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A NEW LATTICE CONSTRUCTION: THE BOX PRODUCT

G. GRÄTZER AND F. WEHRUNG

Abstract. In a recent paper, the authors have proved that for lattices A and
B with zero, the isomorphism

Conc(A ⊗ B) ∼= Conc A ⊗ Conc B,

holds, provided that the tensor product satisfies a very natural condition (of
being capped) implying that A ⊗ B is a lattice. In general, A ⊗ B is not a
lattice; for instance, we proved that M3 ⊗ F(3) is not a lattice.

In this paper, we introduce a new lattice construction, the box product

for arbitrary lattices. The tensor product construction for complete lattices
introduced by G. N. Raney in 1960 and by R. Wille in 1985 and the tensor
product construction of A. Fraser in 1978 for semilattices bear some formal
resemblance to the new construction.

For lattices A and B, while their tensor product A ⊗ B (as semilattices) is
not always a lattice, the box product, A �B, is always a lattice. Furthermore,
the box product and some of its ideals behave like an improved tensor product.
For example, if A and B are lattices with unit, then the isomorphism

Conc(A �B) ∼= Conc A ⊗ Conc B

holds. There are analogous results for lattices A and B with zero and for a
bounded lattice A and an arbitrary lattice B.

A join-semilattice S with zero is called {0}-representable, if there exists a
lattice L with zero such that Conc L ∼= S. The above isomorphism results
yield the following consequence: The tensor product of two {0}-representable

semilattices is {0}-representable.

1. Introduction

In our paper [10], we recalled in detail the introduction of tensor products of
lattices in the seventies. The main result of this field is the isomorphism

(1.1) Conc(A ⊗ B) ∼= Conc A ⊗ Conc B

we proved in [10] for capped tensor products; this generalizes the result of G.
Grätzer, H. Lakser, and R. W. Quackenbush [6] for finite lattices. This isomorphism
does not always make sense because A ⊗ B is not a lattice, in general; in [11] and
[12], we provided examples, for instance, M3 ⊗ F(3) is not a lattice (this solved a
problem proposed in R. W. Quackenbush [13]).

In [12], we solved a problem of E. T. Schmidt and the first author: does every
lattice have a proper congruence-preserving extension. In earlier papers, such an
extension for a distributive lattice was provided by Schmidt’s M3[D] construction.
Trying to use this construction in the general case ran into the same type of problem
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2 G. GRÄTZER AND F. WEHRUNG

mentioned in the previous paragraph: for a general lattice L, the construction M3[L]
does not always yield a lattice. The problem was solved by the M3〈L〉 construction
that inherits some properties of the M3[L] construction and always produces a
lattice.

In this paper, we introduce the box product of lattices (Definition 2.1). For lat-
tices A and B, the box product, A � B, is always a lattice. If A and B are finite,
then A � B is isomorphic to the complete tensor product A ⊗̂ B considered in
R. Wille [17], see also Section 11.

We also introduce an ideal A⊠B of A�B; we shall call A⊠B the lattice tensor
product of A and B. The ideal A ⊠ B can be defined if A and B have a zero, or
if either A or B is bounded, or if A and B have unit, see Lemma 3.6. At the end
of Section 5, we point out that the lattice tensor product M3 ⊠ L and M3〈L〉 are
isomorphic, showing how the concept of lattice tensor product was inspired by the
M3〈L〉 construction.

This paper makes the first few steps in exploring the connections among A⊗B,
A�B, and A⊠B. If A or B is distributive, then A⊠B = A⊗B (Proposition 5.2).
The A⊠B construction yields a universal object for a certain kind of “bimorphism”,
see Definition 6.1 and Proposition 6.2. The lattice A ⊠ B is always a capped sub-
tensor product of A and B (in the sense of [10]), see Theorem 7.2. By using the
isomorphism result of [10] (see (1.1)), this yields the isomorphism

(1.2) Conc(A ⊠ B) ∼= Conc A ⊗ Conc B,

see Theorem 7.3. A direct limit argument extends this isomorphism to two arbitrary
lattices, one of which is bounded (Theorem 9.3). Finally, as a “dual” of (1.1), we
prove that if A and B are lattices with unit, then the isomorphism

(1.3) Conc(A � B) ∼= Conc A ⊗ Conc B

holds (Theorem 10.1).
These isomorphism statements have some interesting consequences related to the

classical Congruence Lattice Characterization Problem; we refer the reader to [7] for
a review of this field. Let us say that a join semilattice S with zero is representable
(resp., {0}-representable, {0, 1}-representable), if there exists a lattice L (resp.,
a lattice with zero, a bounded lattice) such that the join semilattice Conc L of
compact congruences of L is isomorphic to S. In this paper, we prove two related
results:

Theorem A. Let S and T be {0}-representable join semilattices. Then the tensor
product S ⊗ T is also {0}-representable.

Theorem B. Let S and T be join semilattices. If S is {0, 1}-representable and T
is representable, then the tensor product S ⊗ T is representable.

We will use the notations and terminology of [10] and [11]. For any set X , we
shall denote by P(X) the power set of X , and P∗(X) = P(X) − {∅, X}.

If L is a lattice, the statement “0L exists” means that L has a least element,
which we shall always denote by 0L; and, similarly, for 1L, the largest element of L.

L0 denotes the category of all lattices with zero and {0}-homomorphisms. Let
Ld denote the dual of the lattice L.

A non-negative integer n will be identified with the set {0, 1, . . . , n − 1}. For a
positive integer n, let P(n) denote the power set of n, partially ordered by inclusion.
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Let L be a lattice, let n > 0, and let a0,. . . , an−1 ∈ L. For a subset X of n, we
write

a(X) =
∨

( ai | i ∈ X ),

a(X) =
∧

( ai | i ∈ X ).

For b ∈ L, define a(∅) ∨ b = b, even though a(∅) is not defined unless L has a zero.
We shall sometimes denote a finite list x0,. . . , xn−1 by ~x. For example, if the

xi-s are elements of a lattice L and if P is a lattice polynomial with n variables,
then we shall write P (~x) for P (x0, . . . , xn−1).

2. The box product

In this section, we introduce the box product and establish some of its basic
properties. Throughout this section, let A and B be lattices.

Now we define box products:

Definition 2.1. For all 〈a, b〉 ∈ A × B, define

a � b = { 〈x, y〉 ∈ A × B | x ≤ a or y ≤ b }.

We define the box product of A and B, denoted by A � B, as the set of all finite
intersections of the form

H =
⋂

( ai � bi | i < n ),

where n is a positive integer, and 〈ai, bi〉 ∈ A × B, for all i < n.

A � B is a poset under set containment.

Remark 2.2. It is easy to see that A � B has a unit element, 1A�B, if and only if
either A or B does. For example, if A has a unit, 1A, then 1A�B = 1A � b, for all
b ∈ B.

It is obvious that A�B is a meet-subsemilattice of the powerset lattice of A×B.
We shall show in Proposition 2.9 that A � B is a lattice. First, we need another
definition:

Definition 2.3. For 〈a, b〉 ∈ A × B, define

a ◦ b = { 〈x, y〉 ∈ A × B | x ≤ a and y ≤ b }.

We define A ⊡ B to be the set of all finite unions of the form

(2.1) H =
⋃

( ai � bi | i < m ) ∪
⋃

( cj ◦ dj | j < n ),

where m > 0 and n ≥ 0 are integers, ai, cj ∈ A, and bi, dj ∈ B.

The proof of the following lemma is straightforward; the details are left to the
reader.

Lemma 2.4. Let a, a′ ∈ A and b, b′ ∈ B. Then the following assertions hold:

(a) a ◦ b ⊆ a′ � b′ if and only if a ≤ a′ or b ≤ b′.
(b) (a ◦ b) ∩ (a′ ◦ b′) = (a ∧ a′) ◦ (b ∧ b′).
(c) (a � b) ∩ (a′ ◦ b′) = ((a ∧ a′) ◦ b′) ∪ (a′ ◦ (b ∧ b′)).
(d) (a � b) ∩ (a′

� b′) = ((a ∧ a′) � (b ∧ b′)) ∪ (a ◦ b′) ∪ (a′ ◦ b).
(e) a � b ⊆ a′ � b′ if and only if either A = (a′], or B = (b′], or (a ≤ a′ and

b ≤ b′).
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Corollary 2.5. A ⊡ B is a sublattice of P(A × B).

