; L?),
ke H'Y(0,T),® € L*(Qr).

(3.62)
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Then we have

/O + S = s 2+ 5ol = £60) [ o)
+ / k(t — s)a(u(s),u(t))ds — [ dr ' Kk (r — s)a(u(s), u(r))ds (3.63)
0 0 0

¢
—|—/ < ®(s),u/(s) > ds, ae tel0,T).
0

Furthermore, if ug = up = 0 there is equality in (3.63).
The idea of the proof is the same as in [4, Lemma 2.1, p. 79].

We now return to the proof of the uniqueness of a solution of the problem (3.3)-
(3.5). Let ug, us be two weak solutions of problem (3.3)-(3.5), such that

u; € W(T),u! tipe € LY (0,T; (HY )i = 1,2. (3.64)
Then u = u; — ug is the weak solution of the following problem
' / /
0 b [ K S)uaa(5)ds + ()~ vy fuf) =
0
u(0) = u/(0) =0,
we W(T),w/ uge € LY (0, T; (HY)).

By using Lemma 3.2 with ug = u1 =0, ® = —1), (ul) + 1y u2) we have

o(t) :2/tk(t—s)a(u() )ds — 2k(0 / ()2
_2/ dr/ K (r — s)a(u(s), u(r))ds,
where

o(t) = ll/ I + lu(@)]5 +2 / (ol (5)) = g (wh(s)),w/ (5)) ds. (3.67)

By using the same computations as in the above part we obtain from (3.66) that

(3.66)

t

o(t) =2 (14 20k 30,2y + 20O + 1K 131 0.7)) /0 o (r)dr. (3.68)
By Gronwall’s lemma, we deduce that o(t) = 0 and Theorem 3.1 is completely
proved. (Il

Theorem 3.3. Let T > 0 and (H1) — (H4) hold. Then there exists Th € (0,T)
such that problem (1.1)- (1.3) has a unique weak solution u € W(T1) and such that

W/ gy € L (0, Ty (HY)). (3.69)
Proof. For each 17 > 0, we put
Wi(Ty) = {v e L>(0,Ty; H') : v, € L=(0,Ty; L?)} . (3.70)

Then W7 (T}) is a Banach space with respect to the norm (see[5)):

||UHW1(T1) = ||U||L°°(0,T1;H1) + ”thL“’(O,Tl;L?)vU € Wi (Th). (3.71)
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For M > 0 and T; > 0, we put
B(M,Ty) = {v e Wi(Th) : [[lvllw, () < M} (3.72)

We also define the operator F from B(M,Ty) into W(T1) by u = F (v), where u
is the unique solution of problem (3.3)- (3.5). We would like to show that F is a
contraction operator from B(M,T7) into itself. Applying the contraction mapping
theorem, the operator f has a fixed point in B(M,Ty) that is also a weak solution
of the problem (1.1)- (1.3).

First, by Theorem 3.1, we note that the unique solution of problem (3.3)- (3.5)
satisfies (3.7), (3.8), (3.9). On the other hand, it follows from (H3), that

/ 175, 0(s))|%ds < 2 / 1£Cos,0(8)) — £, 5,0)|%ds
0 0
1 / 17, 5,0)]Pds (3.73)

T
<OTKIM? 42 / 15, 5,0)%ds,
0

where

Kl = Kl(MuTaf)

3.74
:sup{|D3f(x,t,u)|:nggl,OStST,|u|§v2M}. (8.74)
It follows from (3.7)-(3.10) and (3.73) that
t
T2 + Jlu(t 2+2/ M) ,d
o/ O + )1 +2 [ 151 -
S (OlT + 2T1K12M2) 6$p(T102T),Vt S [O,Tl],
where
Cir = Crr (o, Ur, k, g) = 2 [||171||2 + |0l + 2 g1 (0)tio(1)]
, T
8l <o + 2o iry +2 [ 1 0] (3.76)

Cor = Cor(k) =2 [3 + 2[R (0)] + 6]k 220 ) + T||k/||2L2(O)T)} .
By choosing M > 0 large enough so that Cy, = iM 2 then T; sufficiently small so
that
1 1
<ZM2 + 2T1K12M2> exp(T1Car) < 51\42, (3.77)

and

22T\ K eap [Tl (2 + 20k (0)] + 201k]22(0.) + ||k/||2L1(O)T))} <1.  (3.78)

From (3.75), (3.77) we have |lullw, ) < M, hence u € B(M,T1). This shows that
F maps B(M,T) into itself.

