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Abstract

We present some partial results on the following conjectures arising from au-
tomata theory. The first conjecture is the triangle conjecture due to Perrin and
Schiitzenberger. Let A = {a, b} be a two-letter alphabet, d a positive integer and
let Bq = {a'ba’ | 0 <i+j <d}. If X C Bqis a code, then |X| < d+ 1. The
second conjecture is due to Cerny and the author. Let A be an automaton with
n states. If there exists a word of rank < n — k in A, there exists such a word of
length < k2.

1 Introduction

The theory of automata and formal langauges provides many beautiful combinatorial
results and problems which, I feel, ought to be known. The book recently published:
Combinatorics on words, by Lothaire [8], gives many examples of this.

In this paper, I present two elegant combinatorial conjectures which are of some im-
portance in automata theory. The first one, recently proposed by Perrin and Schiitzen-
berger [9], was originally stated in terms of coding theory. Let A = {a, b} be a two-letter
alphabet and let A* be the free monoid generated by A. Recall that a subset C' of A*
is a code whenever the submonoid of A* generated by C'is free with base C; i.e., if the
relation ¢y -+ - ¢, = ¢} ---c'q, where c1,..., ¢, ¢, ..., ¢ are elements of C implies p = ¢
and ¢; = ¢, for 1 < i < p. Set, for any d > 0, By = {a‘ba’ | 0 < i+ j < d}. One can
now state the following conjecture:
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The triangle conjecture. Let d > 0 and X C By. If X is a code, then | X| < d+ 1.

The term “The triangle conjecture” originates from the following construction: if
one represents every word of the form a‘ba’ by a point (i,j) € N2, the set By is
represented by the triangle {(i,7) € N> | 0 < i + j < d}. The second conjecture was
originally stated by Cerny (for k = n—1) [3] and extended by the author. Recall that a
finite automaton A is a triple (Q, 4, §), where @ is a finite set (called the set of states),
A is a finite set (called the alphabet) and § : Q X A — @ is a map. Thus ¢ defines an
action of each letter of A on Q. For simplicity, the action of the letter a on the state
q is usually denoted by ga. This action can be extended to A* (the free monoid on A)
by the associativity rule

(qw)a = q(wa) for all g € Q,w € A*,;a € A

Thus each word w € A* defines a map from @ to @ and the rank of w in A is the
integer Card{qw | ¢ € Q}.
One can now state the following

Conjecture (C). Let A be an automaton with n states and let 0 < k < n—1. If there
exists a word of rank < n — k in A, there exists such a word of length < k2.
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2 The triangle conjecture

I shall refer to the representation of X as a subset of the triangle {(i,j) € N? | 0 <
i+ 7 < d} to describe some properties of X. For example, “X has at most two columns
occupied” means that there exist two integers 0 < ¢; < i3 such that X is contained in
a’*ba* U a'2ba*.

Only a few partial results are known on the triangle conjecture. First of all the
conjecture is true for d < 9; this result has been obtained by a computer, somewhere
in Italy.

In [5], Hansel computed the number ¢, of words obtained by concatenation of n
words of By. He deduced from this the following upper bound for |X]|.

Theorem 2.1 Let X C By. If X is a code, then | X| < (14 (1/v/2))(d + 1).

Perrin and Schiitzenberger proved the following theorem in [9].

Theorem 2.2 Assume that the projections of X on the two components are both equal
to the set {0,1,...,r} for some r < d. If X is a code, then |X| < r+ 1.

Two further results have been proved by Simon and the author [15].

Theorem 2.3 Let X C By be a set having at most two rows occupied. If X is a code,
then | X| <d+1.

Theorem 2.4 Assume there is exactly one column of X C By with two points or more.
If X is a code, then | X| < d+1.

Corollary 2.5 Assume that all columns of X are occupied. If X is a code, then
|X|<d+1.

