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Abstract

We introduce new models of stationary random fields, solutions of

Xt = F
(
(Xt−j)j∈Zd\{0}; ξt

)
,

the input random field ξ is stationary, e.g. ξ is independent and identically distributed
(iid). Such models extend most of those used in statistics. The (nontrivial) existence
of such models is based on a contraction principle and Lipschitz conditions are needed;
those assumptions imply Doukhan and Louhichi (1999)’s [6] weak dependence condi-
tions. In contrast to the concurrent ones, our models are not set in terms of conditional
distributions. Various examples of such random fields are considered. We also use a
very weak notion of causality of independent interest: it allows to relax the bound-
edness assumption of inputs for several new heteroscedastic models, solutions of a
nonlinear equation.
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keywords:
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60F25: Lp-limit theorems,

60K35: Interacting random processes; statistical mechanics type models; percolation theory,

62M40: Random fields; image analysis,

60B99: Weak dependence,
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1 Introduction

Description of random fields is a difficult task, a very deep reference is Georgii’s (1988)
book [11]; a synthetic presentation is given by Föllmer (1985) [9]. The usual way to describe
interactions makes use of conditional distributions with respect to large sets of indices.
This presentation is natural for discrete valued random fields as in Comets et alii (2002),
[1]. The existence of conditional densities is a more restrictive assumption for continuous
state spaces. The existence of random fields is often based on conditional specifications,
see Föllmer (1985) ([9], pages 109-119) and Dobrushin (1970) [4], through Feller continuity
assumptions. The uniqueness of Gibbs measures is often based on projective conditional
arguments; it follows with a mixing type argument. Such conditions rely on the regularity
of conditional distributions; applications to resampling exclude such hypotheses. Various
applications to image, geography, agronomy, physic, astronomy, electromagnetism may for
instance be considered, see [11] or [13].
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We omit here any assumption relative to the conditional distributions. Our idea is to
define random fields through more algebraic and analytic arguments. We present here the
new models of stationary random fields subject to the relation:

Xt = F
(
(Xt−j)j∈Zd\{0}; ξt

)
(1)

where ξ = (ξt)t∈Zd is an independent identically distributed (iid) random field. The
independence of inputs ξ may also be relaxed to a stationarity assumption.
For the models with infinite interactions (1), the existence and uniqueness rely on the
contraction principle. Lipschitz type conditions are thus needed, they are closely related
to weak dependence, see [6]. Analogue weak dependence conditions are already proved in
Shashkin (2005) for spin systems, [14]. A causal version of such models, random processes
solutions of an equation Xt = F (Xt−1, Xt−2, . . . ; ξt) (t ∈ Z) is considered in Doukhan and
Wintenberger (2006), [8]; in this paper the results are proved in a completely different way
fitting to coupling arguments. Our results state existence and uniqueness of a solution of
(1) as a Bernoulli shift Xt = H((ξt−s)s∈Zd) as well as the weak dependence properties of
this solution.
Our models are not necessarily Markov, neither linear or homoskedastic. Moreover the
inputs do not need additional distributional assumptions (like for Gibbs random fields).
They extend on ARMA random fields which are special linear random fields (see [13] or
[10]). A forthcoming paper will be aimed at developing statistical issues of those models.
Identification and estimation of random fields with integer values is considered in [5].

The paper is organized as follows.
We first recall weak dependence from [6] in § 2. General results are then stated for
stationary (non necessarily independent) inputs. Those results imply heavy restrictions
on the innovations in some cases: a convenient notion of causality is thus used. A last
subsection addresses the problem of simulating such models.
A following section details examples of such models. They are natural extensions of
the standard times series models. We shall especially consider LARCH(∞) and doubly
stochastic linear random fields for which this causality allows to relax the boundedness
assumptions.
Proofs are rejected at in a last section of the paper.

2 Main results

In order to state our dependence results, we first introduce the concepts of weak depen-
dence. Our main results will be stated in the following subsection. After this, causality
will be proved to imply other powerful results. A last subsection is aimed at describing a
way to simulate those very general random fields.

2.1 Weak dependence

We recall here the weak dependence conditions introduced in Doukhan & Louhichi (1999).
They may replace heavy mixing assumptions.

Definition 1 Set ‖(s1, . . . , sd)‖ = max{|s1|, . . . , |sd|} for s1, . . . , sd ∈ Z. The E = R
k−valued

random field (Xt)t∈Zd is weakly dependent if for a sequence (ǫ(r))r∈N with limit 0

|Cov (f(Xs1 , . . . , Xsu) , g (Xt1 , . . . , Xtv)| ≤ ψ(u, v,Lip f,Lip g)ǫ(r),
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where indices s1, . . . , su, t1, . . . , tv ∈ Z
d are such that ‖sk − tl‖ ≥ r for 1 ≤ k ≤ u and

1 ≤ l ≤ v. Moreover, the real valued functions f, g defined on
(
R

k
)u

and
(
R

k
)v

, satisfy
‖f‖∞, ‖g‖∞ ≤ 1 and Lip f,Lip g <∞ where a norm ‖ · ‖ is given on R

k and,

Lip f = sup
(x1,...,xu) 6=(y1,...,yu)

|f(x1, . . . , xu) − f(y1, . . . , yu)|
‖x1 − y1‖ + · · · + ‖xu − yu‖

.

If ψ(u, v, a, b) = au + vb, this is denoted as η−dependence and the sequence ǫ(r) will be
written η(r).
If ψ(u, v, a, b) = abuv, this is denoted as κ−dependence and the sequence ǫ(r) will be
written κ(r).
If ψ(u, v, a, b) = au + vb + abuv, this is denoted as λ−dependence and the sequence ǫ(r)
will be written λ(r).

2.2 Random fields with infinite interactions

Let ξ = (ξt)t∈Zd be a stationary random field with values in E′ (usually E′ = R
k′

for
some k′ ≥ 1 but in some cases E′ is a denumerable tensor product of such sets). We shall
consider stationary E = R

k valued random fields driven by the implicit equation (1). For
a topological space S, B(S) denote the Borel σ-algebra on S.
We denote I = Z

d \ {0}. In the sequel, F :
(
E(I) × E′,B(EI) ⊗ B(E′)

)
→
(
E,B(E)

)

denotes a measurable function defined for each sequence with a finite number of non-
vanishing arguments (1). In this paper ‖ · ‖ will be arbitrary norms on E (or E′ when
needed). We will always use the suppremum norm on Z

d and this norm will be also
denoted by ‖ · ‖. We prove that simple assumptions entail existence of a unique solution
as a Bernoulli shift

Xt = H
(
(ξt−j)j∈Zd

)

Let µ denote ξ’s distribution; this is a probability measure on the measurable space(
E′Zd

,B
(
E′Zd)

. For some m ≥ 1, we denote ‖ · ‖m the usual norm of L
m and the space of

µ-measurable H :
(
E′Zd

,B
(
E′Zd))→ (E,B(E)) with finite moments is denoted

L
m(µ) = {H

/
E‖H(ξ)‖m <∞}.

We shall use the assumptions:

(H1) ‖F (0; ξ0)‖m <∞.

(H2) There exist constants aj ≥ 0, for j ∈ α > 0 with, for each ∀z, z′ ∈ E(Zd\{0}),

‖F (z; ξ0) − F (z′; ξ0)‖ ≤
∑

j∈Zd\{0}
aj‖zj − z′j‖, a.s. (2)

∑

j∈Zd\{0}
aj = e−α < 1.

1If V denotes a vector space and B an arbitrary set then V (B)
⊂ V B denotes the set of v = (vb)b∈B

such that there is some finite subset B1 ⊂ B with vb = 0 for each b /∈ B1.
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We now extend the function F to the trajectories of a stationary random field:

Lemma 1 Assume (H1) and (H2). Let X and X ′ be two E−valued stationnary random
fields in L

m, then:

1) lim
p→∞

F
(
(Xj10<‖j‖≤p)j 6=0; ξ0

)
exists in L

m and a.s., we denote it F
(
(Xj)j∈Zd\{0}; ξ0

)
.