Next, we verify that f is a contraction. Let uy = F (v1), ug = F (v2), where
v1,v2 € B(M,T1). Put U = uj; —uz and V = v; — vy. Then U is the weak solution
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of the following problem

U1 Ut [kt = U+ ) — )
= f(x,t,vl(t))o— flz, t,02(1),0 <2< 1,0 <t < T,
Ua(0,8) — U(0,¢) = Up(1,£) + nU(1,%) = 0,
U(0)=U/(0) =0,

UeW(T): U/ Upp € L7 (0, Ty; (HY)).

13

(3.79)

By using Lemma 3.2 with ug = 43 = 0, & = —gbq(u{) + gbq(ué) + fla,t,v1(t)) —

f(l',t,’l}g(f)), we have
6(t) ——2l<:(0)/0 ||U(r)||37dr+2/0 k(t — s)a(U(s),U(t))ds
- t r ' /(r—s)a S r))ds
2 [[ar [ 4t = sya(vs). U

—|—2/0 < f(,s8,v1(8)) — f(~,s,v2(s)),U/(s) >ds,a.e. te€0,T1],

where

&®=MWMFHW@M+2A<%WQ—%WQU%D%

t
> U/ @)1+ U5 + 20:1/0 1U7 (5)||7ds.

By the assumption (H4), we have
2/0 <f(',8,’l}1(8))—f(',S,UQ(S)),U/(S)>dS
t /525 t S, U1(S)) — S, V2(S 25
S/OIIU()IId +/0||f(, y01(s)) = [0, 8, 02(9)) | °d

t
SAHW@W%+HWNW%my

Therefore, we can prove in a similar manner as above that
2 2
6(t) <2 K1 |V, ()

t
+ 2 (24 20(0) + 2kl 0, + ¥ rory) | Sledds
By Gronwall’s lemma, we obtain from (3.83) that
2
8(t) =2 (pr(k, K1, T, T IV [lw, (1)),

where

p1(k, K1, T,Th) =

VT Kreap [Ti (2+ 2k(0)] + 2kl 320.2) + 18131010 ) |-
It follows from (3.81), (3.84) and (3.85) that
1wy < 2016, K, T T [V -

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)
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where
2p1(kaK17TaTl) < 17 (387)
since (3.78) and (3.85).

Hence, (3.86) shows that f : B(M,Ty) — B(M,T}) is a contraction. Applying
the contraction mapping theorem, the operator f has a fixed point in B(M,T7)
that is also a weak solution of the problem (1.1)- (1.3).

The solution of the problem (1.1)- (1.3) is unique, that can be showed using
the same arguments as in the proof of Theorem 3.1. The proof of Theorem 3.3 is
completed. O

Remark 3.4. In the case of A = 0, f(z,t,u) = [ulP7%u, p > 2, k € W21 (R}),
k>0, k(0)>0,0< [[Fk(t)dt <1, k/(t) + Ck(t) <0 for all t >0, with ¢ >0,
and the boundary condition u(0,t) = u(1,t) = 0 standing for (1.2), S. Berrimia, S.
A. Messaoudi [1] has obtained a global existence and uniqueness theorem.

4. DECAY OF SOLUTION

In this part, we will consider the problem of global existence and asymptotic
behavior for t — +oo. We assume that g(t) = 0, f(z,t,u) = F(z,t) — |u|’~2u,
p > 2 and consider the following problem

t
Upr — Ugy + / E(t — 8)uge(s)ds + |ulP™2u + |ug| 9 %uy
0

= F(x,t),0 <z <1,t>0, (4.1)
UE(Oa t) = u(oa t)v ’U,m(l, t) + 77“(17 t) = Oa
u(ac, O) = ’(70(1’),’(1,,5(1‘, 0) = ﬂl(x)7
We make the following assumptions:
(H1) 1>0,p,q>2,
(H2) ke W2L(R,), k > 0, satisfying
(i) k(0)>0,0<1— [ k(t)dt = koo < 1,
(ii) there exists a positive constant ¢ such that k/(t) 4 Ck(t) < 0 for all
N t>0,
(H?)) ug € H? and uy € Hl,
(H4) F € L*0,00; L?) N L?(0, 00; L?), F; € L*(0, 00; L?),
(H5) There exists a constant o > 0 such that [;° e**||F(t)]|?dt < +oc.
Under assumptions (H1)-(H4) and let T > 0, by theorem 2.3, the problem (4.1)
has a unique weak solution wu(t) such that

u€ L>(0,T; H*),uy € L>(0,T; H), uyy € L>=(0,T; L?). (4.2)
Then, we have the following