Let L be a lattice; a closure system on L is a subset K of L such that for every
element x of L, there exists a least element x of K satisfying x ≤ x. Note that K is
then automatically a meet-subsemilattice of L. The element x is called the closure
of x in K.

The following well-known lemma requires no proof.

Lemma 2.6. Let L be a lattice and let K be a closure system on L. Then K is a
lattice and the join is given by the formula

x ∨K y = x ∨L y.

The following lemma is fundamental in the theory of box products.

Lemma 2.7. A � B is a closure system in A ⊡ B.

Proof. Let

(2.2) H =
⋃

( ai � bi | i < m ) ∪
⋃

( cj ◦ dj | j < n ) ∈ A ⊡ B,

where m > 0 and n ≥ 0. Put a =
∨

( ai | i < m ) and b =
∨

( bi | i < m ). Set

H =
⋂

( (a ∨ c(X)) � (b ∨ d(n−X)) | X ⊆ n ).

Note that H ∈ A � B. We shall prove that H is the closure of H in A � B.
First, we verify that H ⊆ H . For all i < m, ai � bi ⊆ a � b ⊆ H .
Let j < n and let X ⊆ n; we prove that cj ◦ dj ⊆ c(X) � d(n−X). If j ∈ X , then

cj ≤ c(X), and so the conclusion follows by Lemma 2.4 (a). Similarly, if j /∈ X ,

then dj ≤ d(n−X), and so the conclusion follows again by Lemma 2.4 (a). In both

cases, cj ◦ dj ⊆ H . Hence H ⊆ H .
Second, it suffices to prove that for all 〈a, b〉 ∈ A × B, H ⊆ a � b implies that

H ⊆ a � b. This conclusion is trivial if A = (a] or if B = (b], so suppose that
a (resp., b) is not the greatest element of A (resp., of B). For all i < m, the
containment ai � bi ⊆ H ⊆ a � b holds, thus, by Lemma 2.4 (e), ai ≤ a and bi ≤ b;

it follows that a ≤ a and b ≤ b. Put X = { j < n | cj ≤ a }. Since a ≤ a, it

follows from the definition that c(X) ≤ a. Furthermore, cj � a, for all j ∈ n − X ;

but 〈cj , dj〉 ∈ H ⊆ a � b, thus dj ≤ b. It follows that d(n−X) ≤ b. Therefore,

H ⊆ (a ∨ c(X)) � (b ∨ d(n−X)) ⊆ a � b. �

We shall call H the box closure of H and denote it by Box(H). Since Box(H)
is the least element of A � B containing H , it is independent of the decomposition
(2.2). This definition can be extended to all subsets of A × B:

Definition 2.8. Let A and B be lattices. For X ⊆ A×B, we define the box closure
of X :

Box(X) =
⋂

( a � b | 〈a, b〉 ∈ A × B, X ⊆ a � b ).

So the box closure of X is the intersection of all elements of A�B containing X .
For an arbitrary subset X of A × B, it may not belong to A � B.

Proposition 2.9. Let A and B be lattices. If H ∈ A ⊡ B, then Box(H) ∈ A � B.
In particular, A � B is a lattice.
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It is important to note that the proof of Lemma 2.7 gives us the existence of
Box(H), for H ∈ A ⊡ B, as well as effective formulas to compute Box(H).

The following definition is motivated by R. Wille [17]:

Definition 2.10. Let A and B be lattices.

(i) For a, a′ ∈ A and b, b′ ∈ B, we define

〈a, b〉⊳〈a′, b′〉, if a ≤ a′ or b ≤ b′.

(ii) For a subset X of A × B, we define

X△ = { 〈a, b〉 ∈ A × B | 〈x, y〉⊳〈a, b〉, for all 〈x, y〉 ∈ X },

X▽ = { 〈a, b〉 ∈ A × B | 〈a, b〉⊳〈x, y〉, for all 〈x, y〉 ∈ X }.

In particular, 〈a, b〉⊳〈a′, b′〉 iff 〈a, b〉 ∈ a′ � b′. It is easy to characterize the box
product and the box closure in terms of the ⊳ relation:

Proposition 2.11. Let A and B be lattices. Then

A � B = {X▽ | X ⊆ A × B, X finite }.

Furthermore, Box(X) = (X△)▽, for all X ⊆ A × B.

Note the following trivial corollary of Lemma 2.4(d):

Proposition 2.12. Every element of A � B contains a pure box.

The formulas given in Lemma 2.7 to compute the box closure of an element of
A ⊡ B can be used to give direct expressions for the join of two elements of A � B,
as follows. For all positive integers m and n, let σm,n be an effectively constructed
bijection from 2m + 2n − 4 onto the “disjoint union” of P∗(m) and P∗(n), that is,
onto (P∗(m) × {0}) ∪ (P∗(n) × {1}). For all k < 2m + 2n − 4, we define the lattice
polynomials Mm,n,k and Nm,n,k by

Mm,n,k(~a,~c) =

{∧
( ai | i ∈ X ), if σm,n(k) = 〈X, 0〉;

∧
( cj | j ∈ Y ), if σm,n(k) = 〈Y, 1〉;

(2.3)

and

Nm,n,k(~b, ~d) =

{∧
( bi | i ∈ m − X ), if σm,n(k) = 〈X, 0〉;

∧
( dj | j ∈ n − Y ), if σm,n(k) = 〈Y, 1〉.

(2.4)

Furthermore, for all ∅ ⊆ Z ⊆ 2m +2n−4, we define the lattice polynomials Um,n,Z

and Vm,n,Z by the following formulas:

Um,n,Z(~a,~c) =
∧

i<m

ai ∨
∧

j<n

cj ∨
∨

k∈Z

Mm,n,k(~a,~c),(2.5)

and

Vm,n,Z(~b, ~d) =
∧

i<m

bi ∨
∧

j<n

dj ∨
∨

k/∈Z

Nm,n,k(~b, ~d).(2.6)

By definition, for the cases Z = ∅ and Z = 2m + 2n − 4, these formulas mean:

Um,n,∅(~a,~c) =
∧

i<m

ai ∨
∧

j<n

cj ,(2.7)

Vm,n,2m+2n−4(~b, ~d) =
∧

i<m

bi ∨
∧

j<n

dj .(2.8)
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Now we formulate how the join in A � B can be computed:

Lemma 2.13. Let A and B be lattices. Let H and K ∈ A � B be written in the
form

H =
⋂

( ai � bi | i < m ),

K =
⋂

( cj � dj | j < n ).

Then

H ∨ K =
⋂

(Um,n,Z(~a,~c) � Vm,n,Z(~b, ~d) | Z ⊆ 2m + 2n − 4 ).

Proof. A direct computation shows that

H ∪ K =
(∧

( ai | i < m ) �

∧
( bj | j < n )

)
∪

(∧
( ci | i < m ) �

∧
( dj | j < n )

)

∪
⋃

(Mm,n,k(~a,~c) ◦ Nm,n,k(~b, ~d) | k < 2m + 2n − 4 ).

The conclusion follows right away from the proof of Lemma 2.7 and the definition
of the polynomials Um,n,Z, Vm,n,Z . �

3. Pure lattice tensors; lattice tensor product

Definition 3.1. Let A, B, and L be lattices.

(i) We define the bottom of L by

⊥L =

{
{0L}, if L has a zero;

∅, otherwise.

(ii) We put

⊥A,B = (A ×⊥B) ∪ (⊥A × B).

(iii) Let 〈a, b〉 ∈ A × B. We define the pure lattice tensor of a and b:

a ⊠ b = (a ◦ b) ∪ ⊥A,B.