2)
∥∥∥F
(
(Xj)j∈Zd\{0}; ξ0

)
− F

(
(X ′

j)j∈Zd\{0}; ξ0
)∥∥∥

m
≤

∑

j∈Zd\{0}
aj

∥∥Xj −X ′
j

∥∥
m
.

Theorem 1 Assume that ξ is stationary and (H1) and (H2) hold. Then there exists a
unique stationary solution of equation (1). This solution writes Xt = H

(
(ξt−j)j∈Zd

)
for

some H ∈ L
m(µ).

Lemma 8 below, will also provide us with an approximation of this solution with finitely
many interactions.

2.2.1 Weak dependence of the solution (iid inputs)

In the general case we shall restrict to independent inputs to derive η−weak dependence
of the previous solution.

Theorem 2 Assume that ξ is iid and (H1) and (H2) hold. Then the stationary solution
of equation (1) obtained in theorem 1 is η−weakly dependent and there exists a constant
C > 0 with

η(r) ≤ C · inf
p∈N∗

{
e
−α r

2p +
∑

‖i‖>p

ai

}
. (3)

If ai = 0 for ‖i‖ > p then

η(r) ≤ C · e−α r
2p .

Explicit (sub-geometric) rates are now derived from more specific decay rates of the coef-
ficients:

Lemma 2 (Geometric decays) If ai ≤ Ce−β‖i‖ there exists a constant C ′ > 0 with

η(r) ≤ C ′r
d−1
2 e−

√
αβr/2.

Lemma 3 (Riemanian decays) If ai ≤ C‖i‖−β for some β > d then there exists C ′ > 0
such that

η(r) ≤ C ′
( r

ln r

)d−β
.

Thus a large range of decay rates may be considered for such models of random fields.
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2.2.2 Weak dependence of the solution (dependent inputs)

If ξ is either η or λ−dependent it may be proved in specific examples that weak dependence
is hereditary. Here follows a general result. The following assumption will be necessary:

(H2’) There exist a subset Ξ ⊂ E′ with P (ξ0 ∈ Ξ) = 1, nonnegative constants with∑

j∈Zd\{0}
aj = e−α < 1 and a constant b > 0 such that

‖F (x;u) − F (x′;u′)‖ ≤
∑

j∈Zd\{0}
aj‖xj − x′j‖ + b

∥∥u− u′
∥∥ ,

for all x, x′ ∈ E(Zd\{0}) and u, u′ ∈ Ξ.

We quote that assumption (H2’) is more restrictive than (H2)

Proposition 1 Assume (H1) and (H2’).

1) If the random field ξ is η−weakly dependent, with weak dependence coefficients ηξ(r),
then X is η−weakly dependent with

η(r) ≤ C inf
p∈N∗

{ ∑

‖j‖>p

aj + inf
n∈N∗

{
an + pnηξ ((r − 2pn) ∨ 0)

}}

where C > 0 is a constant.

2) If the random field ξ is λ−weakly dependent, with dependence coefficients denoted λξ(r),
then X is λ−weakly dependent with

λ(r) ≤ C inf
p∈N∗




∑

‖j‖>p

aj + inf
n∈N∗

{
an + p2nλξ ((r − 2pn) ∨ 0)

}




for some constant C > 0.

Remark. For models with finite interactions, i.e. F (x;u) = f(xj1 , . . . , xjk
;u) for x =

(xj)j 6=0, this simply writes

η(r) ≤ c inf
n∈N∗

{an + knηξ ((r − 2ρn) ∨ 0)} ,

λ(r) ≤ c inf
n∈N∗

{
an + k2nλξ ((r − 2ρn) ∨ 0)

}
,

here ρ = max{‖j1‖, . . . , ‖jk‖}. If ηξ(r) or λξ(r) have geometric or Riemannian decay the
same holds for the output random field. More precisely set a = e−α and k = eκ under
η-dependence and k2 = eκ under λ-dependence, then decay rates of the outputs (Xt) write

Geometric decays: e
− αβ

α+2ρβ+κ
r
, for dependence decays of the inputs with order e−βr,

Riemannian decays: r−
αb

α+κ , for dependence decays of the inputs with order r−b.

5
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2.3 Causality

For d = 1, the recurrence equation Xt = ξt(a+ bXt−1) is given with F (x;u) = u(a+ bx1).
There exist a stationary solution with ξt andXt−1 independent. Here (H2) implies that in-
novations are bounded, which seems unrealistic. In this example, instead of H ((ξt)t∈Z)) ∈
L

m(µ), this is enough to exhibit solutions H ((ξt)t≥0) ∈ L
m(µ) (which is independent of

(ξs)s<0). This allows to replace suprema by integrals in (H2) in order to derive a contrac-
tion principle. Causality of random fields has been considered in Helson and Lowdenslager
(1959) [12]; we adapt this idea in order to relax the previous assumption.

Definition 2 (causality) If A ⊂ Z
d\{0}, we denote c(A) the convex cone of R

d generated
by A,

c(A) =

{
k∑

i=1

riji

/
(j1, . . . , jk) ∈ Ak, (r1, . . . , rk) ∈ R

k
+, k ≥ 1

}
.

1) The set A is a causal subset of Z
d if c(A) ∩

(
− c(A)

)
= {0}.

2) If F is measurable with respect to the σ-algebra FA ⊗B(E′) for some causal set A, then
the equation Xt = F ((Xt−j)j∈I ; ξt) is A-causal.

For a causal set A ⊂ Z
d, we denote by Ã the subset c(A) ∩ Z

d.

Examples. A singleton is causal, as well as {i, j} if and only if −j /∈ i · R
+. The half

plane {(i, j) ∈ Z
2/i > 0}

⋃
{(0, j); j > 0} ⊂ Z

2 is also causal.

One consequence of this notion is the elementary lemma:

Lemma 4 If A is a causal subset of Z
d, then ∀(j, j′) ∈ A× Ã we have j + j′ 6= 0.

For a linear basis b = (b1, . . . , bd) of R
d, (x1, . . . , xd) 7→ x1b1 + · · · + xdbd, defines an

isomorphism f : R
d → R

d. We denote by ≤b the total order relation on R
d defined by:

u ≤b v ⇔ f−1(u) ≤lex f
−1(v)

with ≤lex the lexicographic order on R
d.

Proposition 2 (characterization of causal sets) If B is a convex cone of R
d such

that B ∩ (−B) = {0} there exists a basis b of R
d such that B ⊂ {j ∈ R

d/0 ≤b j}.
Moreover if b is a basis of R

d, {j ∈ Z
d/0 <b j} is a causal set of Z

d witch will be called
maximal causal subset.

Remarks.

• The maximal causal subsets of Z are {1, 2, 3, . . .} and {−1,−2, . . .}. An example of
maximal causal subset of Z

2 is {(i, j) ∈ Z
2/i > 0 or (i = 0, j > 0)}.

• Helson and Lowdenslager (1959) [12] define symmetric half planes as subsets S ⊂ Z
2

such that S is stable by addition and S ∪ (−S) = Z
2, S ∩ (−S) = {0}. A nice

review of this causality condition is given in Loubaton (1989) [13], applications are
essentially given in terms of linear random fields.

Note that S \ {0} is a maximal causal subset of Z
2. This notion plays a prominent

part in prediction theory of 2-D stationary process (see [13]).
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If D ⊂ Z
d, we denote by πs (respectively π′s) the coordinate applications in EZd

(resp.

in (E′)Z
d
), FD = σ(πs; s ∈ D) and F′

D = σ(π′s; s ∈ D). Hence we denote by L
m
D(µ) the

subspace of L
m(µ) of functions µ-measurable with respect to F′

D. The following result
takes this definition into account to relax the assumptions in theorem 1,

Theorem 3 Let Xt = F
(
(Xt−j)j∈Zd\{0}; ξt

)
be a A-causal equation with iid inputs ξ.