Proof. Indeed assume that |X| > d + 1. Then one of the columns of X has two
points or more. Thus one can find a set ¥ C X such that: (1) all columns but
one of Y contain exactly one point; (2) the exceptional column contains two points.
Since |Y| > d+ 1, Y is a non-code by Theorem 2.4. Thus X is a non-code. O

Of course statements 2.3, 2.4, 2.5 are also true if one switches “row” and “column”.

3 A conjecture on finite automata

We first review some results obtained for Conjecture (C) in the particular case k = n—1:
“Let A be an automaton with n states containing a word of rank 1. Then there exists
such a word of length < (n — 1)2.”
First of all the bound (n — 1)? is sharp. In fact, let A, = (Q,{a,b},d), where
Q={0,1,....n—1},ia=iandib=i+1fori#n—1,and (n —1l)a=(n—1)b=0.
Then the word (ab™~!)"~2q has rank 1 and length (n — 1)? and this is the shortest
word of rank 1 (see [3] or [10] for a proof).
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Moreover, the conjecture has been proved for n = 1,2, 3,4 and the following upper
bounds have been obtained

2" —n—1 (Cerny [2], 1964)

1 3

Snd =St (Starke [16, 17], 1966)

1 4 L .

gt —ntt g (Kohavi [6], 1970)

1, 3, 25 S )

3N —3n + e 4 (Cerny, Pirickd et Rosenauerové [4], 1971)
7 17 17

=t — et n =3 (Pin [11], 1978)

For the general case, the bound k2 is also the best possible (see [10]) and the conjecture
has been proved for k = 0,1,2,3 [10]. The best known upper bound was

1 1 13
K- ZE2 4+ k—1]11
3 37T % [11]

We prove here some improvements of these results. We first sketch the idea of the
proof. Let A = (Q, A,0) be an automaton with n states. For K C @ and w € A*, we
shall denote by Kw the set {qw | ¢ € K}. Assume there exists a word of rank < n —k
in A. Since the conjecture is true for £ < 3, one can assume that k& > 4. Certainly
there exists a letter a of rank # n. (If not, all words define a permutation on @ and
therefore have rank n).Set K1 = Qa. Next look for a word m; (of minimal length)
such that Ky = Kym; satisfies |Ko| < |K7|. Then apply the same procedure to Ko,
etc. until one of the |K;’s satisfies |K;| < n — k:

My—1

Q % K ™ K, ™ Ko 5K, K| <n—k

Then amq ---m,_1 has rank <n — k.
The crucial step of the procedure consists in solving the following problem:

Problem P. Let A = (Q, 4, ) be an automaton with n states, let 2 < m < n and let
K be an m-subset of Q). Give an upper bound of the length of the shortest word w (if
it exists) such that |Kw| < |K].

There exist some connections between Problem P and a purely combinatorial Problem
P

Problem P’. Let @) be an n-set and let s and ¢ be two integers such that s +¢ < n.
Let (Si)1<i<p and (T;)1<igp be subsets of @) such that

(1) For 1 <i<p,|S;|=sand |T;| =t

(2) For 1<i<p, S;NT; = 0.

(3) For1<j<i<p, S;NT;=0.
Find the maximum value p(s,t) of p.

We conjecture that p(s,t) = (*I*) = (*T*). Note that if (3) is replaced by
(3) For1<i#j<p, S;iNnT;=0.
then the conjecture is true (see Berge [1, p. 406]).
We now state the promised connection between Problems P and P’.