(iv) A subset X of A × B is confined, if X ⊆ a ⊠ b, for some 〈a, b〉 ∈ A × B.
(v) A subset H of A×B is a bi-ideal of A×B, if the following conditions hold:

(a) ⊥A,B ⊆ H ;
(b) H is a hereditary subset of A × B;
(c) For a0, a1 ∈ A and b ∈ B, if 〈a0, b〉 ∈ H and 〈a1, b〉 ∈ H , then

〈a0 ∨ a1, b〉 ∈ H ; and symmetrically.

As an immediate consequence of the definition of a bi-ideal, we obtain:

Lemma 3.2. Let A and B be lattices. The elements of A�B are bi-ideals of A×B.

Now the lattice tensor product:

Definition 3.3. Let A and B be lattices. Let A ⊠ B be the set of all confined
elements of A � B. If A ⊠ B is nonempty, then we say that A ⊠ B is defined, and
we call it the lattice tensor product of A and B.

We obtain immediately the following trivial consequence of Definitions 3.1 and
3.3:

Proposition 3.4. Let A and B be lattices. If A ⊠ B is defined, then it is an ideal
of A � B. In particular, it is a lattice.
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Note that if A and B have zero, then a⊠ b is the same as a⊗ b in [10]. However,
the underlying structures, A ⊠ B (see Definition 3.3) and A ⊗ B (see [10]) are
different.

Note the following trivial corollary of Proposition 2.12:

Proposition 3.5. Every element of A ⊠ B contains a (confined) pure box.

Now we completely characterize when A ⊠ B is defined:

Lemma 3.6. Let A and B be lattices. Then A⊠B is defined iff one of the following
conditions hold:

(i) A and B are lattices with zero;
(ii) A and B are lattices with unit;
(iii) A or B is bounded.

Proof. Let (i) hold. Let 〈a, b〉 ∈ A × B. Then

a ⊠ b = (a � 0B) ∩ (0A � b).

Therefore, a ⊠ b ∈ A � B and it is confined (by itself). Thus a ⊠ b ∈ A ⊠ B and so
A ⊠ B 6= ∅.

Let (ii) hold. Then every element of A�B is confined by 1A ⊠ 1B = A×B, and
so A ⊠ B = A � B 6= ∅.

Let (iii) hold. If A is a bounded lattice and b ∈ B, then 0A � b = 1A ⊠ b, hence
A ⊠ B 6= ∅. If B is a bounded lattice, we proceed symmetrically.

Now, conversely, let us assume that A⊠ B is defined, that is, A⊠ B 6= ∅. There
are 16 cases to consider whether A and B have zero and/or unit. Nine of these
possibilities are covered by (i)–(iii); the remaining seven possibilities, by symmetry,
are covered by the following single case:

The lattice A has no zero and the lattice B has no unit. If H ∈ A ⊠ B is
confined by a⊠ b, a ∈ A, b ∈ B, then there is a pure box u� v confined by a⊠ b, by
Proposition 3.5. Since A has no zero, u ∈ A−. Thus 〈u, x〉 ≤ 〈a, b〉, for all x ∈ B;
hence b is the unit of B, a contradiction. �

Box closures play an important role for lattice tensor products:

Lemma 3.7. Let A and B be lattices.

(i) For a ∈ A and b ∈ B,

Box(a ⊠ b) = a ⊠ b.

(ii) Let H ⊆ A×B. If H is confined, then the box closure of H is also confined.
(iii) K ∈ A ⊠ B iff K is the box closure of some confined H ∈ A ⊡ B.
(iv) If A and B are lattices with zero and a0, a1 ∈ A, b0, b1 ∈ B satisfy a0 ≤ a1

and b0 ≤ b1, then

Box((a0 ⊠ b1) ∪ (a1 ⊠ b0)) = (a0 ⊠ b1) ∪ (a1 ⊠ b0),

so (a0 ⊠ b1) ∪ (a1 ⊠ b0) ∈ A ⊠ B.

Proof.
(i). Since ⋂

(x � b | x ∈ A ) ∩
⋂

( a � y | y ∈ B ) = a ⊠ b,

it follows that Box(a ⊠ b) = a ⊠ b.
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(ii). If H is confined, then there exists 〈a, b〉 ∈ A × B such that H ⊆ a ⊠ b.
Therefore, Box(H) ⊆ Box(a ⊠ b) = a ⊠ b, by (i). So Box(H) is confined.

(iii). If K ∈ A ⊠ B, then K ∈ A � B and K is confined, so it is the box closure
of some confined H ∈ A ⊡ B, namely, of H = K. Conversely, the box closure K of
any confined H ∈ A ⊡ B is in A � B and, by (i), it is confined, hence K ∈ A ⊠ B.

(iv). This follows from the formula:

(a0 ⊠ b1) ∪ (a1 ⊠ b0) = (a0 � b0) ∩ (0A � b1) ∩ (a1 � 0B). �

For lattices A and B with unit, every subset of A×B is confined (by 1A ⊠ 1B =
A × B). In particular, A ⊠ B = A � B. For the two other cases of Lemma 3.6, we
describe the elements of A ⊠ B:

Lemma 3.8. Let A and B be lattices with zero. Then the elements of A ⊠ B are
exactly the finite intersections of the form

H =
⋂

( ai � bi | i < n ),(3.1)

satisfying
∧

( ai | i < n ) = 0A,
∧

( bi | i < n ) = 0B,

where n > 0, 〈ai, bi〉 ∈ A × B, for all i < n. Furthermore, every element of A ⊠ B
can be written as a finite union of pure lattice tensors:

(3.2) H =
⋃

( ai ⊠ bi | i < n ),

where x ∈ B, n ≥ 0, and 〈ai, bi〉 ∈ A × B, for all i < n.
Conversely, the box closure of any element of the form (3.2) belongs to A ⊠ B.

It follows, in particular, that the elements of A ⊠ B are exactly the elements of
the form

∨
( ai ⊠ bi | i < n ), where n > 0, a0,. . . , an−1 ∈ A, and b0,. . . , bn−1 ∈ B,

that is, the pure lattice tensors form a join-basis of A ⊠ B.

Proof. Let H ∈ A � B. If H ∈ A ⊠ B, then there exists 〈a, b〉 ∈ A × B such that
H ⊆ a ⊠ b. Since a ⊠ b = (0A � b) ∩ (a � 0B), it follows that

H = H ∩ (0A � b) ∩ (a � 0B)

can be expressed in the form (3.1). Conversely, assume that H is of the form (3.1).
Observe that

ai � bi = ((ai]A × B) ∪ (A × (bi]B),

for all i < n. Using the notations a(X) and b(X) (see the Introduction), we obtain
that

(3.3) H = (a(n) � b(n)) ∪
⋃

( a(X) ◦ b(n−X) | ∅ ⊂ X ⊂ n ).

By assumption, a(n) = 0A and b(n) = 0B, so we have obtained H as in (3.2).
Finally, if H is of the form (3.2), then H = (0A � 0B) ∪

⋃
( ai ◦ bi | i < n ), so

H ∈ A ⊡ B; thus Box(H) ∈ A � B, by Proposition 2.9. Since H is confined (by
u ⊠ v, where u =

∨
( ai | i < n ) and v =

∨
( bi | i < n )), Box(H) is confined, by

Lemma 3.7. Hence, Box(H) belongs to A ⊠ B. �

The analogue of Lemma 3.8 for the case where A is bounded is the following:
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Lemma 3.9. Let A and B be lattices. If A is bounded, then the elements of A⊠B
are exactly the finite intersections of the form

H =
⋂

( ai � bi | i < n ),(3.4)

subject to the condition
∧

( ai | i < n ) = 0A,

where n > 0, 〈ai, bi〉 ∈ A × B for all i < n. Furthermore, every element of A ⊠ B
can be written as a finite union

H = (0A � x) ∪
⋃

( ai ⊠ bi | i < n )(3.5)

= (0A � x) ∪
⋃

( ai ◦ bi | i < n ),

where x ∈ B, n ≥ 0, and 〈ai, bi〉 ∈ A × B, for all i < n.
Conversely, the box closure of any element of the form (3.5) belongs to A ⊠ B.