Lemma 4.1. Suppose that (H1) — (H4) hold. Then there is a unique solution u(t)
of problem (4.1) defined on Ry. Moreover

I/ (O + u®)lly < C for all ¢ =0, (4.3)

where C' is a positive constant depending only on ug, uy, F, ke and p.
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Proof. By multiplying the equation (4.1); by u; and integrate over (0,1) x (0,¢) we
obtain

B +2 [/ @lfads+ [ ko) u(s) s
/ dr/ K/ (r = s)||u(s) — u(r)|2ds (4.4)

() +2 l u/ dS

MﬂﬂM@W+O—Ak®%>M®M 2 u(o)l,

. (4.5)
+ / E(t — s)||u(s) — u(t)||727ds
0
On the other hand, by (f[ 4) and the Cauchy’s inequality, we obtain
t t t
2 [P/ (e))ds < [ 1FGds+ [ IFG/(5)]ds
0 0 0 (4.6)
“+ oo t
< [ 1Felas+ [ iPeIEes
By Gronwall’s lemma, we obtain from (4.4) and (4.6) that
—+o0 t
B0 < (B0)+ [ 1FGds) can ([ 17105 )
0 0 (4.7)

< (20 [ ires) e ([ 1FGs) = vz

By (H3, 1), we have

E(t) = |lu/(6)]* + <1 —/O k(S)dS> lu()15 = 1/ (O + kocllu(@)ll. (4.8)

Then we obtain (4.3) from (4.7) and (4.8). This completes the proof of Lemma
4.1. O

In this section we state and prove decay result.

Theorem 4.2. Suppose that (H1) — (H5) hold. Then the solution u(t) of problem
(4.1) decays exponentially to zero ast — +oo in the following sense: there exist the
positive constants N and v such that

[ @) + lw®)]l, < Ne™™  for all t>0. (4.9)
Proof. We use the following functional
[(t) =T(e1,e9,t) = E(t) + e1E1(t) + e2Ea(t), (4.10)
where
Ei(t) =< u(t), v/ (t) >, (4.11)

Ba(t) = — /Ot k(t — s) <u/(t), ult) — u(s)> ds. (4.12)
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FEstimating T'(t).
By (2.3), (2.4), we obtain from (H2,1%) that

BL(0)] = |< u(t), o () >] < S/ O + w3 (4.13)

Balo)] = | [ bt = 5) (u/ 0 ute) ~ u(s)) ds
< %Ilu/(t)n2 +% (/0 k(t — s)|u(t) — u(s)||ds> (4.14)

< I/ OF + (1= k) [ K= 9)lutt) = a3

Hence, it follows from (4.10)-(4.14) that for €1, €2 small enough, there exist two
positive constants oy, aa, such that

a1 E(t) < T(t) < ax B(2). (4.15)

Estimating T'/(t).
Now differentiating (4.4) with respect to ¢, we have
t
E/(t) = 2|/ (1)1, +/ K/ (t = ) llu(s) — u(t)];ds
0
— k@®)llu(®)12 +2 (F(t),w/ (8)) (4.16)

< <2/ Ol + [ 4= )t~ u(®)lds + 2 (P 0)

since k(t) > 0.
By multiplying the equation (4.1); by u and integrate over (0,1) we obtain

B{(0) = |/ 01 ~ )3~ )], + (F0), u(t)
t — s)a(u(s),u s — {Ju/ ()97 20/ (t), u 4.17
+ [ K = atue). ) ds = (' O 0.u(0)) (417)
= /) ~ @)~ () + CF ), u(0) + 1(8) + Do (0)

We now estimate the last two terms in the right side of (4.17) as follows

FEstimating I (t).
Using the inequality

5 o
abg;arﬂr SO Va, b > 0,Yr > 1,¥6 > 0, (4.18)
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we have

L(t) = /0 k(t — s)a(u(s),u(t))ds

:/ k(t—s)a(u(s)—u(t),u(t))ds+/ Kt — s)[[u(t))|2ds
0 0

<@y + 75 ([ #1as) ([ 6= o)lats) — o134
+ ([ ks o (4.19)

1—koo [*
<Al + g [ k= s)uls) — u(o)3ds

+ (1 = koo [lu(®)]I3

< (61 41— koo)[[u(®)]2 +

1;5];%0/0 k(t — s)|lu(s) — u(t)||7ds,

for all §; > 0.
FEstimating I5(t).