Proposition 3.1 Let A= (Q, A4,6) be an automaton with n states, let 0 < s < n —2
and let K be an (n — s)-subset of Q. If there exists a word w such that |[Kw| < |K],
one can choose w with length < p(s,2).
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Proof. Let w = a1---a, be a shortest word such that |[Kw| < |K| = n — s and

define K; = K, Ky = Kyaq, ..., K, = Kp_1a,-1. Clearly, an equality of the form
|K;| = |Kay---a;] < |K]| for some ¢ < p is inconsistent with the definition of w.
Therefore |Ki| = |Kz2| = -+ = |K,| = (n — s). Moreover, since |Kpa,| < |K,|, K,

contains two elements x,, and y, such that z,a, = ypa,.
Define 2-sets T; = {x;,y;} C K; such that x;a; = 2,11 and y;a; = yi41 for 1 < i <
p — 1 (the T; are defined from T, = {zp,yp}). Finally, set S; = @ \ K;. Thus we have
(1) For 1 <i<p,|S;|=sand |T;| =2.
(2) For 1 <i<p, S;NT; = 0.
Finally assume that for some 1 < j <i<p, S;NT; =0, i.e, {z;,y;} C K;. Since

:Eia/i”'a/p:yiai”'apu

it follows that
|Kay---aj—1a;--ap| = |Kja;---ap| <n—s

But the word aq - --aj_1a; - - - ap is shorter that w, a contradiction.
Thus the condition (3), for 1 < j < i < p, S;NT; # 0, is satisfied, and this concludes
the proof. O

I shall give two different upper bounds for p(s) = p(2, s).

Proposition 3.2
(1) p(0) =1,
(2) p(1) =3,
(3) p(s) < s*—s+4 fors>2.
Proof. First note that the S;’s (T;’s) are all distinct, because if S; = S; for some j < 1,
then S; NT; = 0 and S; NT; # 0, a contradiction.
Assertion (1) is clear.
To prove (2) assumet that p(1) > 3. Then, since TyNSy # 0, TyNSs # O, T4NS3 # O,
two of the three 1-sets Sy, S2, S35 are equal, a contradiction.
On the other hand, the sequence Sy = {1}, S2 = {22}, S5 = {a3}, T1 = {22, 23},
Ty = {x1,23}, T5 = {x1, 22} satisfies the conditions of Problem P’. Thus p(1) = 3.
To prove (3) assume at first that S; N Se = () and consider a 2-set T; with ¢ > 4.
Such a set meets S1, Sz and S3. Since S; and Sy are disjoint sets, T; is composed as
follows:

e cither an element of S; N S3 with an element of S5 N S3,
e or an element of S; N S3 with an element of Sy \ Ss,
e or an element of Sy \ S3 with an element of Sp N Ss.

Therefore
p(S) -3 < |Sl n SgHSQ n S3| + |Sl N S3||Sg \ Sg| + |Sl \SgHSQ n S3|
= |Sl n Sg||52| + |Sl||S2 n S3| - |Sl N S3||Sg n Sg|
= S(|Sl N Sg| + |SQ ﬂSgD - |Sl N S3||S2 n S3|
Since S, S2, S3 are all distinct, |S1 N S3| < s—1. Thusif [S1NS3] =0or |SaNS5| =0

it follows that
p(s) <s(s—1)+3=s>—s5+3

If |S1 N S5 # 0 and S N S3| # 0, one has
[S1 N S3||S2 N Ss| > |51 N S;||S2 N S3| — 1,
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and therefore:
p(s) <3+ (s = 1)(|S1 N Sa] +S2 N S3)) +1 < 5> — s +4,

since |S1 N Sg| + |S2 N Sg| < |S3| = s.
We now assume that a = |S1 N Sz| > 0, and we need some lemmata.

Lemma 3.3 Let © be an element of Q. Then x is contained in at most (s + 1) T;’s.

Proof. If not there exist (s + 2) indices i1 < ... < @542 such that T;, = {x,2;,} for
1<j<s+2 Since S;, NT;, # 0, x ¢ S;,. On the other hand, S;, meets all T;, for
2 < j < s+2 and thus the s-set S;, has to contain the s + 1 elements z;,,...,%;, ., a
contradiction. O

Lemma 3.4 Let R be an r-subset of Q. Then R meets at most (rs + 1) T;’s.