The box closures of elements of the form (0A � x) ∪ (a ⊠ b) form a join-basis of
A ⊠ B.

Proof. Let H ∈ A � B. If H ∈ A ⊠ B, then there exists 〈a, b〉 ∈ A × B such that
H ⊆ a ⊠ b. Since a ⊠ b ⊆ 0A � b,

H = H ∩ (0A � b)

can be expressed in the form (3.4). Conversely, assume that H is of the form (3.4).
Now we proceed as in the proof of Lemma 3.8 and obtain (3.3). By assumption,
a(n) = 0A, so we are done.

By Proposition 2.9, the box closure Box(H) of any element H of A ⊡ B belongs
to A�B. Any H of the form (3.5) belongs to A⊡B, hence Box(H) ∈ A�B. Since
H is confined (by 1 ⊠ v, where v = x ∨

∨
( bi | i < n )), it follows that Box(H) is

confined, by Lemma 3.7. Hence, Box(H) belongs to A ⊠ B. �

4. The tensor product of lattices with zero

By Lemma 3.8, if A and B are lattices with zero, then A ⊠ B is the set of all
box closures of finite subsets of A × B. Therefore, by Proposition 2.11, we deduce
the following:

Proposition 4.1. Let A and B be lattices with zero. Then

A ⊠ B = { (X△)▽ | X ⊆ A × B, X finite }.

Corollary 4.2. Let A and B be lattices with zero. Then

Ad
� Bd ∼= (A ⊠ B)d.

Proof. The pair of maps X 7→ X△, X 7→ X▽ defines a Galois correspondence
between subsets of A×B (associated with the binary relation ⊳, see Definition 2.10).
Therefore, the second map defines an isomorphism from the structure

Ad
� Bd = {X△ | X ⊆ A × B, X finite }, endowed with containment

onto the structure

A ⊠ B = { (X△)▽ | X ⊆ A × B, X finite }, endowed with reverse containment.

This observation concludes the proof. �
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Remark 4.3. It is easy to describe explicitly the isomorphism in Corollary 4.2.
For 〈a, b〉 ∈ A × B, let a �d b be the pure box of a and b in the lattice Ad � Bd.
Note that a �d b = {〈a, b〉}△. Thus, the image of a �d b under the isomorphism of
Corollary 4.2 is ({〈a, b〉}△)▽ = a ⊠ b. More generally, for a positive integer n and
elements for 〈ai, bi〉 ∈ A × B, where i < n, the image of the element

⋂
( ai �

d bi | i < n )

is ∨
( ai ⊠ bi | i < n )

(the join is computed in A ⊠ B).

Notation. An upper subset of a poset P is a subset X with the property that if
p ∈ X and p ≤ q in P , then q ∈ X . Let FD(n) be the set of all upper subsets a of
P(n) such that ∅ /∈ a and n ∈ a.

For every upper subset a of P(n), note that ∅ /∈ a means that a 6= P(n), while
n ∈ a means that a 6= ∅. It is easy to see that FD(n) is a lattice, a sublattice of
the power set of P(n); it is the free distributive lattice on n generators, where the
ith generator corresponds to the element

gi = {X ∈ P(n) | i ∈ X }.

Notation. For every positive integer n and every a ∈ FD(n), define

a∗ = {X ∈ P(n) | n − X /∈ a }.

This is similar to the notation T# used in Section 3 of R. Wille [17].
Furthermore, we associate with a ∈ FD(n) a lattice polynomial Pa, defined by

the formula

Pa(x0, . . . , xn−1) =
∧

(
∨

( xi | i ∈ X ) | X ∈ a ).

Lemma 4.4. Let A and B be lattices with zero. Let n be a positive integer, let a0,
. . . , an−1 be elements of A, and let b0, . . . , bn−1 be elements of B. Then the box
closure of the element

H =
⋃

( ai ⊠ bi | i < n )

is given by the formula

(4.1) Box(H) =
⋃

(Pc(a0, . . . , an−1) ⊠ Pc
∗(b0, . . . , bn−1) | c ∈ FD(n) ).

Proof. The formulas given in Lemma 2.7 for computing Box(H) easily give the box
closure of H :

(4.2) Box(H) =
⋂

( a(X)
� b(n−X) | X ⊆ n ).

Let K be the element of A�B given by the right hand side of (4.1). We prove that
Box(H) = K.

Let X ∈ P(n) and let c ∈ FD(n). If X ∈ c, then Pc(~a) ≤ a(X), while if X /∈ c,

then n−X ∈ c∗, thus Pc
∗(~b) ≤ b(n−X). In both cases, Pc(~a)⊠Pc

∗(~b) ≤ a(X)�b(n−X).
This proves that K ⊆ Box(H).

Conversely, let 〈x, y〉 ∈ Box(H); we prove that 〈x, y〉 ∈ K. If x = 0A or y = 0B,
then this is trivial, so suppose that both x and y are nonzero. Define

c = {X ⊆ n | x ≤ a(X) } ⊆ P(n).



BOX PRODUCTS OF LATTICES 11

It is trivial that c is an upper subset of P(n). If c = ∅, then n /∈ c, thus x � a(n);

but 〈x, y〉 ∈ a(n) � b(∅) = a(n) �0B, thus y ≤ 0B, a contradiction. If c = P(n), then
∅ ∈ c, thus x ≤ a(∅) = 0A, a contradiction.

Therefore, c belongs to FD(n). By the definition of c, we have x ≤ Pc(~a).
Furthermore, n − X /∈ c, for all X ∈ c∗, which means that x � a(n−X). Since

〈x, y〉 ∈ a(n−X)
� b(X), the inequality y ≤ b(X) holds. This holds for all X ∈ c∗,

thus y ≤ Pc
∗(~b). Hence,

〈x, y〉 ∈ Pc(~a) ⊠ Pc
∗(~b) ⊆ K,

which concludes the proof. �

Lemma 4.4 implies two important purely arithmetical formulas (see G. A. Fraser
[1] and [10]).

Lemma 4.5. Let A and B be lattices with zero. Let a0, a1 ∈ A and b0, b1 ∈ B.
Then

(a0 ⊠ b0) ∩ (a1 ⊠ b1) = (a0 ∧ a1) ⊠ (b0 ∧ b1),

(a0 ⊠ b0) ∨ (a1 ⊠ b1) =

(a0 ⊠ b0) ∪ (a1 ⊠ b1) ∪ ((a0 ∨ a1) ⊠ (b0 ∧ b1)) ∪ ((a0 ∧ a1) ⊠ (b0 ∨ b1)).

Proof. The first formula follows immediately from the definition of a ⊠ b. The
second formula is a straightforward consequence of Lemma 4.4 (Formula (4.1), for
n = 2). �

If we further assume that either a0 ≤ a1 and b0 ≥ b1, or a0 ≥ a1 and b0 ≤ b1,
then the second formula takes on the following simple form:

(4.3) (a0 ⊠ b0) ∨ (a1 ⊠ b1) = (a0 ⊠ b0) ∪ (a1 ⊠ b1).

5. Semilattice tensor product and lattice tensor product of

lattices with zero

For lattices A and B with zero, the extended {∨, 0}-semilattice tensor product
A ⊗ B is defined in [10] as the set of all bi-ideals of A × B (see Definition 3.1(v)).
In particular, A ⊗ B is an algebraic lattice. The {∨, 0}-semilattice tensor product
A ⊗ B is defined as the {∨, 0}-semilattice of all compact elements of A ⊗ B. The
relationship between A ⊗ B (as in [6], [10], [11] but not as in [1]) and the lattice
tensor product A ⊠ B is quite mysterious. Note that while A ⊗ B may not be a
lattice (see [11] and [12]), A ⊠ B is always a lattice. Both A ⊗ B and A ⊠ B are
{∨, 0}-semilattices.

Corollary 5.1. There exists a unique {∨, 0}-homomorphism ρ from A⊗B to A⊠B
such that ρ(a ⊗ b) = a ⊠ b, for all 〈a, b〉 ∈ A × B.