We again use inequality 8) we obtain from (4.3) that

(41
== (Ju/ ()172u/ (£),u()) < o/ (152" (@) 1o
o7 -1 =<
Sjllﬂ(f)lququTW o/ )15, (4.20)
—1 ;t;l
<2 - (vao)" IIU(t)IIi+qT5f’ /@11

for all §; > 0.
By combining (4.17), (4.19) and (4.20), we obtain

B{(0) <~ + 1o/ @1 - (ko - 61 2% (vEC) ™) Jutol?

g—1 =% 1 — koo [* (4.21)
T i/ (1. + /0 k(t — s)[lu(s) — u(t)|[;ds
+ (F(t),u(t)) .
Then, we can always choose the constant 51 > (0 such that
—2
1= e — by — 22 (\Fo) > 0. (4.22)
This implies that
B{(t) < —[lu®)|5, + [lw (O = llu@)|? + 2l ()4,
t ) (4.23)
b [ K= 9)uls) — ult) Bds + (F(0),u(t).
0
where
qg—1.2% 11—k
= - = . 4.24
72 q 51 » Y3 451 ( )
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Direct calculations give

== ([ wopts ) w7 = [ 6= (o 0000) () s

t

+ [ k(= s)a(u(t), u(t) — u(s))ds

t

k(t —s)a ( ; kE(t — m)u(r)dr, u(t) — u(s)> ds
t (4.25)

+ [ k(t—s) (Ju)[P?ult), u(t) — u(s)) ds

~

+ [ k(t—s) <|u/(t)|q_2u/(t), ult) — u(s)> ds

~

S— S S — S

7
k(t — ) (F(t),u(t) — u(s)) ds = Y _ J;(t)
i=1
Similarly to (4.17), we estimate respectively the following terms on the right-hand
side of (4.25) as follows.

Estimating J1(t).
Since k is continuous and k(0) > 0 then there exists to > 0, such that

t to
/ k(s)ds > / k(s)ds =ko >0 forall t> 1. (4.26)
0 0

Hence,

Ji(t) = — </0 k(s)ds) lu/ (£)]|2 < —kollu/ (t)||> for all ¢ > t. (4.27)

Estimating Ja(t).

1) = = [ W =) (/@00 - o)) s

<®MKMF+——(/|Mt—sw§(/ﬁﬂt—smu)—uUH%>(4%)
<l O + 5 ([ 1= 90as) ([ 1= luts) - tozas)
<ol @1 =5 4= uts) - e
Estimating Ja(t).
Ta(t) = /Ot k(t — $)a (u(t), u(t) — u(s)) ds
< (0l g5 ([ wssas) ([ 6= 9)luts) —tezas) @20

1— ko [F
< Sallu)l? + 105 /Ok(f—S)IIU(S)—U(t)llidS
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Estimating Jy(t).

Ja(t) = — /Ot k(t — s)a (/Ot k(t — )u(r)dr, u(t) — u(s)> ds
< [ K=t [ o= luts) - u)l

<o/ k- T>||u<7>||ndf)2

4 é </Ot E(t — s)|lu(s) — U(t)”nds) (4.30)
< 26, (/Ot k(t — T)Ilu(T)llndT>2

(252 + 4§> ( / k(e — ) u(s) — u(t)ﬂnds)z

< 205(1 — koo)*[u(®) |7

(252 + &) (1- koo)/o k(t — s)||u(s) — u(t)||727ds.

FEstimating J5(t).