Besides the assumption (H1) we assume the following condition:
(H3) there exist nonnegative constants with

∑
j∈A aj = e−α < 1 and

‖F (x; ξ0) − F (x′; ξ0)‖m ≤
∑

j∈A

aj‖xj − x′j‖, ∀x, x′ ∈ E(Zd\{0}).

Then there exists a unique strictly stationary solution X of this equation in L
m if for each

t ∈ Z
d, Xt is measurable wrt σ

(
ξt−j/j ∈ Ã

)
.

This solution writes Xt = H
(
(ξt−j)j∈Zd

)
where H ∈ L

m
eA
. and it is η−weakly dependent;

moreover relation (3) still holds for a constant C > 0.

Now the function F is extended as follows:

Lemma 5 Suppose (H1) and (H3). If ξ0 is independent of σ
(
(Xj , X

′
j)/j ∈ A

)
for two

random fields X and X ′ in L
m then,

1) limp→∞ F
(
(Xj10<‖j‖≤p)j 6=0; ξ0

)
exists in L

m and it is denoted F
(
(Xj)j 6=0; ξ0

)
.

2)
∥∥F
(
(Xj)j 6=0; ξ0

)
− F

(
(X ′

j)j 6=0; ξ0
)∥∥

m
≤
∑

j∈A

aj

∥∥Xj −X ′
j

∥∥
m

.

2.4 Simulation of the model

Simulations of those models are deduced from the proof of the existence theorems based

on the Picard fixed point theorem. Consider the shift operators θj :
(
E′)Zd

→
(
E′)Zd

defined as (xk)k∈Zd 7→ (xk+j)k∈Zd . For H ∈ L
m(µ) we note

Φp(H) = F
((

(H ◦ θj)1‖j‖≤p

)
j
;π0

)

It is shown in theorem 1’s proof that the application Φ : L
m(µ) → L

m(µ) given by

Φ(H) = F ((H ◦ θj)j 6=0;π0).

is well defined and has a fixed point in L
m(µ).

The proof of theorem 3 shows that it is also the case for a A−causal equation if we replace
L

m(µ) by L
m
eA
(µ).

For n, p ∈ N
∗, t ∈ Z

d we denote Xn
t = Φ(n)(0)

(
(ξt−j)j∈Zd

)
and Xn

p,t = Φ
(n)
p (0)

(
(ξt−j)j∈Zd

)
.

Lemma 6 We assume that conditions in theorem 1 or in theorem 3 hold for some m ≥ 1.
Let n ∈ N then:

1. For every t ∈ Z
d, ‖Xt −Xn

t ‖m ≤ an‖X0‖m, hence limn→∞Xn
t = Xt a.s.

7
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2. if p ∈ N we have,
∥∥Xt −Xn

p,t

∥∥
m

≤ ‖X0‖m

{
an + 1

1−a

∑
‖j‖>p aj

}
. Thus if p = pn is

chosen such that
∑

n≥1

( ∑

‖j‖>pn

aj

)m
<∞ then

lim
n→∞

Xn
pn,t = Xt, a.s. (4)

Remarks.

• If the random field has finitely many interactions, then 1. provides a simulation
scheme.

• For each finite p the operator Φp can be calculated thus relation (4) provides an
explicit simulation scheme even for infinitely many interactions.

• A.s. convergence rates may also be evaluated in the previous lemma. They write
oa.s. (a

nnǫ) in the first point for each ǫ > 1/m and oa.s. (n
−ǫ) for 0 < ǫ < α− 1/m if∑

‖j‖>pn
aj ≤ Cn−α for some C > 0, α > 1/m in the point 2.

• If T ⊂ Z
d is a finite set the random field X may be analogously simulated over T

and (Xt)t∈T is estimated by
(
Xn

pn,t

)
t∈T

.

2.4.1 Simulation scheme for finitely many interactions

Let F (x;u) = f(xj1 , . . . , xjk
;u). The sequence of random fields Xn is defined from:

X1
t = f(0; ξt), t ∈ Z

d, Xn+1
t = f

(
Xn

t−j1 , . . . , X
n
t−jk

; ξt
)
, for n ≥ 0

We now simulate samples (X10
t )1≤t1,t2≤15 of LARCH models with d = 2, k = k′ = 1 and

p = 10:

Xt = ξt

(
1 +

∑

0<‖j‖≤p

ajXt−j

)

0

5

10

15

0

5

10

15
−2

−1

0

1

2

Figure 1: Non causal LARCH field

0

5

10

15

0

5

10

15
−4

−2

0

2

4

Figure 2: Causal LARCH field
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1) In the figure 1, we represent the non causal case with aj =
0.05

j2
1

+ j2
2

and ξ0 is uniform on [−1, 1].

2) Figure 2 deals with the causal case with aj =
0.05

j2
1

+ j2
2

if 0 ≤ j1, j2 ≤ 10 and aj = 0 otherwise.

In this case, ξ0 is N(0, 1)-distributed.

3 Examples

Theorems 2 and 3 are now applied to examples of random fields with infinite interactions.
Causality will allow to weaken moment conditions. In fact, theorem 2 proves a contraction
principle in L

m for each value of m while theorem 3 only works with one fixed value of m.

3.1 Finite interactions random fields

If ξt = (ζt, γt) with ζt ∈ R
p and γt a p× q matrix, and functions f(·) ∈ R

p and g(·) ∈ R
q

Xt = f(Xt−ℓ1 , . . . , Xt−ℓk
) + γtg(Xt−ℓ1 , . . . , Xt−ℓk

) + ζt (5)

with ℓ1, . . . , ℓk 6= 0.
E.g. non linear auto-regression corresponds to γt ≡ 0 and ARCH type models are obtained
with ζt = 0 (classically p = q = 1, f is linear and g2(x1, . . . , xk) is an affine function of
x2

1, . . . , x
2
k).

Theorems 1, 2, 3 imply the following lemma,

Corollary 1 Suppose ‖ζ0‖m <∞ and

{
‖f(x1, . . . , xk) − f(y1, . . . , yk)‖ ≤ ∑k

i=1 bi‖xi − yi‖,
‖g(x1, . . . , xk) − g(y1, . . . , yk)‖ ≤ ∑k

j=1 cj‖xj − yj‖
.

1. If ξ is iid and
k∑

i=1

(
bi + ‖γ0‖∞ci

)
= e−α < 1, then η(r) ≤ C

(
e−

α
2k

)r
for the model

(5).

If the equation (5) is causal and
k∑

i=1

(
bi + ‖γ0‖mci

)
= e−α < 1 the same relation

holds.

2. If now ξ is η or λ-weakly dependent, g bounded and
k∑

i=1

(
bi + ‖γ0‖∞ci

)
= e−α < 1,

then X is η or λ-weakly dependent. Decay rates are given according to proposition
1.

The remark following proposition 1 states precise decay rates under standard decay rates
(i.e. Riemannian or geometric decays) of the weak dependence coefficients of the input
process.
The volatility coefficients γt need to be bounded in the general case and they only have
finite moments under causality.
Note that functions f and g may only depend on a strict subset of the indices 1, . . . , k.

9
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3.2 Linear fields

Let X be a solution of the equation

Xt =
∑

j∈A

αj
tXt−j + ζt, (6)

innovations ζt are vectors of E = R
k and coefficients αj

t are k × k matrices, ‖ · ‖ is a
norm of algebra on this set of matrices and X will be an E valued random field. Let

A ⊂ Z
d \ {0}, we assume that the iid random field ξ =

(
(αj

t )i∈A, ζt

)

t∈Zd
takes now its

values in (Mk×k)
A × E; here Mk×k denotes the set of k × k matrices.

Proposition 3 If b =
∑

j∈A ‖αj
0‖∞ < 1, then theorem 2 applies with aj = ‖αj

0‖∞.

For a causal equation if b =
∑

j∈A ‖αj
0‖m < 1 theorem 3 applies with aj = ‖αj

0‖m.
In both cases the solution of equation (6) writes a.s. and in L

m,

Xt = ζt +
∑

j∈A

αj
tξt−j +

∞∑

i=2

∑

j1,...,ji∈A

αj1
t α

j2
t−j1

· · ·αji

t−j1−···−ji−1
ζt−(j1+···+ji).