Note that, in general, A⊠B is not a join-subsemilattice of A⊗B, even if A⊗B
is a lattice.

Proof. We use the notation of [10]. Every element H of A ⊠ B is an element of
A� B, thus, by Lemma 3.2, H is a bi-ideal of A×B. Furthermore, by Lemma 3.8,
H is a finite union of pure lattice tensors. It follows that H is a compact element
of A ⊗ B, that is, an element of A ⊗ B. Therefore, A ⊠ B ⊆ A ⊗ B.
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Let a ∈ A and let b0, b1 ∈ B. Since every element H of A ⊠ B is a bi-ideal of
A × B,

〈a, b0 ∨ b1〉 ∈ H iff 〈a, b0〉, 〈a, b1〉 ∈ H,

from which it follows easily that a ⊠ (b0 ∨ b1) = (a ⊠ b0) ∨ (a ⊠ b1). Furthermore,
a ⊠ 0B = 0A⊠B. By symmetry, it follows that the map from A × B to A ⊠ B that
sends every 〈a, b〉 to a⊠b is a {∨, 0}-bimorphism, as defined in [10]. By the universal
property of the tensor product, there exists a unique {∨, 0}-homomorphism ̺ : A⊗
B → A ⊠ B such that ̺(a ⊗ b) = a ⊠ b, for any 〈a, b〉 ∈ A × B. Therefore, ̺ is as
desired. �

Proposition 5.2. Let A and B be lattices with zero. If either A or B is distribu-
tive, then the semilattice tensor product and the lattice tensor product of A and B
coincide:

A ⊗ B = A ⊠ B.

Proposition 5.2 has an analogue for complete lattices, see, for example, Corol-
lary 5 in [17].

Proof. Without loss of generality, we can assume that A is a distributive lattice.
Since A ⊠ B ⊆ A ⊗ B always holds, we only have to prove the converse. Let
H ∈ A ⊗ B; so there exists a decomposition of the form

H =
∨

( ai ⊗ bi | i < n ) (computed in A ⊗ B),

where n is a positive integer and 〈ai, bi〉 ∈ A × B, for all i < n. Let K be the
corresponding element of A ⊠ B, that is,

K =
∨

( ai ⊠ bi | i < n ) (computed in A ⊠ B).

We prove that H = K. Obviously, H ⊆ K. To prove the converse, by Lemma 4.4,
it suffices to prove that

Pc(a0, . . . , an−1) ⊠ Pc
∗(b0, . . . , bn−1) ⊆ H.

holds, for all c ∈ FD(n).
By Lemma 3.3 of [11], and Theorem 1 of [1], it suffices to prove that there exists

a lattice polynomial P such that

(5.1) Pc(~a) ≤ P (~a) and Pc
∗(~b) ≤ P d(~b),

where P d denotes the dual polynomial of P .

We put P = P d
c
∗ . Then P d = Pc

∗ , thus P d(~b) = Pc
∗(~b). Since A is distributive,

it is easy to verify that P (~a) = Pc(~a). (Note that P = Pc does not hold in general;
however, P ≤ Pc.) �

Remark 5.3. In Corollary 4.3 of [11], we proved that for all lattices A and B with
zero, if either A or B is distributive, then A ⊗ B is a lattice.

Example 5.4. Denote by M3 = {0, p, q, r, 1} and N5 = {0, a, b, c, 1} (with a > c)
the diamond and the pentagon, respectively. We shall prove that

M3 ⊠ M3 6= M3 ⊗ M3 and N5 ⊠ N5 6= N5 ⊗ N5.
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Let L be a finite lattice. We have seen in [11] that there are natural isomorphisms
α : M3⊗L → M3[L] and α′ : N5⊗L → N5[L], where M3[L] and N5[L] are the lattices
defined by

M3[L] = { 〈x, y, z〉 ∈ L3 | x ∧ y = x ∧ z = y ∧ z },(5.2)

N5[L] = { 〈x, y, z〉 ∈ L3 | y ∧ z ≤ x ≤ z }.(5.3)

The isomorphisms α and α′ above are defined, respectively, by the formulas

α(p ⊗ x) = 〈x, 0, 0〉, α(q ⊗ x) = 〈0, x, 0〉, α(r ⊗ x) = 〈0, 0, x〉;

α′(a ⊗ x) = 〈x, 0, x〉, α′(b ⊗ x) = 〈0, x, 0〉, α′(c ⊗ x) = 〈0, 0, x〉.

Define M3〈L〉 (resp., N5〈L〉) to be the image of M3 ⊠ L (resp., N5 ⊠ L) under α
(resp., α′).

Define the polynomials x̂, ŷ, and ẑ by x̂ = y ∨ z, ŷ = x ∨ z, and ẑ = x ∨ y. It is
easy, though somewhat tedious, to compute that

M3〈L〉 = { 〈x, y, z〉 ∈ L3 | x = ŷ ∧ ẑ, y = x̂ ∧ ẑ, z = x̂ ∧ ŷ },(5.4)

N5〈L〉 = { 〈x, y, z〉 ∈ L3 | x = z ∧ (x ∨ y) }.(5.5)

In particular, M3〈L〉 has the same meaning here as in [9].
Thus it suffices to prove that M3〈M3〉 6= M3[M3] and that N5〈N5〉 6= N5[N5].

But it is easy to verify that

〈p, q, r〉 ∈ M3[M3] − M3〈M3〉,

〈c, b, a〉 ∈ N5[N5] − N5〈N5〉.

By using (5.2) and (5.4), it is also easy to see that

M3 ⊠ N5 = M3 ⊗ N5.

6. Lattice bimorphisms

We shall see in this section one more reason to call the A ⊠ B construction the
lattice tensor product.

Definition 6.1. Let A, B, and C be lattices with zero. A {0}-lattice bimorphism
from A × B to C is a map f : A × B → C such that

(i) For all 〈a, b〉 ∈ A × B,

f(〈a, 0〉) = f(〈0, b〉) = 0.

(ii) For all a0, a1 ∈ A and all b ∈ B,

f(〈a0 ∨ a1, b〉) = f(〈a0, b〉) ∨ f(〈a1, b〉).

(iii) For all a ∈ A and all b0, b1 ∈ B,

f(〈a, b0 ∨ b1〉) = f(〈a, b0〉) ∨ f(〈a, b1〉).

(iv) For every positive integer n, all a0, . . . , an−1 in A, all b0, . . . , bn−1 in B,
and all c ∈ FD(n),

f(〈Pc(a0, . . . , an−1), Pc
∗(b0, . . . , bn−1)〉) ≤

∨
( f(〈ai, bi〉) | i < n ).

Conditions (i)–(iii) define {∨, 0}-bimorphisms, see [10]. Condition (iv) is quite
different, because it involves the meet structure of A and B as well as the join
structure.
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Proposition 6.2. Let A and B be lattices with zero. Consider the map ⊠ : A×B →
A⊠B defined by 〈a, b〉 7→ a⊠ b. Then ⊠ is a universal {0}-lattice bimorphism, that
is, for every lattice C with zero and every {0}-lattice bimorphism f : A × B → C,
there exists a unique {∨, 0}-homomorphism g : A ⊠ B → C such that g(a ⊠ b) =
f(〈a, b〉), for all a ∈ A and b ∈ B.

Proof. By Lemma 3.8, the elements of the form a⊠b, where 〈a, b〉 ∈ A×B, generate
A ⊠ B as a {∨, 0}-semilattice. The uniqueness of g follows immediately.

To prove the existence statement, it suffices to prove that for every positive
integer n, all a, a0, . . . , an−1 in A, and all b, b0, . . . , bn−1 in B,

(6.1) a ⊠ b ≤
∨

( ai ⊠ bi | i < n )

implies that

(6.2) f(〈a, b〉) ≤
∨

( f(〈ai, bi〉) | i < n ).

The conclusion (6.2) is trivial if a = 0A or b = 0B, so suppose that both a and b
are nonzero. By Lemma 4.4, (6.1) is equivalent to the existence of an element c of
FD(n) such that

a ≤ Pc(a0, . . . , an−1) and b ≤ Pc
∗(b0, . . . , bn−1).