J5(t) = /o k(t—s) <|u(t)|p72u(t), u(t) — u(s)> ds

2 (vac)"” / k(t — 8)llu(®)lllu(t) — u(s)],ds

I /\

. t ) (4.31)
<2 \/EC l52| O+ 5 k(t = s)llu(t) - U(S)IlndS) ]

Bl + (1= ko) [ k(e ) u(0) )l

FEstimating Js(t). We again use inequality (4.18) with r» = ¢, § = d2, we obtain
from (4.3) that

(Ju/ (0120 (1), u(t) = u(s) ) < Ju/ ()52 ut) = u(s)] 1o

53 q AR = TR
] Jut) = w(o) s + L5 /)1, (4.32)

<% (2f0) lu(t) = u(s)Il; + (];—15ﬁllu/(t)lliq-
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It follows from (4.32) that

Jo(t) = /Ot k(t — 5) <|u/(t)|q*2u/(t),u(t) - u(s)> ds
<% (2\/—0) 2/
0
" %52?1 I/l [
<22 03 (2\/—0) 2/0 E(t — s)||u(t) —u(s)||727ds
koo lu/ (£)]|.4

k(t — s)||u(t) — u(s)||727ds
(

)
k(t — s)ds (4.33)
)

+ 752(’71 (1 —

FEstimating Jz(t)

J7(t) = _/0 k(t —s) (F(t),u(t) —u(s))ds
S/O k(t = ) E@)lu(t) = uls)l|ds

< 45 IF ()% + 6 (/Ot k(t — 5)d5> (/Otk(t —s)||u(t) — u(5)||2ds>

< T IFOF + 260 = ko) [kt = 3)u(t) = u(s) s

(4.34)

By combining (4.25), (4.27)-(4.31), (4.33) and (4.34), we obtain

EJ(t) = — (ko — 62) o/ ()| + 627 |[u(®)]|2 + Fallu/ ()]
43 [ k(e = s)lu(t) = u(s) s (4.35)
~ % / B (t - 5)lu(s) — u(t)|2ds + énF(wn?,

where

A= 14201 — koo)? +2 (\/ic)H ,

5o = —L-657 (1 - koo),
q—1

=99 (0v30) b (1 — k) |21 (vae) T s (40 +
> (2vac)’ 7, (V20) %

(4.36)

7422—52-
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Combining of (4.10), (4.16), (4.23) and (4.35), we obtain
L/ (t) + exllu(®) |70 + (ko = b2)e2 — 1) [/ (1)1

+ (2171 — €2071) ()12 + (2 — 2172 — e292) |u/ (£)]|%

~(e1ya + £2s) / Kt — s)l|u(t) — u(s)|2ds
_ — £5A / — s)||u(s) —u 2ds

(1 - =) / K (t — ) Ju(s) — u(t) 2
< (P20 (1) +2ru(t)) + 1P

Whence §; is fixed, choosing

1 k(0 2
0o = = ( )11 ,€2 = —¢1, where &7 >0 is arbitrary,
271+ ko
we deduce from (4.37) and (4.38) that
5171 2 4 51’71 2
I/ (t)+e /(t
() +erllu@®)|7, || 0"+ ) w5

+(2-a (1 ¥ %a)) I/ (1)1,
o (o) [ bt s)1ute) — o) s

- (1= o) | (e 8)lus) — u(t)2ds
< <F(t),2u/(t)+51u(t)> o <1+ - ) IF()]|2.

Next, we choose €1 > 0, with

. ¢ 2
g1 < min > 5
Y3+ 558 T Al 14+ 572

and (4.15) is satisfied, then by the assumption (H2, i), we deduce that

€17 e17?
(1) + exJu®)|5, + —5 || /B + — || Ol + kallw/ ()]

1+7 7+

k/ (t — 8)[fu(s) — u(t)|2ds
< 1), 2u/ () +51u()>+k3||F(t)||2,

where

2
k1:2—€1(1+—’}/2)>0,
ko
2 2
ka=¢ (1 - k—€174) —€1 (73 + k_%’) > 0,
0 0
k 1
. k2< +71>

21

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
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By combining (4.5), (4.15) and (4.40), we can always choose the constant ¥ > 0 is
independent of ¢ such that

I/ (t) + 230(t) < <F(t), 2/ (t) + €1u(t)> + k| F ()%, (4.42)

for all t > tg.
On ther other hand,

(F),20/ () + eu()) + ks | FOI? < NIF@I? +3T(),  (443)

for some constant N > 0. Therefore
T/ (t) +A0(t) < N|[F(t)||> for all t > t,. (4.44)

Putting v = $min{o,7}. A simple integration of (4.44) over (to,t) gives

+oo

I'(t) < [F(to)e"t" +N e“s||F(s)||2ds} e 2 = Nyem 2, (4.45)

to
for all t > tg.
By the boundedness of T'(¢) on [0, t], we deduce from (4.45) that

T(t) = T oo 0,6y~ 271 + Nyem 27" = Nye 27, (4.46)
for all t > 0.
By (4.15), it follows from (4.46) that
1 1
E(t) < —T(t) < —Noe ', forall t>0. (4.47)
(5] a1
This completes the proof of Theorem 4.2. O

Remark 4.3. The estimate (4.9) holds for any regular solution corresponding to
(g, 1) € H? x HY. This remains holds for solutions corresponding to (tg,u1) €
H' x L? by simple density argument.