This means that the random coefficients are bounded in the general case and they need
only to have have finite moments under causality.

Examples. If the sequence (αj
t )t is deterministic then those models extend on linear

auto-regressive models.
If only a finite number of coefficients αj

t do not vanish we obtain auto-regressive models
with random coefficients, see [15].

3.3 LARCH(∞) random fields

Stationary innovations ξt are now k × k′ matrices and ‖ · ‖ will denote a norm k × k′ or
k′ × k matrices while Xt ∈ R

k. For bounded innovations we first recall

Theorem 4 (Doukhan, Teyssière, Winant (2006)) Let αj be a k′×k matrix for j ∈
Z

d \ {0}, note A(x) =
∑

‖j‖≥x ‖αj‖ and suppose that λ = A(1)‖ξ0‖∞ < 1, then

Xt = ξt


a+

∞∑

k=1

∑

j1,...,jk 6=0

αj1ξt−j1 · · ·αjk
ξt−j1−···−jk

a


 (7)

is a solution of the equation

Xt = ξt


a+

∑

j 6=0

αjXt−j


 , t ∈ Z

d (8)

if moreover ξ is iid, then

η(r) ≤ E‖ξ0‖


E‖ξ0‖

∑

k<r/2

λk−1A
( r
k

)
+
λ[r/2]

1 − λ


 ‖a‖.
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If we use theorem 2 we also obtain that eqn. (8) admits a unique Bernoulli shift L
m

solution. Note that this solution is bounded. Notice that for Riemannian decay the
previous A(u) ≤ Cu−c relation yields η(r) = O(r−c) while theorem 3 only provides us this
bound up to a log-loss; geometric decays yield the same result for both cases.

Bounded innovations ξt look unnatural hence we investigate below the causal case. Let
A a causal subset of Z

d and

Xt = ξt

(
a+

∑

s∈A

asXt−s

)
(9)

Proposition 4 If b‖ξ0‖m < 1 with b =
∑

s∈A ‖as‖, theorem 3 applies with aj = ‖ξ0‖m‖αj‖
to the solution (7) of eqn. (9) (we set αj = 0 for j /∈ A).

3.4 Non linear ARCH(∞) random fields

Models with
Xt = ξt

(
a+

∑

j 6=0

gj(Xt−j)
)

clearly extend on LARCH(∞) models; bounded functions gj provide robust models.

Corollary 2 If ‖gj(x) − gj(y)‖ ≤ αj‖x − y‖ and ‖ξ0‖∞
∑

j 6=0 αj < 1, theorem 2 holds
with ai = ‖ξ0‖∞αi (innovations are bounded here).
Assume now that gi ≡ 0 for i /∈ A, causal set then theorem 3 holds with ai = ‖ξ0‖mαi

(and now the innovations do not need anymore to be bounded).

This causality argument improves on [7] by only assuming finite moments for innovations
instead of boundedness.

3.5 Mean field type model

Consider innovations in R
k′

and k × k matrices αi,

Xt = f
(
ξt,
∑

s 6=t

αs−tXs

)
(10)

Corollary 3 Assume that f : R
k′ × R

k → R
k satisfies

sup
u∈Rk′

‖f(u, x) − f(u, y)‖ ≤ b‖x− y‖, ∀x, y ∈ R
k, b

∑

i6=0

‖αi‖ < 1.

then equation (10) admits a unique solution in L
m written as a Bernoulli shift and this

solution is η−weakly dependent with ai = b‖αi‖1.
The same results hold if now ai = 0 for i /∈ A with A is causal in Z

d and,

∥∥f
(
ξ0, x)

)
− f

(
ξ0, y

)∥∥
m

≤ b‖x− y‖, ∀x, y ∈ R
k, b

∑

i6=0

‖αi‖ < 1.

LARCH(∞) model is still special cases of this one.

11

ha
l-0

01
41

71
3,

 v
er

si
on

 1
 - 

3 
M

ay
 2

00
7



4 Proofs

We begin with the proof of some lemmas which relate the assumptions to contraction
conditions in the space of Bernoulli shifts. Then we give separated proofs for existence
and weak dependence properties. Those proofs always follow two steps since we first
consider models with a finite range. For shortness we write here I = Z

d \ {0}.

4.1 Proof of lemma 1

For p ∈ N
∗, we set Yp = F

(
(Xj10<‖t‖≤p)j , ξ0

)
and Y ′

p = F
(
(X ′

j10<‖t‖≤p)j , ξ0
)
.

1. If q ∈ N
∗ from assumption (H2),

‖Yp − Yp+q‖ ≤
∑

p<‖j‖≤p+q

aj ‖Xj‖ , a.s.

Since the serie
∑

i∈I aj ‖Xj‖m is convergent the serie
∑

i∈I aj ‖Xj‖ converges a.s.
Hence, we deduce that a.s (Yp)p∈N∗ is a Cauchy sequence in E and then converges.
We denote by Y = F

(
(Xj)j 6=0; ξ0

)
this limit.

Moreover, for p ∈ N
∗, we have:

‖Yp − F (0; ξ0)‖m ≤
∑

0<‖j‖≤p

aj ‖Xj‖m

This proves that Yp ∈ L
m. Hence the convergence in L

m is a simply consequence of
the Fatou lemma since:

‖Y − Yp‖m ≤ lim inf
q→∞

‖Yq − Yp‖m

≤ lim inf
q→∞

∑

p<‖j‖≤q

aj ‖X0‖m

=
∑

‖j‖>p

aj ‖X0‖m

2. If p ∈ N
∗, we have using (H2):

∥∥Yp − Y ′
p

∥∥
m

≤
∑

j 6=0

aj

∥∥Xj −X ′
j

∥∥
m

Hence the result follows with p→ ∞. �

4.2 Proof of the existence theorem 1

Assuming (H1) and (H2) we set a =
∑

j 6=0 aj . We adopt the notations of paragraph 2.4.
For H ∈ L

m(µ) we note

Φp(H) = F
((

(H ◦ θj)1‖j‖≤p

)
j
;π0

)

12
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A direct consequence of lemma 1 is that limp→∞ Φp(H) exists in L
m(µ). Denote this limit

by F ((H ◦ θj)j 6=0;π0), the application Φ : L
m(µ) → L

m(µ) is defined as

Φ(H) = F ((H ◦ θj)j 6=0;π0) .

Let show that Φ is a contraction of L
m(µ).If H, H ′ ∈ L

m(µ), then applying the lemma 1
to the random fields X and X ′ defined as Xj = H ◦ θj(ξ) and X ′

j = H ′ ◦ θj(ξ), we obtain:

‖Φ(H)(ξ) − Φ(H ′)(ξ)‖m ≤
∑

j 6=0

aj‖H ◦ θj(ξ) −H ′ ◦ θj(ξ)‖m

≤
∑

j 6=0

aj‖H(ξ) −H ′(ξ)‖m

Picard fixed point theorem applies since the space L
m(µ) is complete. There exists a

unique H ∈ L
m(µ) with Φ(H) = H thus H(ξ) = F

(
(H ◦ θj(ξ))j∈Zd ; ξ0

)
, a.s. Set Xt =

H ((ξt−i)i∈Zd) then with stationarity of ξ and since Z
d is denumerable we get

Xt = F
(
(Xt−j)j∈Zd\{0}; ξt

)
, ∀t ∈ Z

d a.s.

Let Y be a stationary solution of this equation, we denote ut = ‖Xt−Yt‖1 for each t ∈ Z
d.