Since f is a {∨, 0}-bimorphism, it is isotone, thus

f(〈a, b〉) ≤ f(〈Pc(a0, . . . , an−1), Pc
∗(b0, . . . , bn−1)〉)

≤
∨

( f(〈ai, bi〉) | i < n ),

because f is a {0}-lattice bimorphism, which completes the proof. �

This shows that ⊠ defines, in fact, a bifunctor on L0. A useful direct description
of the effect of this functor on morphisms in L0 is given by the following result.

Proposition 6.3. Let A, A′, B, B′ be objects in L0 and let f : A → A′ and
g : B → B′ be morphisms in L0. Then (f ⊠g)(X) is given by the following formula,
for all X ∈ A ⊠ B:

(6.3) (f ⊠ g)(X) =
⋃

( f(x) ⊠ g(y) | 〈x, y〉 ∈ X ).

Proof. Let h be the map defined on the powerset of A × B by the formula (6.3);
denote by h′ the restriction of h to A ⊠ B. It suffices to prove that h′ = f ⊠ g.

Since f and g are morphisms in L0,

(6.4) h(a ⊠ b) = f(a) ⊠ g(b).

holds, for all 〈a, b〉 ∈ A×B. Let X be an arbitrary element of A ⊠ B. There exists
a decomposition of X of the form

X =
∨

( ai ⊠ bi | i < n ),

where n is a positive integer and 〈ai, bi〉 ∈ A × B, for all i. By Lemma 4.4,

(6.5) X =
⋃

(Pc(a0, . . . , an−1) ⊠ Pc
∗(b0, . . . , bn−1) | c ∈ FD(n) ).

But, by definition, h is a join-homomorphism from P(A×B) to P(A′×B′). There-
fore, it follows from (6.4), (6.5), and the fact that f and g are morphisms in L0

that

h(X) =
⋃

(Pc(f(a0), . . . , f(an−1)) ⊠ Pc
∗(g(b0), . . . , g(bn−1)) | c ∈ FD(n) ),
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thus, again by Lemma 4.4,

h(X) =
∨

( f(ai) ⊠ g(bi) | i < n ).

We conclude that h′ = f ⊠ g. �

As an immediate corollary, every object of L0 is flat with respect to the lattice
tensor product bifunctor ⊠:

Proposition 6.4. In the context of Proposition 6.3, if both f and g are lattice
embeddings, then so is f ⊠ g.

Another fact worth mentioning is that f ⊠ g is a restriction of f ⊗ g:

Corollary 6.5. In the context of Proposition 6.3, f ⊠ g is the restriction from
A ⊠ B to A′ ⊠ B′ of the map f ⊗ g : A ⊗ B → A′ ⊗ B′.

Proof. This is an immediate consequence of Proposition 3.4 of [10]. �

7. A ⊠ B as a capped sub-tensor product

In [10], we introduced the following definition:

Definition 7.1. Let A and B be lattices with zero. A sub-tensor product of A and
B is a subset C of the semilattice tensor product A ⊗ B satisfying the following
conditions:

(i) C is closed under finite intersection.
(ii) C is a lattice under containment.
(iii) For all a0, a1 ∈ A and all b0, b1 ∈ B, if either a0 ≤ a1 and b0 ≥ b1, or

a0 ≥ a1 and b0 ≤ b1, then the hereditary set

(a0 ⊗ b0) ∪ (a1 ⊗ b1) (mixed tensor)

belongs to C.

A capped sub-tensor product of A and B is a sub-tensor product of A and B
satisfying the following additional condition:

(iv) Every element of C is a finite union of pure tensors.

It is an open problem whether every sub-tensor product is capped, see Problem 2
in [10].

A ⊠ B is an example of a capped sub-tensor product:

Theorem 7.2. Let A and B be lattices with zero. Then A⊠B is a capped sub-tensor
product of A and B. Furthermore, it is the smallest (with respect to containment)
sub-tensor product of A and B.

Proof. By Proposition 3.4, A⊠B is an ideal of A�B. Since A�B is a lattice under
containment (Proposition 2.9), closed under finite intersection, A ⊠ B satisfies (i)
and (ii). Furthermore, (iii) follows immediately from the particular case (4.3) of
Lemma 4.5. Finally, (iv) follows from Lemma 3.8.

Now let C be a sub-tensor product of A and B; we prove that C contains A⊠B.
So let H ∈ A⊠B. Then H belongs to A�B, thus H can be written in the following
form:

H =
⋂

( ai � bi | i < n ),
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where n is a positive integer and 〈ai, bi〉 ∈ A×B. Furthermore, H is confined, thus
there exists 〈a, b〉 ∈ A × B such that H ⊆ a ⊠ b. Hence,

H =
⋂

( (ai � bi) ∩ (a ⊠ b) | i < n ).

However, for all i < n, it is easy to compute that

(ai � bi) ∩ (a ⊠ b) = ((a ∧ ai) ⊠ b) ∪ (a ⊠ (b ∧ bi)),

which is a mixed tensor. Therefore, by the definition of a sub-tensor product, H
belongs to C. �

We can then use Theorem 2 of [10] to deduce the following result:

Theorem 7.3. Let A and B be lattices with zero. Then there exists a unique
isomorphism µ from Conc A⊗Conc B onto Conc(A ⊠ B) such that, for all a0 ≤ a1

in A and all b0 ≤ b1 in B, the following equality holds:

µ(ΘA(a0, a1) ⊗ ΘB(b0, b1)) = ΘA⊠B((a0 ⊠ b1) ∨ (a1 ⊠ b0), a1 ⊠ b1).

Theorem A follows immediately.

8. {1}-sensitive homomorphisms; the box product bifunctor

The box product operation, �, is not a bifunctor from the category of lattices
with lattice homomorphisms to itself. However, we will see that considering only
the following general type of homomorphism will overcome this difficulty.

Definition 8.1. Let A, B be lattices, let f : A → B be a lattice homomorphism.
We will say that f is {1}-sensitive, if 1A exists if and only if 1B exists, and if they
both exist then f(1A) = 1B.

Note that if f : A → B is a lattice homomorphism and neither 1A nor 1B exists,
then f is {1}-sensitive.

It is clear that lattices and {1}-sensitive maps form a subcategory of the category
of all lattices and lattice homomorphisms.

Proposition 8.2. Let A, A′, B, and B′ be lattices, let f : A → A′ and g : B → B′

be {1}-sensitive lattice homomorphisms. Then there exists a unique map h from
A � B to A′ � B′ such that

(8.1) h
(⋂

( ai � bi | i < n )
)

=
⋂

( f(ai) � g(bi) | i < n ).

holds, for every positive integer n and all ai ∈ A, bi ∈ B (i < n). Furthermore, h
is a {1}-sensitive lattice homomorphism.

Proof. The uniqueness statement is trivial. To prove existence of a map h satisfying
(8.1), it is sufficient to prove that

(8.2)
⋂

( ai � bi | i < n ) ⊆ a � b

implies that

(8.3)
⋂

( f(ai) � g(bi) | i < n ) ⊆ f(a) � g(b),

for all n > 0 and all a, ai ∈ A, b, bi ∈ B (i < n). Now (8.2) is equivalent to the
following condition:

a = 1A or b = 1B
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or

a(n) ≤ a and b(n) ≤ b and (∀X ∈ P∗(n))(a(X) ≤ a or b(n−X) ≤ b).

Since f and g are {1}-sensitive lattice homomorphisms, this implies the condition:

f(a) = 1A′ or g(b) = 1B′

or

a′
(n) ≤ f(a) and b′(n) ≤ g(b)

and (∀X ∈ P∗(n))(a′
(X) ≤ f(a) or b′(n−X) ≤ g(b)).

which, in turn, is equivalent to (8.3).
We now verify that h is a lattice homomorphism. It is obvious that h is a meet

homomorphism. The fact that h is a join homomorphism follows immediately from
Lemma 2.13.