Proof. The case r = 1 follows from Lemma 3.3. Assume r > 2 and let x be an element
of R contained in a maximal number N, of T;’s. Note that N, < s+ 1 by Lemma
3.3. If N, < s for all x € R, then R meets at most rs T;’s. Assume there exists
an x € R such that N, = s+ 1. Then = meets (s + 1) T}’s, say T;, = {z, %, }, ...,

TiSJrl = {LL‘,LL‘iS+1} with i1 < ... < i5+1.
We claim that every y # x meets at most s T;’s such that i # i1,...,4541. If
not, there exist s + 1 sets T, = {y,yj, }, -+, Tj.on = {¥,y5..F with j1 < ... < js1

containing y. Assume i; < j; (a dual argument works if j; < ¢1). Since S;;, N T}, = 0,
x ¢ T;, and since S;, meets all other T, , S;; = {xi,,..., 2, }. Ify € T, y belongs
to (s 4+ 2) Ty’s in contradiction to Lemma 3.3. Thus |S;,| > s, a contradiction. This
proves the claim and the lemma follows easily. O

We can now conclude the proof of (3) in the case |S1 N S2| = a > 0. Consider a
2-set T; with ¢ > 3. Since T; meets S and Ss, either T; meets S; N Sy, or T; meets
S1\ Sz and S\ S;. By Lemma 3.4, there are at most (as + 1) T;’s of the first type
and at most (s — a)? T}’s of the second type. It follows that

p(s) —2< (s—a)* +as+1
and hence p(s) < s?2+a? —as+3<s? —s+4,sincel <a<s—1. O

Two different upper bounds were promised for p(s). Here is the second one, which
seems to be rather unsatisfying, since it depends on n = |@|. In fact, as will be shown
later, this new bound is better than the first one for s > [n/2].

Proposition 3.5 Let a = [n/(n —s)|. Then

1 1
p(s) < gns—l—a: <a—;— )52+(1—a2)n5+ (g)nQ—Fa

if n — s divides n, and

1
p(s) < (a—|— >s2—|—(1—a2)ns—|— (;)nQ—I—a—l—l

if n — s does not divide n.
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Proof. Denote by INV; the number of 2-sets meeting S; for j < ¢ but not meeting S;.
Note that the conditions of Problem P’ just say that N; > 0 for all ¢ < p(s). The idea
of the proof is contained in the following formula

Y N< (g) 1)

1<i<p(s)

This is clear since the number of 2-subsets of @ is (g) The next lemma provides a
lower bound for ;.

Lemma 3.6 Let Z; =()._,S; \ S; and |Z;| = z;. Then N; > (221) +zi(n—s—2z).

j<i
Proof. Indeed, any 2-set contained in Z; and any 2-set consisting of an element of Z;

and of an element of @ \ (S; U Z;) meets all S; for j < ¢ but does not meet S;.
We now prove the proposition. First of all we claim that

U Z; =@

1<i<p(s)

If not,
Q\Uz)= () S
1<i<s(p)

is nonempty, and one can select an element x in this set. Let T be a 2-set containing
x and S be an s-set such that SNT = (. Then the two sequences Si, ..., Sp(), S and
T1,..., Ty, T satisty the conditions of Problem P’ in contradiction to the definition
of p(s). Thus the claim holds and since all Z;’s are pairwise disjoint:

Zzi:n (2)

It now follows from (1) that

w<(3)- X iy 3)

1<i<p(s)

Since N; > 0 for all ¢, Lemma 3.6 provides the following inequality:

pls) < (g) -3 fe) (1)

z; >0

where f(2) = (3) + 2(n—s—2) — 1.
Thus, it remains to find the minimum of the expression Y f(z;) when the z;’s are
submitted to the two conditions
(a) >z =n (see (2)) and
(b) 0 < z; <n—s (because Z; C Q\ S;).
Consider a family (z;) reaching this minimum and which furthermore contains a mini-
mal number « of z;’s different from (n — s).
We claim that oo < 1. Assume to the contrary that there exist two elements different
from n — s, say z; and zo. Then an easy calculation shows that

f(z1 4+ 22) < f(21) + f(22) if 21 +20 <n—s,
fin=s8)+ f(z14+ 22— (n—35)) < f(z1) + f(22) fz1+20>n—s.
Thus replacing z; and z2 by 21 + 22 — in the case 21 + 20 < n— s — or by (n — s)

and z1 + z2 — (n — s) — in the case z1 + 22 > n — s — leads to a family (z}) such that
S f(zh) <37 f(z) and containing at most (o — 1) elements 2, different from n — s, in
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contradiction to the definition of the family (z;). Therefore & = 1 and the minimum
of f(z;) is obtained for