We obtain
ut ≤

∑

j 6=0

ajut−j

As supt ut ≤ ‖X0‖1 + ‖Y0‖1 < ∞ we note that the previous relation implies supt ut ≤
a supt ut. Hence ut = 0 for each t. Thus Xt = Yt a.s for each t. �

4.3 Proof of theorem 2

For an independent copy (ξ′t)t∈Zd of ξ = (ξt)t∈Zd and s ∈ R
+, we set ξ(s) = (ξ

(s)
t )t∈Zd with

ξ
(s)
t = ξt if ‖t‖ < s and ξ

(s)
s = ξ′s else. For a Bernoulli shift defined by H a straightforward

extension of a result in [6] to random fields implies

η(r) ≤ 2δr/2, where δr =
∥∥∥H (ξ) −H

(
ξ(r)
)∥∥∥

1
(11)

4.3.1 Weak dependence under finite interactions

We first assume that F depends finitely many variables

Xt = F (Xt−j1 , . . . , Xt−jk
; ξ0)

Lipschitz coefficients of F in condition (H2) write a1, . . . , ak and we set a =
∑k

i=1 ai < 1.
Let H be the element of L

m(µ) with Xt = H ((ξt−i)i∈Zd) and δr = E
∥∥H(ξ) −H(ξ(r))

∥∥ =

E

∥∥∥X0 −X
(r)
0

∥∥∥ with X
(r)
t = H((ξ

(r)
t−i)i∈ Zd).

Lemma 7 Assume that (H1) and (H2) hold, then δr ≤ 2‖X0‖1a
r
ρ hence δr →r→∞ 0.
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Proof of lemma 7. Set ρ = max{‖j1‖, . . . , ‖jk‖} and r > 0. Since ξ and ξ(r) admit the
same distribution, we have for each t:

Xt = F (Xt−j1 , . . . , Xt−jk
; ξt)

X
(r)
t = F (X

(r)
t−j1

, . . . , X
(r)
t−jk

; ξ
(r)
t )

If ‖t‖ < r then ξ
(r)
t = ξt and using (H2), we have :

‖Xt −X
(r)
t ‖1 ≤

k∑

l=1

al

∥∥∥Xt−jl
−X

(r)
t−jl

∥∥∥
1

(12)

Set now i = −[− r
ρ ] if r ≥ ρ, then if u ≤ i− 1 and l1, . . . , lu ∈ {1, . . . , k}: ‖jl1 + jl2 + · · · +

jlu‖ < r. We use inequality (12) to derive recursively the bounds

∥∥∥X0 −X
(r)
0

∥∥∥
1

≤
k∑

l1=1

al1

∥∥∥X−jl1
−X

(r)
−jl1

∥∥∥
1

≤ · · ·

≤
k∑

l1=1

al1

k∑

l2=1

al2 · · ·
k∑

li=1

ali

∥∥∥X−(jl1
+jl2

+···+jli
) −X

(r)
−(jl1

+jl2
+···+jli

)

∥∥∥
1

≤ 2‖X0‖1a
i

From i ≥ r/ρ we get ‖X0 −X
(r)
0 ‖1 ≤ 2‖X0‖1 a

r
ρ thus δr ≤ 2‖X0‖1a

r
ρ .

If now r < ρ,
∥∥∥X0 −X

(r)
0

∥∥∥
1
≤

k∑

l1=1

al1

∥∥∥X−jl1
−X

(r)
−jl1

∥∥∥
1

Thus δr ≤ 2‖X0‖1a
i ≤ 2‖X0‖1 a

r
ρ . The result follows with a < 1. �

We now set a useful result. (Xt)t∈Zd and (Xp,t)t∈Zd will denote for p ≥ 0 the previous

unique solution of the equations (1) and Zt = F
(
(Zt−j1{0<‖j‖≤p})j∈Zd\{0}; ξt

)
.

Lemma 8 Assume that the conditions in theorem 1 hold. Then Xp,t →s→∞ Xt in L
m,

for each t ∈ Z
d.

Proof.

‖Xp,0 −X0‖m ≤
∑

0<‖j‖≤p

aj‖Xp,−j −X−j‖ +
∑

‖j‖>p

aj‖X−j‖m

≤ a‖Xp,0 −X0‖m + ‖X0‖m

∑

‖j‖>p

aj

thus ‖Xp,0 − X0‖m ≤ (1 − a)−1‖X0‖m
∑

‖j‖>p aj which entails the first result. We also
quote that supp ‖Xp,0‖m <∞. �
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4.3.2 Weak dependence

Lemma 9 Assume that the conditions in theorem 1 hold. Then the random field (Xt)t∈Zd

is η-weakly dependent.

Proof. Recall that supp ‖Xp,0‖m <∞; if m ≥ 1, weak dependence follows from

E‖X(r)
0 −X0‖ ≤ E‖X(r)

0 −X
(r)
p,0‖ + E‖X(r)

p,0 −Xp,0‖ + E‖Xp,0 −X0‖
= 2E‖Xp,0 −X0‖ + E‖X(r)

p,0 −Xp,0‖
For r ≥ p, from lemma 7 we derive

E‖X(r)
p,0 −Xp,0‖ ≤ 2‖Xp,0‖1

( ∑

‖j‖≤p

aj

) r
p

Hence

δr = E‖X(r)
0 −X0‖

≤ 2 · ‖X0‖1

1 − a

∑

‖j‖>p

aj + 2‖Xp,0‖1

( ∑

‖j‖≤p

aj

) r
p

≤ 2 · ‖X0‖1

1 − a

∑

‖j‖>p

aj + 2‖Xp,0‖1 a
r
p

Using the fact that supp ‖Xp,0‖1 <∞ there exists a constant C > 0 with

δr ≤ C · inf
p

{ ∑

‖j‖>p

aj + a
r
p

}

For any ε > 0 we choose p0 > 0 such that
∑

‖j‖>p0
aj ≤ ε/(2C) and r0 such that r ≥ r0

implies a
r
p ≤ ε/(2C). Thus δr ≤ ε if r ≥ r0 and δr →r→∞ 0. Using (11) we prove that

(Xt)t is η-weakly dependent and η(r) ≤ δr/2. �

4.3.3 Decay rates

Using the representation of the solution as a Bernoulli shift and the inequality (11) this
will be enough to bound the expression of δr. Set bp = #{i ∈ Z

d/ ‖i‖ ≤ p} and sp = #{i ∈
Z

d/ ‖i‖ = p} for ‖i‖ = max{|i1|, . . . , |id|} we obtain bp = (2p + 1)d and sp = bp − bp−1 ≤
Kpd−1 for a constant K > 0.

Proof of lemma 2.
∑

‖j‖>p

aj =
∑

q>p

∑

‖j‖=q

e−βq ≤ Kpd−1
∑

q>p

e−βq ≤ K
∑

q≥p+1

qd−1e−βq.

The function x 7→ xd−1e−βx decreases on (p,+∞) for large enough p, thus

∑

q≥p+1

qd−1e−βq ≤
∫ +∞

p
xd−1e−βxdx

=
pd−1e−βp

β
+ (d− 1)

∫ +∞

p
xd−2e−βxdx

= O
(
pd−1e−βp

)
.
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We thus find a constant C1 such that

δr ≤ C1 inf
p

{
pd−1e−βp + e

−α r
p
}

= C1 inf
p

{
e−βp+(d−1) ln p + e

−α r
p
}
.

Assume βp − (d − 1) ln p ∼ αr/p (r → ∞) which implies βp2 ∼ αr, then p ∼
√
αr/β.

Thus, there is a constant C2 such that:

δr ≤ C2r
d−1
2 e−

√
αβr. �

Proof of lemma 3. As before,

∑

‖j‖>p

aj ≤ K
∑

q>p

qd−β−1 ≤ K

∫ +∞

p
xd−β−1dx = K

pd−β

β − d
.

Hence δr ≤ c · inf
p

{
e−αr/p +

pd−β

β − d

}
. Choosing (β− d) ln p ∼ αr/p thus (β− d)p ln p ∼ αr

we derive ln p ∼ ln r, thus p ∼ αr
(β−d) ln r . There exists some constant C3 with

δr ≤ C3

( r

ln r

)d−β
. �

4.4 Proof of proposition 1

4.4.1 Models with finite interactions

We assume first that there exist k ≥ 1 and j1, . . . , jk ∈ I such F (x;u) only depends on
xj1 , . . . , xjk

for each x = (xj)j 6=0 ∈ EI .
Hence writing ai instead of aji

for 1 ≤ i ≤ k, we have inequality

‖F (x;u) − F (y;u′)‖ ≤
k∑

i=1

ai‖xji
− yji

‖ + b‖u− u′‖, a =
k∑

i=1

ai < 1

Now h : Ek × E′ → Eis such that F (x;u) = h(xj1 , . . . , xjk
, u). We will denote ρ =

max{‖j1‖, . . . , ‖jk‖}.