5. NUMERICAL RESULTS
Consider the following problem:
t
Ut — Ugy —l—/ E(t — 8)uge(s)ds +ul =u? + F(2,1),0 <2 < 1,0<t < T, (5.1)
0

with boundary conditions
ug(0,t) = u(0,t), u. (1,¢) + u(1,t) =0, (5.2)

and initial conditions

u(z,0) = uo(x), ut(x,0) = uy (x), (5.3)
where 1
to(z) = —2? + o+ 1,0 (z) = —to(2), k(t) = Ee_t, (5.4)
F(x,t) = (2 —t)e '+ Uep(1 — Upw — UZ), (5.5)
where
Uep(x,t) = (—2? + 2+ 1)e". (5.6)

The exact solution of the problem (5.1)-(5.3) with ug(z), @i(x), k(t) and F(x,t)
defined in (5.4) and (5.5) respectively, is the function Ue, given in (5.6). To solve
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problem (5.1)-(5.3) numerically, we consider the differential system for the un-
duj

knowns u;(t) = u(zj,t), v;(t) = F(t), with z; = jh, h = &, j = 0,1,...,N:

duj o s
E(t) =v;(t),7=0,1,...,N,
%(t) = iz (= (14 h)uo(t) 4 u1(t)]

h
/0 F(t — 8) [— (1 + h)uo(s) + ur(s)] ds — v3(t) + u2() + F(zo,t),
O 8) = 2 T2 (8) = 205(0) + w1 1)
1t (5.7)
) k(t = s) [uj—1(s) — 2u;(s) + ujt1(s)] ds
=03 (t) + ul(t) + F(xj,t),j =1,2,...,N — 1,
d’UN 1

—p (0= 33 [un—1(t) = (L+ hyun (1))

1
o h?

—z [ b= ) v (6) = (0 By (9)] ds = () + w(e) + Flan. )

u;(0) = to(x;),v;(0) = w1 (x;),j =0,1,...,N.
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To solve the nonlinear differential system (5.7), we use the following linear recursive
scheme generated by the nonlinear term

du;” (n)
th (t) =v;"(t),j =0,1,...,N,
do{™ 1 n n
(1) = o3 [+ g (6 + 0l 0)]
Nl 1

Z k(t — iAt) [ (1 + R)ul™ (iAt) + " (mt)}

- (vé”*”(t))g + (uf)”*l)(t))3 + F(zo,1),

(n)

dv; 1
J _ (n) (n) (n)
(1) = o [u)(0) = 26 (1) + u 1)

Nl 1
Z k(e — iA) [ul"; (1A8) — 200" (1A8) + u?, (iA¢)] (5:8)

_ (U§"_l)(t)) n (u;n_l)(t))z + F(zj,t),j=1,2,..,N -1,

(™)
dg@=%@Wx>a+mWw

N11

Z k(t — iAL) [uN (iAY) — (1+ h)u ")(zAt)}

( n (¢ ) (ugy-1>(t))2+p(m,t),
(0) = o (), 0" (0) = T (), j = 0, 1,..., N,

and where uJ (zAt) =1,.,Ny—1, 5 =0,1,..., N, of the system (5.8) being
calculated at the time t = N7 At.

The latter system is solved by a spectral method and since the matrix of this
system is very ill-conditioned so we have to regularize it by adding to the diagonal
terms a small parameter in order to have a good accuracy of the convergence.

Figure 1
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In fig.1 we have drawn the approximated solution of the problem (5.1)-(5.5) while
fig.2 represents his corresponding exact solution (5.6).
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Figure 2

The fig.3 corresponds to the surface (z,t) — u(x,t) approximated solution in
the case where F'(z,t) = 0. So in both cases we notice the very good decay of these
surfaces from T'=0 to T' = 2.
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