21 =" =Zq=MN—38 ifn:a(n_s),
and for
Z1=-"=Z24=NM—3S5, Za41 =T ifn:a(n—s)+rwith0<r<n—s.

It follows from inequality (4) that
n .
p(s)<( )—af(n—s) if n=a(n—s),
p(s) < (2> —af(n—s)— f(r) ifn=an—s)+rwith0<r<n-—s.

where f(2) = (5) +2(n—2) — 1.
Proposition 3.5 follows by a routine calculation. 0O

We now compare the two upper bound for p(s) obtained in Propositions 3.2 and
35for2<s<n—2.

Case 1. 2<s< (n/2) — 1.
Then a = 1 and Proposition 3.5 gives p(s) < s + 2. Clearly s — s + 4 is a better
upper bound.

Case 2. s =n/2.
Then a = 2 and Proposition 3.5 gives p(s) < s + 2. Again s — s + 4 is better.

Case 3. (n+1)/2<s< (2n—1)/3.
Then a = 2 and Proposition 3.5 gives

Case 4. 2n/3 < s.
Then a > 3 and Proposition 3.5 gives

1
p(s) < (a—;— )s2+(1 —a?)ns + (;)nz—i—a—i—l
1
< 82—s+§a(a—1)(n—3)2—((a—1)(n—s)—1)s+a+1
Since s < (1 —a)(n — s), a short calculation shows that

p(s)<52—s+4—%(a—l)(a—2)(n—s)2+(a—1)(n—s)+(a—3)

(a —1) < —1 and thus

(SIS

Since a > 3, —
p(s) <52 —s+4—(a—2)(n—s)2+(a—1)n—s)+(a—3),
and it is not difficult to see that for n — s > 2,

—(a=2)(n—s5)*+(@—-1(n—-s)+(@-3)<0

Therefore Proposition 3.5 gives a better bound in this case.
The next theorem summarizes the previous results.
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Theorem 3.7 Let A= (Q, A,J) be an automaton with n states, let 0 < s <n—2 and
let K be an (n — s)-subset of Q. If there exists a word w such that |Kw| < |K]|, one
can choose w with length < p(n,s) where a = |n/(n—s)| and

1 ifs=0,
o(n,s) =143 if s =3,
s2—s+4 if3<s<n/2,
1
o(n, ( ; > (1—a?) ns—|—<2)n2—|—a—§ns+a

ifn=a(n—s) and s > n/2,

o(n, (a—;— ) (1—a?) ns+(2)n2+a+1

if n — s does not divide n and s > n/2.

We can now prove the main results of this paper.

Theorem 3.8 Let A be an automaton with n states and let 0 < k < n — 1. If there
exists a word of rank < n—k in A, there exists such a word of length < G(n, k) where

k2 fork=0,1,2,3,
G(n,k) = sk =K+ Hk—-5  ford<k<(n—2)+1,
9+23<5<k71 p(n,s) fork>=(n+3)/2.
Observe that in any case

14

Gnk) < =k —k*+ —k -5

ool»—x
OJ

Table 1 gives values of G(n, k) for 0 < k <n < 12.