Lemma 10 1) If the random field ξ is η−weakly dependent (the weak dependence coeffi-
cients are denoted ηξ(r)) then X is η−weakly dependent with

η(r) ≤ C inf
n∈N∗

{
an + knηξ ((r − 2ρn) ∨ 0)

}
,

where C is a positive constant.
2) If the random field ξ is λ−weakly dependent (the weak dependence coefficients are
denoted λξ(r)) then X is λ−weakly dependent with

λ(r) ≤ C inf
n∈N∗

{
an + k2nλξ ((r − 2ρn) ∨ 0)

}
,

for some constant C > 0.
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Proof of lemma 10. We will use the lemma 6 and the following useful lemma 11.

Lemma 11 1. For every x and y ∈ C(Zd) we have ‖Φ(0)(x) − Φ(0)(y)‖ ≤ b‖x0 − y0‖
and if n ≥ 2,

‖Φ(n)(0)(x) − Φ(n)(0)(y)‖

≤
n−1∑

l=1

k∑

i1,...,il=1

ai1 · · · ailb‖xji1
+···+jil

− yji1
+···+jil

‖ + b‖x0 − y0‖

2. Fix x ∈ C(Zd). Then Φ(0)(x) only depends on x0 and Φ(0) defines a b−Lipschitz
function on C. We set K1 = b and p1 = 1.
For n ≥ 2 we set An =

⋃n−1
l=1 {ji1 + · · · + jil / 1 ≤ i1, . . . , il ≤ k} ∪ {0}, pn = card An

and Kn = b1−an

1−a . Then Φ(n)(0)(x) only depends on xj for j ∈ An. Moreover Φ(n)(0)

defines a Lipschitz function on Cpn and Lip
(
Φ(n)(0)

)
≤ Kn.

Proof of lemma 11.

• The first point is easy to check. For n ≥ 2 we use induction. For n = 2

‖Φ(2)(0)(x) − Φ(2)(0)(y)‖ = ‖h (Φ(0) ◦ θ1(x), . . . ,Φ(0) ◦ θk(x), x0)

−h (Φ(0) ◦ θ1(y), . . . ,Φ(0) ◦ θk(y), y0) ‖

≤
k∑

i=1

ai‖F (0, xi) − F (0, yi)‖ + b‖x0 − y0‖

≤
k∑

i=1

aib‖xi − yi‖ + b‖x0 − y0‖

Assuming that the inequality holds for an integer n ≥ 2, we estimate φn,x,y =
‖Φ(n+1)(0)(x) − Φ(n+1)(0)(y)‖:

φn,x,y = ‖h
(
Φ(n)(0)(θj1x), . . . ,Φ

(n)(0)(θjk
x), x0

)

−h
(
Φ(n)(0)(θj1y), . . . ,Φ

(n)(0)(θjk
y), y0

)

≤
k∑

i=1

ai‖Φ(n)(0)(θji
x) − Φ(n)(0)(θji

y)‖ + b‖x0 − y0‖

≤
k∑

i=1

ai

( n−1∑

l=1

∑

1≤i1,...,il≤k

ai1 · · · ailb‖xji+ji1
+...+jil

− yji+ji1
+...+jil

‖

+ b‖xji
− yji

‖
)

+ b‖x0 − y0‖

=
n∑

l=1

∑

1≤i1,...,il≤k

ai1 · · · ailb‖xji1
+...+jil

− yji1
+...+jil

‖ + b‖x0 − y0‖

Hence inequality holds for n+ 1.
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• The case n = 1 is easy to check. For the first point we use induction. For n = 2 the
result is a consequence of:

Φ(2)(x)(0) = h (h(0, xj1), . . . , h(0, xjk
), x0)

Suppose now the result true for an integer n ≥ 2. Then the identity

Φ(n+1)(0)(x) = h
(
Φ(n)(0)(θj1x), . . . ,Φ

n(0)(θjk
x), x0

)

shows that Φ(n+1)(0)(x) only depends of coordinates (xji+j)1≤i≤k,j∈An
and x0 that

is to say coordinates (xj)j∈An+1 .
For the second point, we use inequality in 1. We have:

φn,x,y ≤
n−1∑

l=1

∑

1≤i1,...,il≤k

ai1 · · · ailb‖xji1
+...+jil

− yji1
+...+jil

‖ + b‖x0 − y0‖

≤ b
( n−1∑

l=1

al + 1
) ∑

j∈An

‖xj − yj‖

= b · 1 − an

1 − a

∑

j∈An

‖xj − yj‖

End of the proof of lemma 10. We recall the notation Xn
t = Φ(n)(0)

(
(ξt−j)j

)
for n ∈ N

∗

and t ∈ Z
d. Set f1 = f(Xs1 , . . . , Xsu), g1 = g(Xt1 , . . . , Xtv) and

f ′1 = f
(
Xn

s1
, . . . , Xn

su

)
, g′1 = g

(
Xn

t1 , . . . , X
n
tv

)

For each t ∈ Z
d, if n ∈ N \ {0, 1} then At,n = {t} − An. If ‖si − tl‖ ≥ r for 1 ≤ i ≤ u and

1 ≤ l ≤ v then d(Asi,n, Atl,n) ≥ (r − 2ρn) ∨ 0 = dr,n. Thus

|Cov(f1, g1)| ≤ |Cov(f1 − f ′1, g1)| + |Cov(f ′1, g1 − g′1)| + |Cov(f ′1, g
′
1)|

≤ 4E|f1 − f ′1| + 4E|g1 − g′1|
+ψ(upn, vpn,KnLip (f),KnLip (g))εξ(dr,n)

≤ 4Lip (f)
u∑

i=1

‖Xsi
−Xn

si
‖1 + 4Lip (g)

v∑

i=1

‖Xti −Xn
ti‖1

+ ψ(upn, vpn,KnLip (f),KnLip (g))εξ(dr,n)

≤ (4Lip (f)u+ 4Lip (g)v)an‖X0‖1

+ψ(upn, vpn,KnLip (f),KnLip (g))εξ(dr,n)

Note that this result is still true for n = 1.

1) Under η−weak dependence, ψ(u, v, a, b) = au+ bv,

|Cov(f1, g1)| ≤ (uLip f + vLip g)(4an‖X0‖1 +Knpnηξ(dr,n)

Thus |Cov(f1, g1)| ≤ (uLip f + vLip g)η(r) where

η(r) ≤ inf
n∈N∗

{4an‖X0‖1 +Knpnηξ(dr,n)}
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2) With λ−weak dependence ψ(u, v, a, b) = au+ bv + abuv,

|Cov(f1, g1)| ≤ (uLip f + vLip g + uvLip fLip g)(4an‖X0‖1 +Knpnλξ(dr,n)

Now |Cov(f1, g1)| ≤ (uLip f + vLip g + uvLip fLip g)λ(r) with

λ(r) ≤ inf
n∈N∗

{4an‖X0‖1 +Knp
2
nλξ(dr,n)}

As (Kn)n is bounded and pn ≤∑n−1
l=1 k

l = k−kn

1−k for n ≥ 2, we obtain the proposed bounds.