Since both f and g are {1}-sensitive, 1A exists if and only if 1A′ exists, and 1B

exists if and only if 1B′ exists. By Remark 2.2, 1A�B exists if and only if 1A′�B′

exists. Suppose now that 1A�B and 1A′�B′ exist. Without loss of generality,
1A exists. Since f is {1}-sensitive, 1A′ exists and f(1A) = 1A′ , thus

h(1A�B) = h(1A � b) = f(1A) � g(b) = 1A′ � g(b) = A′ × B′,

for all b ∈ B, and so 1A′�B′ exists. Therefore, h is {1}-sensitive. �

We shall denote by f � g the {1}-sensitive lattice homomorphism h of Proposi-
tion 8.2.

Remark 8.3. In the proof of Proposition 8.2, in order to prove the existence of
a lattice homomorphism h satisfying (8.1), we require only a weaker assumption
on f and g: namely, if 1A exists, then 1A′ exists and f(1A) = 1A′ . However, we
shall require later the stronger definition of a {1}-sensitive map for direct limits
(see Proposition 9.1).

The following consequence of Proposition 8.2 is immediate:

Corollary 8.4. The mappings 〈A, B〉 7→ A � B, 〈f, g〉 7→ f � g define a bifunctor
from the category of lattices and {1}-sensitive lattice homomorphisms to itself.

The following corollary will be of special importance:

Corollary 8.5. Let A, B, and C be lattices, with A bounded, and let f : B → C
be a {1}-sensitive lattice homomorphism. Then the image of A ⊠ B under idA � f
is contained in A ⊠ C.

Proof. Put g = idA � f . We prove that g(H) ∈ A ⊠ C, for all H ∈ A ⊠ B. By the
definition of A ⊠ B, one can write H in the form

H =
⋂

( ai � bi | i < n ),

where n > 0, ai ∈ A, bi ∈ B (for all i < n), and
∧

( ai | i < n ) = 0A. Therefore, we
obtain that

g(H) =
⋂

( ai � f(bi) | i < n ).

Since
∧

( ai | i < n ) = 0A, we conclude, by Lemma 3.9, that g(H) belongs to
A ⊠ C. �
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In the context of Corollary 8.5, we will write idA ⊠f for the restriction of idA �f
from A ⊠ B to A ⊠ C. Similarly, we define f ⊠ idC , if C is a bounded lattice and
f : A → B is a {1}-sensitive lattice homomorphism.

9. The functor A ⊠ −, for A bounded

In this section, we investigate box products of lattices where one of the factors
is bounded.

Proposition 9.1. Let A be a bounded lattice. Let 〈I,≤〉 be a directed set, let
B, Bi (i ∈ I) be lattices such that, for appropriate {1}-sensitive transition maps
fij : Bi → Bj (for i ≤ j) and fi : Bi → B, we have

B = lim
−→

i

Bi.

Then, with the transition maps gij = idA ⊠ fij and gi = idA ⊠ fi, we have

A ⊠ B = lim
−→

i

A ⊠ Bi.

Proof. It suffices to prove that for all i ∈ I and for all H , K ∈ A⊠Bi, gi(H) ⊆ gi(K)
implies that there exists j ≥ i in I such that gij(H) ⊆ gij(K). Write H and K as

H =
⋂

( ak � bk | k < m ),

where m > 0 and
∧

( ak | k < m ) = 0A, and

K =
⋂

( cl � dl | l < n ),

where n > 0 and
∧

( cl | l < n ) = 0A.
The assumption gi(H) ⊆ gi(K) means that

(9.1)
⋂

( ak � fi(bk) | k < m ) ⊆ cl � fi(dl),

holds, for all l < n. Since I is directed, it suffices to prove that for all l < n there
exists j ≥ i in I such that

(9.2)
⋂

( ak � fij(bk) | k < m ) ⊆ cl � fij(dl).

If cl = 1A, then this is trivial (take j = i). If fi(dl) = 1B, then, since fi is {1}-
sensitive, 1Bi

exists and fi(1Bi
) = 1B. It follows that fi(1Bi

) = fi(dl), thus there
exists j ≥ i in I such that fij(1Bi

) = fij(dl). Since fij is {1}-sensitive, it follows
that fij(dl) = 1Bj

; (9.2) follows. Suppose now that cl is not the largest element
of A, and that fi(dl) is not the largest element of B. Then (9.1) means that, for all
X ∈ P∗(m), either a(X) ≤ cl or fi(b(m−X)) ≤ fi(dl). Since B = lim

−→j
Bj , we obtain

that there exists j ≥ i in I such that the conditions above hold with fij instead of
fi. Then (9.2) follows; whence gij(H) ⊆ gij(K). �

For every lattice L with zero, denote by λL the canonical isomorphism from
Conc A⊗Conc L onto Conc(A⊠L). Define the functors, Φ and Ψ, from lattices and
{1}-sensitive homomorphisms to semilattices with zero and {∨, 0}-homomorphisms,
by

Φ(L) = Conc A ⊗ Conc L,

Ψ(L) = Conc(A ⊠ L),

extended to morphisms in the natural way.
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Lemma 9.2. Let A be a bounded lattice. The correspondence L 7→ λL defines a
natural transformation from the functor Φ to the functor Ψ on the subcategory of
lattices with zero.

Proof. This amounts to verifying, for f : B → C a {1}-sensitive homomorphism of
lattices with zero, that the following diagram

Ψ(B)
Ψ(f)

−−−−→ Ψ(C)

λB

x
xλC

Φ(B)
Φ(f)

−−−−→ Φ(C)

is commutative. It suffices to prove that every congruence of the form

Θ = ΘA(a0, a1) ⊗ ΘB(b0, b1),

where a0 ≤ a1 in A and b0 ≤ b1 in B, has the same image under the maps λC ◦Φ(f)
and Ψ(f) ◦ λB . We compute:

Ψ(f) ◦ λB(Θ) = Ψ(f)
(
ΘA⊠B((a0 ⊠ b1) ∨ (a1 ⊠ b0), a1 ⊠ b1)

)

= ΘA⊠C((a0 ⊠ f(b1)) ∨ (a1 ⊠ f(b0)), a1 ⊠ f(b1)),

while

λC ◦ Φ(f)(Θ) = λC

(
ΘA(a0, a1) ⊗ ΘC(f(b0), f(b1))

)

= ΘA⊠C((a0 ⊠ f(b1)) ∨ (a1 ⊠ f(b0)), a1 ⊠ f(b1)),

which concludes the proof. �

We can now deduce the following extension of Theorem 7.3:

Theorem 9.3. Let A and B be lattices, with A bounded. Then there exists a unique
isomorphism µ from Conc A ⊗ Conc B onto Conc(A ⊠ B) such that

µ(ΘA(a0, a1) ⊗ ΘB(b0, b1)) = Θ((a0 � b0) ∩ (0A � b1), (a1 � b0) ∩ (0A � b1)).

holds, for all a0 ≤ a1 in A and b0 ≤ b1 in B.

Note that, indeed, both elements (a0 � b0) ∩ (0A � b1) and (a1 � b0) ∩ (0A � b1)
belong to A ⊠ B.

Proof. The uniqueness of µ is obvious. To prove the existence, we represent B
as the direct limit of all its sublattices Bb = [b), for b ∈ B; the index set is the
partially ordered set dual of B, the transition maps are all the inclusion maps.
They are obviously {1}-sensitive. Therefore, the following isomorphisms hold, with
the canonical transition maps:

Conc(A ⊠ B) ∼= lim
−→

b

Conc(A ⊠ Bb)

(by Proposition 9.1 and the fact that the functor Conc preserves direct limits)

∼= lim
−→

b

Conc A ⊗ Conc Bb

(by Lemma 9.2)

∼= Conc A ⊗ Conc B
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(because the functors Conc and Conc A ⊗ − preserve direct limits). Denote by
µ : Conc A⊗Conc B → Conc(A ⊠ B) the isomorphism thus obtained. We compute
the effect of µ on Θ = ΘA(a0, a1)⊗ΘB(b0, b1), with a0 ≤ a1 in A and b0 ≤ b1 in B.

