inria-00000170, version 1
Asymptotic expansion of the solution of Maxwell's equations in polygonal plane domains
(2005)
Résumé : This paper is mainly concerned with the structure of the singular and regular parts of the solution of time-harmonic Maxwell's equations in polygonal plane domains. The asymptotic behaviour of the solution near corner points of the domain is studied by means of discrete Fourier transformation. A detailed functional analysis of the solution shows that the boundary value problem does not belong locally to~$H^2$ when the boundary of the domain has non-acute angles, and explicit formulas for the singularity functions and their corresponding coefficients are given.
- 1 : CALVI (INRIA Nancy - Grand Est / IECN / LSIIT / IRMA)
- CNRS : UMR7005 – INRIA – Université de Strasbourg – Université de Lorraine
- Domaine : Mathématiques/Equations aux dérivées partielles
- Mots-clés : Maxwell's equations – singularities – Fourier method
- inria-00000170, version 1
- http://hal.inria.fr/inria-00000170
- oai:hal.inria.fr:inria-00000170
- Contributeur : Simon Labrunie
- Soumis le : Mardi 19 Juillet 2005, 19:35:18
- Dernière modification le : Jeudi 25 Septembre 2008, 14:11:06