We now prove that limr→∞ λ(r) = 0. We suppose that the sequence (λξ(r))r nonincreasing
without loss of generality. We use the bound

λ(r) ≤ C inf
N+2ρn=r,n∈N∗

{
an + k2nλξ(N)

}

If N ∈ N, we choose nN = [log(λξ(N))/(log a− 2 log k)]. Note that limN→∞ nN = ∞ and
limN→∞

(
anN +k2nNλξ(N)

)
= 0. For r ≥ rN = N+2ρnN , we have N+r−rN +2ρnN = r,

hence:

λ(r) ≤ anN + k2nNλξ(N + r − rN ) ≤ anN + k2nNλξ(N) →N→∞ 0

Hence limr→∞ λ(r) = 0. Analogously, limr→∞ η(r) = 0. �

4.5 General case

Recall that we have denoted (Xp,t)t∈Zd for s > 0 the unique solution of the equation

Zt = F
((
Zt−j10<‖j‖≤p}

)
j 6=0

; ξt

)
. Denote f1 = f(Xs1 , . . . , Xsu), g1 = g(Xt1 , . . . , Xtv),

f ′1 = f(Xp,s1 , . . . , Xp,su) and g′1 = f(Xp,t1 , . . . , Xp,tv), then

|Cov(f1, g1)| ≤ |Cov(f1 − f ′1, g1)| + |Cov(f ′1, g1 − g′1)| + |Cov(f ′1, g
′
1)|

≤ 4 Lip f
u∑

i=1

‖Xsi
−Xp,si

‖1

+ 4 Lip g
v∑

i=1

‖Xti −Xp,ti‖1 + |Cov(f ′1, g
′
1)|

≤ 4 ‖X0 −Xs,0‖1(uLip f + vLip g) + |Cov(f ′1, g
′
1)|

Recall that from the proof of lemma 8 we have:

‖Xp,0 −X0‖1 ≤ ‖X0‖1

1 − a

∑

‖j‖>p

aj

Moreover, the field Xp,t is k−dependent with k = (2p)d.

• Suppose first that the random field ξ is η−weakly dependent. From proposition 10,

|Cov(f ′1, g
′
1)| ≤ (uLip f + vLip g)C inf

n∈N∗

{
an + pdnηξ ((r − 2pn) ∨ 0)

}
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for a suitable positive constant C.
Hence we bound |Cov(f1, g1)| by,

(uLip f + vLip g)C



∑

‖j‖>p

aj + inf
n∈N∗

{
an + pdnηξ ((r − 2ρn) ∨ 0)

}



for another positive constant denoted C. Then we obtain the proposed bound.

• Suppose that the random field ξ is λ−weakly dependent. From proposition 10,
|Cov(f ′1, g

′
1)| is bounded by

(uLip f + vLip g + uvLip fLip g) inf
n∈N∗

{
an + p2dnλξ ((r − 2pn) ∨ 0)

}

up a suitable positive constant C. Hence we bound |Cov(f1, g1)| by,

(uLip f + vLip g + uvLip fLip g)

×
( ∑

‖j‖>p

aj + inf
n∈N∗

{
an + p2dnλξ ((r − 2pn) ∨ 0)

})

up to another positive constant C. Then we obtain the proposed bound.

4.6 Results on causality

4.6.1 Proof of proposition 2

We will use here the Euclidean norm on R
d. We proceed by induction on d.

For d = 1, if there exists r1, r2 ∈ B such that r1 > 0 and r2 < 0 then B ∩ (−B) 6= {0}.
Then we can choose b1 = 1 if B ⊂ R+ or b1 = −1 if B ⊂ R−.
Suppose the result true for d− 1. We first define b1.
1) If B◦ is empty, since B is convex and contain 0 there exists b1 ∈ R

d \ {0} such that
B ⊂ H = {x ∈ R

d/x.b1 = 0}(· denotes the scalar product in R
d).

2) Now if B◦ is not empty, like B ∩ (−B) = {0} it is clear that 0 /∈ B◦. Moreover B◦ is
still convex and by application of the Hahn-Banach theorem ([2], theorem 3.3, page 108),
there exists b1 ∈ Rd \ {0} such that B◦ ⊂ {x ∈ R

d/x.b1 ≥ 0}. Like for a convex B◦ = B,
then the same inclusion holds for B. We set here H = {x ∈ R

d/x.b1 = 0}.
We consider now the convex cone C = B∩H. If g denote an isomorphism between H and
R

d−1, then g(C) is a convex cone of R
d−1 such that g(C) ∩

(
− g(C)

)
= {0}. Hence there

exists a basis c = (c2, . . . , cd) such that g(C) ⊂ {x ∈ R
d−1/0 ≤c x}. For i = 2, . . . , d we

set bi = g−1(ci). Then b = (b1, . . . , bd) is a basis of R
d and if x = x1b1 + . . . + xdbd ∈ B,

we have by the preceding two points x1 ≥ 0. Suppose that x1 = 0, then x ∈ C and
g(x) ≥c 0 ⇒ (x2, . . . , xd) ≥lex 0 in R

d−1. Hence (x1, . . . , xd) ≥lex 0 in R
d, in other word

x ≥b 0.

4.6.2 Proof of lemma 5

Proof of lemma 5 Denote for p ∈ N
∗, Yp = F

(
(Xj10<‖j‖≤p)j ; ξ0

)
.

1) We first prove that for p ∈ N
∗, Yp ∈ L

m.
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Recall that here F is measurable wrt F eA
⊗B(E′). Let x ∈ EI , then using the independence

between ξ0 and σ
(
Xj , j ∈ A

)
and the condition (H3), we have:

E
(
‖Yp − F (0; ξ0)‖m /Xj = xj , j ∈ A

)
= E

∥∥F ((xj10<‖j‖≤p)j ; ξ0) − F (0; ξ0)
∥∥m

≤




∑

0<‖j‖≤p

aj ‖xj‖




m

Hence by integration:

‖Yp − F (0; ξ0)‖m ≤
∥∥∥
∑

0<‖j‖≤p

aj ‖Xj‖
∥∥∥

m
≤ ‖X0‖m

As F (0; ξ0) ∈ L
m, we obtain the result.

It is enough to prove that (Yp)p∈N∗ is a Cauchy sequence in L
m. Using the same method

as in 1), we obtain if q > 0:

‖Yp+q − Yp‖m ≤ ‖X0‖m

∑

‖j‖>p

aj

This inegality imply the result.
2) Using the same method as in 1), we have for p ∈ N

∗:
∥∥Yp − Y ′

p

∥∥
m

≤
∑

0<‖j‖≤p

aj

∥∥Yj − Y ′
j

∥∥
m

Hence the result follows with p→ ∞. �

4.7 Proof of theorem 3

4.7.1 Existence

If H ∈ L
m
eA
(µ), we denote by Y the random field defined as Yj = H ◦ θj(ξ) for j ∈ Z

d.

If j ∈ A, then H ◦ θj is measurable wrt σ(π′j+j′/j
′ ∈ Ã) ⊂ F′

eA
. Hence if p ∈ N

∗,
Φp(H) ∈ L

m
eA
(µ) and by the lemma 4, ξ0 is independant of σ(Yj/j ∈ A). By application of

the lemma 5, Φp(H) converges to an element of L
m
eA
(µ) witch is F

(
(H ◦ θj)j 6=0;π0

)
.

Lets show that the application Φ : L
m
eA
(µ) 7→ L

m
eA
(µ) defined as Φ(H) = F

(
(H ◦ θj)j 6=0;π0

)

is contraction in L
m
eA
(µ). If H,H ′ ∈ L

m
eA
(µ) then the two random fields Y and Y ′ defined

as Yj = H ◦ θj(ξ) and Y ′
j = H ′ ◦ θj(ξ) for j ∈ Z

d verify the assumptions of lemma 5.