E\n | 1 3145|678 9 10 | 11 12
1 O(1|49|19]|34|56 |8 | 125 | 173 | 235 | 310
2 11419 19|35 ]57| 8 | 128 | 180 | 244
3 O(1| 4|9 ]|193] 359 | 9 | 133 | 186
4 0111419 |19] 35 | 59 | 93 |135
5 O 1(41]9]| 193 |5 | 93
6 0| 1] 4 9 19 | 35 | 89
7 0] 1 4 9 19 | 35
8 0 1 4 9 19
9 0 1 4 9
10 0 1 4
11 0 1
12 0

Figure 1: Values of G(n, k) for 0 < k < n < 12.

Proof. Assume that there exists a word w of rank < n — k in A. Since Conjecture
(C) has been proved for k < 3, we may assume k > 4 and there exists a word w; of
length < 9 such that Qw; = K satisfies |K1| < n — 3. It suffices now to apply the
method decribed at the beginning of this section which consists of using Theorem 3.7
repetitively. This method shows that one can find a word of rank < n—k in A of length
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<9+ scoch1 P(n:8) = G(n, k). In particular, p(n, s) = s? —s+4 for s <n/2 and
thus 1 14
G(n, k) = §k3—k2+§k—5 fora<k<(n—2)+1

It is interesting to have an estimate of G(n, k) for k =n — 1.

Theorem 3.9 Let A be an automaton with n states. If there exists a word of rank 1
in A, there exists such a word of length < F(n) where

17 3
F(n) = (5 = gg)n” +o(n”).

Note that this bound is better than the bound in 2—77713, since 7/27 ~ 0.2593 and
(- 22) ~0.2258.

Proof. Let h(n,s) = (“1")s? + (1 — a®)ns + ($)n® + a + £(s), where

e(s) = {O if n=a(n—s)

1 if n — s does not divide n.

The above calculations have shown that for 3 < s < n/2,
s —s+4< h(n,s) <s*+2.

Therefore

PRI ETEID VIR T R DRI

0<s<n/2 3<s<n—2 0<s<n/2

It follows that

A new calculation shows that
1
h(n,n —s)=n*+(|n/s] + 1)(§Ln/sJ52 —sn+1)—e(n—-s)

Therefore

where

T1:Zn2:n3, T;;:—ni[n/sjs
s=1

s=1
1 n n
T1:§ZLn/SJ252, T5:—nZs,
s=1 s=1
1 n n
T3=§Ztn/sjs, ngzm/sjs—i—l—s(n—s).
s=1 s=1

Clearly Ty = —%n?’ + 0(n3) and T = o(n?®). The terms Ty, T3 and T, need a separate
study.
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Lemma 3.10 We have T3 = +((3)n® + o(n®) and Ty = —1((2)n® + o(n®), where
C(s) = Y07, n™*% is the usual zeta-function.

These two results are easy consequences of classical results of number theory (see
[7, p- 117, Theorem 6.29 and p. 121, Theorem 6.34])

n n L"/SJ n
() Ylnfsls =33 s =5 D (ln/s)? + n/s)
s=1 s=1 d=1 s=1
1 5~ 1
= §n2 Z e +0(n?) = =¢(2)n? + o(n?)

n n |n/s] n
) Dlnfsls? =3 3" 5= 5 D (2ln/s ) +3ln/s)? + [n/s])
s=1 s=1 d=1 s=1
= %ng é si?’) +o(n®) = =¢(3)% + o(n?)

Therefore T3 = $¢(3)n® + o(n?).

Lemma 3.11 We have To = £(2((2) — ¢(3))n® + o(n®).