Indeed σ(Yj , Y
′
j /j ∈ A) ⊂ σ(ξj+j′/j ∈ A, j′ ∈ Ã) and using the lemma 4 we deduce the

independence between ξ0 and σ(Yj , Y
′
j /j ∈ A). Hence, we have:

∥∥Φ(H)(ξ) − Φ(H ′)(ξ)
∥∥

m
≤

∑

j∈A

aj

∥∥H ◦ θj(ξ) −H ′ ◦ θj(ξ)
∥∥

m

=
∑

j∈A

aj

∥∥H(ξ) −H ′(ξ)
∥∥

m

witch shows the result.
The construction of Xt comes from theorem 2. The variable H(ξ) being measurable wrt

σ
(
ξj ; j ∈ Ã

)
measurability of Xt is simply deduced. Then unicity is a consequence of the

application of the fixed point theorem. �
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4.7.2 Weak dependence

Weak dependence of the solution is as in § 4.3.1 where (H2) replaces (H3’). The case of
finite range corresponds to k-Markov systems on a finite causal set. To prove lemma 7, we

use (H3’) and independence of rvs
(
Xt−j1 , . . . , Xt−jk

, X
(r)
t−j1

, . . . , X
(r)
t−jk

)
and ξt to derive

(12). In the general case we note (Xp,t)t the solution of Zt = F
(
(Zt−j1{j∈Ap})j ; ξt

)
with

Ap = {t ∈ A
/
‖t‖ ≤ p} and we conclude as in lemma 9. �

4.8 Proof of lemma 6

1) The proposed bound is a consequence of the fixed point theorem. Thus we deduce that
for each ε > 0:

∑

n≥1

P

(
‖Xt − Φ(n)(0)(ξt−j , j ∈ Z

d)‖ ≥ ε
)

≤ 1

ε

∑

n≥1

‖Xt − Φ(n)(0)(ξt−j , j ∈ Z
d)‖1

< ∞

Hence by the Borel-Cantelli lemma, we deduce limn→∞ Φ(n)(0)
(
ξt−j , j ∈ Z

d
)

= Xt a.s.
2) We use induction. For n = 1

‖Xt − Φp(0)(ξt−j , j ∈ Z
d)‖1 = ‖F ((Xt−j)j , ξt) − F (0, ξt)‖1

≤ a‖X0‖1

≤ a‖X0‖1 + ‖X0‖1

∑

‖j‖>p

aj

Suppose the result true for an integer n ≥ 1, then

‖Xt −Xn+1
p,t ‖1

=
∥∥∥F ((Xt−k)k, ξt) − F

((
Φ(n+1)

p (0)(ξt−j−k, j ∈ Z
d)1‖k‖≤p

)

k
, ξt

)∥∥∥
1

≤
∑

‖k‖≤p

ak

∥∥∥Xt−k − Φ(n)
p (0)(ξt−j−k, j ∈ Z

d)
∥∥∥

1
+ ‖X0‖1

∑

‖k‖>p

ak

≤ a
(
an‖X0‖1 +

1 − an

1 − a
‖X0‖1

∑

‖k‖>p

ak

)
+ ‖X0‖1

∑

‖k‖>p

ak

= an+1‖X0‖1 +
1 − an+1

1 − a
‖X0‖1

∑

‖k‖>p

ak
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4.9 Proofs for the section 3

4.9.1 Proof of corollary 1

Here F (x;u) = f(xℓ1 , . . . , xℓk
) + h(u)g(xℓ1 , . . . , xℓk

) + u. Condition (H1) is easy to check
and e.g. in the first case,

‖F (z; ξ0) − F (z′; ξ0)‖m ≤ ‖f (zℓ1 , . . . , zℓk
) − f

(
z′ℓ1 , . . . , z

′
ℓk

)
‖

+ ‖γt‖∞‖g (zℓ1 , . . . , zℓk
) − g

(
z′ℓ1 , . . . , z

′
ℓk

)
‖

≤
k∑

i=1

bi‖zℓi
− z′ℓi

‖ + ‖γ0‖∞
k∑

i=1

ci‖zℓi
− z′ℓi

‖. �

For dependent inputs, we remark that (z, u) 7→ F (z;u) is a Lipschitz function in order to
apply proposition 1.

4.9.2 Proof of proposition 3

Normal convergence in L
m will justify all the forthcoming manipulations of series. We

only consider the more complicated causal case. In order to prove that Xt ∈ L
m we will

prove the normal convergence of the series.

Set S = ‖ξt‖ +
+∞∑

i=1

∑

j1,...,ji∈A

‖αj1
t · · ·αji

t−j1−···−ji−1
ξt−(j1+···+ji)‖m, we notice from causality

that indices t and (t− (j1 + · · · + jℓ)) are distinct if 1 ≤ ℓ ≤ i hence the independence of
inputs implies

‖αj1
t · · ·αji

t−j1−···−ji−1
ξt−(j1+···+ji)‖m

≤
∥∥∥‖αj1

t ‖ · · · ‖αji

t−j1−···−ji−1
‖‖ξt−(j1+···+ji)‖

∥∥∥
m

= ‖αj1
t ‖m · · · ‖αji

t−j1−···−ji−1
‖m‖ξt−(j1+···+ji)‖m

S ≤ ‖ζt‖m +
∑

j∈A

∑

j1,...,ji∈A

‖αj1
t ‖m · · · ‖αji

t−j1−···−ji−1
‖m‖ζt−(j1+···+ji)‖m

= ‖ζ0‖m

(
1 +

∑

jinA

∑

j1,...,ji∈A

‖αj1
0 ‖m · · · ‖αji

0 ‖m

)

= ‖ζ0‖m

(
1 +

+∞∑

i=1

(∑

j∈A

‖aj
0‖m

)i)

= ‖ζ0‖m

(
1 +

+∞∑

i=1

bi
)

= ‖ζ0‖m

(
1 +

b

1 − b

)

< ∞.
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In order to prove that Xt is solution of the equation, we expand it:

Xt = ζt +
∑

j1∈A

αj1
t ζt−j1 +

∞∑

i=2

∑

j1,...,ji∈A

αj1
t · · ·αji

t−j1−···−ji−1
ζt−(j1+···+ji)

= ζt +
∑

j1∈A

αj1
t ζt−j1

+
∑

j1∈A

αj1
t

∞∑

i=2

∑

j2,...,ji∈A

αj2
t−j1

· · ·αji

t−j1−···−ji−1
ζt−j1−(j2+···+ji)

= ζt +
∑

j1∈A

αj1
t Xt−j1

Here F (x; (u, v)) =
∑

j∈A ujxj +v and we use notations in (H3). As ξ is iid, the variables

(Z(ξ), Z ′(ξ)) are (αj
0)j∈A are independent and

‖F (z; ζ0) − F
(
z′; ζ0

)
‖m ≤

∑

j∈A

‖αj
0‖m‖zj − z′j‖

Since b =
∑

j∈A ‖aj
0‖m < 1, (H3) holds.

In the first non-causal case the above inequalities are only changed by using the bound

‖αj1
t · · ·αji

t−j1−···−ji−1
ξt−(j1+···+ji)‖m ≤ ‖αj1

t ‖∞ · · · ‖αji

t−j1−···−ji−1
‖∞‖ξt−(j1+···+ji)‖m. �

4.9.3 Proof of proposition 4

Here (H1) holds and with the notation in (H3):

‖F (z, ξ0) − F (z′, ξ0)‖m ≤
∑

j∈Zd\{0}
‖αj‖‖ξ0‖m‖zj − z′j‖.

The proposed solution is in L
m from normal convergence of series

‖Xt‖m ≤ ‖ξt‖m

(
‖a‖ +

∞∑

k=1

∑

j1,...,jk∈A

‖αj1‖‖ξt−j1‖m · · · ‖αjk
‖‖ξt−j1−···−jk

‖m‖a‖
)

= ‖ξ0‖m‖a‖
(
1 +

∞∑

k=1

∑

j1,...,jk∈A

‖αj1‖‖ξt−j1‖m · · · ‖αjk
‖‖ξ0‖m

)

= ‖ξ0‖m‖a‖
(
1 +

∞∑

k=1

bi‖ξ0‖i
m

)

= ‖ξ0‖m‖a‖
(
1 +

b‖ξ0‖m

1 − b‖ξ0‖m

)
<∞.
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Substitutions prove that this process is a solution of the equation.

Xt = ξt

(
a+

∞∑

k=1

∑

j1,...,jk∈A

αj1ξt−j1 · · ·αjk
ξt−j1−···−jk

a
)

= ξt

(
a+

∑

j1∈A

αj1ξt−j1

(
a+

+∞∑

k=2

αj2ξt−j1−j2 . . . αjk
ξt−j1−j2−···−jk

))

= ξt

(
a+

∑

j1∈A

αj1Xt−j1

)
. �
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