Proof. It is sufficient to prove that

tim 2 ln/s)% = $(20(2) —C(3)

n—oo

Fix an integer ng. Then

L In/s) Lo
rD BCANED DR~ D DLV
=1 s=ln/Gryl =1

1 n 1 o [n/7]
< - _ -2 2
A R DD S

J=1 s=[n/(G+1)]+1

Indeed, |n/s|s < n implies the inequality

il I
n3 s n
s=1

1 [n/(no+1)] n12 ) 1 \‘ n J
<
Now

1 , 1
dmos > =3
[n/(G+1)]+1<s<[n/5]

10
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It follows that for all ng € N

liﬁ Lt <liminfi2{ﬁrk2
2 \F TG TR e Lk

]3

Since

i 1 n 1
11m sup — =
n—»oop n|no+1 ng+ 1

We obtain for ng — oo,

ol 2, gm0 1
g 5 =307 (7 o)
1 =2j—1
=§§;{ﬁ = 5(20(2) - ((3))
=

2 6
1 2
= (5 — 7?:—6) n? 4 o(n?)

which concludes the proof of Theorem 3.9. O

(3 5¢@)n + o)

Note added in proof

(1) P. Shor has recently found a counterexample to the triangle conjecture.

(2) Problem P’ has been solved by P. Frankl. The conjectured estimate p(s,t) = (*)
is correct. It follows that Theorem 3.8 can be sharpened as follows: if there exists
aword of rank < n—k in A there exists such a word of length < 1k(k+1)(k+2)—1

(for3<k<n—1).

References

[1] C. BERGE, Graphes et hypergraphes, Dunod, Paris, 1973. Deuxieme édition, Col-

lection Dunod Université, Série Violette, No. 604.

[2] J. CERNY, Pozndmka k. homogénnym experimentom s konecnymi automatmi,

Mat. fyz. éas SAV 14 (1964), 208-215.

[3] J. CERNY, Communication, in Bratislava Conference on Cybernetics, 1969.

[4] J. CERNY, A. PIRICKA AND B. ROSENAUEROVA, On directable automata, Ky-

bernetica 7 (1971), 289-298.

11



[5]
(6]
7]

8]

[9]

[11]
[12]
5 [13]
S
2
o [14]
(9\]
Z
3 [15]
()]
0
& [16]
34
¥ [17]
—
3
E

G. HANSEL, Baionnettes et cardinaux, Discrete Math. 39,3 (1982), 331-335.
Z. KoHAvV1, Switching and finite automata theory, McGraw Hill, New-York, 1970.

W. J. LEVEQUE, Topics in number theory. Vols. 1 and 2, Addison-Wesley Pub-
lishing Co., Inc., Reading, Mass., 1956.

M. LOTHAIRE, Combinatorics on Words, Encyclopedia of Mathematics and its
Applications vol. 17, Cambridge University Press, 1983.

D. PERRIN AND M.-P. SCHUTZENBERGER, A conjecture on sets of differences of
integer pairs, J. Combin. Theory Ser. B 30,1 (1981), 91-93.

J.-E. PIN, Le probléme de la synchronisation. Contribution a l’étude de la con-
jecture de Cerngj, These de 3eme cycle, Université Paris VI, 1978.

J.-E. PIN, Sur les mots synchronisants dans un automate fini, Elektron. Informa-
tionsverarb. Kybernet. 14 (1978), 293-303.

J.-E. PIN, Sur un cas particulier de la conjecture de Cerny, in 5th ICALP, Berlin,
1978, pp. 345-352, LNCS n° 62, Springer.

J.-E. PIN, Utilisation de l'algebre linéaire en théorie des automates, in Actes
du 1er Collogue AFCET-SMF de Mathématiques Appliquées, pp. 85-92, AFCET,
1978.

J.-E. PIN, Le probleme de la synchronisation et la conjecture de Cerny, in Non-
commutative structures in algebra and geometric combinatorics, A. De luca (ed.),
pp- 3748, Quaderni de la Ricerca Scientifica vol. 109, CNR, Roma, 1981.

J.-E. PN AND I. SIMON, A note on the triangle conjecture, J. Combin. Theory
Ser. A 32,1 (1982), 106-109.

P. H. STARKE, Eine Bemerkung iiber homogene Experimente., Elektr. Informa-
tionverarbeitung und Kyb. 2 (1966), 257-259.

P. H. STARKE, Abstrakte Automaten, V.E.B. Deutscher Verlag der Wis-
senschaften, Berlin, 1969.

12