Put b = b0, and Θ′ = ΘA(a0, a1) ⊗ ΘBb
(b0, b1). Keep the notations Φ, Ψ for

the two functors defined above (with parameter A), and L 7→ λL for the natural
transformation from Φ to Ψ. Put gb = idA ⊠ fb. Then we compute

µ(Θ) = µ ◦ Φ(fb)(Θ
′)

= Ψ(fb) ◦ λBb
(Θ′)

= Ψ(fb)(ΘA⊠Bb
((a0 ⊠ b1) ∨ (a1 ⊠ b0), a1 ⊠ b1))

= ΘA⊠B(gb((a0 ⊠ b1) ∨ (a1 ⊠ b0)), gb(a1 ⊠ b1)).

It is not difficult to compute that, in A ⊠ Bb, we have

(a0 ⊠ b1) ∨ (a1 ⊠ b0) = (a0 � b0) ∩ (0A � b1),

while

a1 ⊠ b1 = (a1 � b0) ∩ (0A � b1).

The conclusion follows. �

Theorem B follows immediately. However, we could not find a construction
proving that the tensor product of two representable join semilattices with zero is
again representable. See also Problems 2, 3 and 4.

It is easy to deduce the following far reaching generalization of the main result
of [9]:

Corollary 9.4. Let S and L be lattices, with S bounded and simple. Then L admits
a congruence-preserving embedding into S ⊠ L, defined by x 7→ 0S � x.

10. Congruences on box product of lattices with unit

A similar direct limit argument as the one used in Section 9 yields a result about
congruences on box products of lattices with unit, similar to Theorems 7.3 and 9.3.
However, there is a much less painful way of obtaining this.

Theorem 10.1. Let A and B be lattices with unit. Then there exists a unique
isomorphism µ from Conc A ⊗ Conc B onto Conc(A � B) such that

µ(ΘA(a0, a1) ⊗ ΘB(b0, b1)) = ΘA�B(a0 � b0, (a0 � b1) ∩ (a1 � b0)),

for all a0 ≤ a1 in A and all b0 ≤ b1 in B.

Proof. The following isomorphisms hold:

Conc A ⊗ Conc B ∼= Conc Ad ⊗ Conc Bd

∼= Conc(A
d

⊠ Bd) (by Theorem 7.3)

∼= Conc(A � B)d (by Corollary 4.2)

∼= Conc(A � B).

Furthermore, the successive images of the tensor product of two principal congru-
ences ΘA(a0, a1) and ΘB(b0, b1) (with a0 ≤ a1 and b0 ≤ b1) under the isomorphisms
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above are the following (see Remark 4.3):

ΘA(a0, a1) ⊗ ΘB(b0, b1) 7→ ΘAd(a1, a0) ⊗ ΘBd(b1, b0)

7→ ΘAd⊠Bd((a0 ⊠ b1) ∨ (a1 ⊠ b0), a0 ⊠ b0)

7→ Θ(A�B)d((a0 � b1) ∨ (a1 � b0), a0 � b0)

7→ ΘA�B(a0 � b0, (a0 � b1) ∩ (a1 � b0)),

which proves the existence statement. The uniqueness is obvious. �

11. Discussion

The various tensor products of lattices show an interesting formal similarity
among some of the results. These constructions:

(i) preserve distributivity (of lattices or of semilattices);
(ii) can be characterized with maps from one lattice to the other;
(iii) have an “Isomorphism Theorem” for their (compact) congruence (semi)

lattices.

We refer to B. Ganter and R. Wille [2], G. Grätzer, H Lakser, and R. W. Quack-
enbush [6], R. W. Quackenbush [13], G. N. Raney [14], Z. Shmuely [15], R. Wille
[17], and the authors’ papers [9]–[12], for more information.

More interestingly, it seems that formally similar results for two different types
of tensor products do not seem to imply each other. For example, consider the
Isomorphism Theorem for compact congruence semilattices of tensor products of
lattices (Theorem 2 of [10]):

(11.1) Conc(A ⊗ B) ∼= Conc A ⊗ Conc B,

provided that A and B are lattices with zero and A ⊗ B is a lattice and the Iso-
morphism Theorem for complete congruence lattices of doubly founded complete
lattices (Theorem 18 in [17]):

(11.2) Con∞(A ⊗̂ B) ∼= Con∞ A ⊗̂ Con∞ B,

where A⊗̂B is the complete tensor product introduced in R. Wille [17], and Con∞ K
is the complete congruence lattice of a complete lattice K.

Both results apply to finite lattices. For finite lattices A and B, Wille’s Iso-
morphism Theorem is a special case of Theorem 7.3, which is similar, though not
equivalent, to the Isomorphism Theorem for tensor products of finite lattices in [6].
For infinite lattices A and B, the two Isomorphism Theorems seem to have nothing
in common: (11.1) equates tensor products of two distributive {∨, 0}-semilattices,
while (11.2) equates tensor products of arbitrary complete lattices. It was proved
in G. Grätzer [3] (see G. Grätzer and H. Lakser [5] for the shortest proof and
G. Grätzer and E. T. Schmidt [8] for the strongest result) that Con∞ A can be any
complete lattice.

In general, the constructions of complete tensor products of complete lattices are
given as complete meet-semilattices, so, of course, they are lattices. The situation
is quite different for tensor product constructions of (not necessarily complete)
lattices, where the tensor product may not be a lattice, see [11] and [12]. So, in
one sense, Proposition 2.9 lies at the core of the present paper.
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This difficulty is paralleled in the characterization problems of congruence lat-
tices: while complete congruence lattices of complete lattices have been character-
ized, see [3], the characterization problem of congruence lattices of lattices is open,
see G. Grätzer and E. T. Schmidt [7] for a survey.

12. Open problems

Problem 1. Denote by V(L) the variety generated by a lattice L. Let A and B
be lattices with zero. Prove that A ⊠ B = A ⊗ B if and only if V(A) ∩ V(B) is a
distributive variety.

See Example 5.4 for some basic examples related to this problem.

Problem 2. Is every representable semilattice {0}-representable?

It would follow, by Theorem A, that the tensor product of any two representable
distributive semilattices with zero is representable. On the other hand, it is not
even known whether there exists a nonrepresentable distributive semilattice with
zero.

However, the situation changes if we consider lattices with permutable congru-
ences. Let us say that a {∨, 0}-semilattice D is p-representable (resp., 〈p, {0}〉-
representable), if there exists a lattice (resp., a lattice with zero) L with permutable
congruences such that Conc L ∼= D. There are non p-representable distributive
{∨, 0}-semilattices, see J. Tůma and F. Wehrung [16]. Furthermore, the second
author of the present paper proved the following result:

Let A and B be lattices with permutable congruences. If A⊠ B is
defined, then A ⊠ B has permutable congruences.

In particular, if S and T are 〈p, {0}〉-representable {∨, 0}-semilattices, then S⊗T
is 〈p, {0}〉-representable. Hence a reasonable analogue of Problem 2 for lattices with
permutable congruences is the following:

Problem 3. Is every p-representable semilattice 〈p, {0}〉-representable?

A problem more directly related to tensor products is the following:

Problem 4. If S and T are p-representable {∨, 0}-semilattices, is S ⊗ T p-repre-
sentable?

Any counterexample to Problem 4 must have either S or T not 〈p, {0}〉-represent-
able and either S or T must have at least ℵ2 elements. Such a result would imply
a negative answer to Problem 3.

Problem 5. Are there other lattice tensor product constructions between A ⊠ B
and A ⊗ B? For example, in view of Lemma 4.4, we could assert that the A ⊠

B construction utilizes the structure of the free distributive lattices. Are there
analogues of A ⊠ B for other varieties of lattices?

If A and B are lattices with zero, then A ⊠ B is the smallest capped sub-tensor
product of A and B (see Theorem 7.2). On the other hand, if A ⊗ B is a capped
tensor product, then A ⊗ B is the largest capped sub-tensor product of A and B.

Problem 6. The tensor product of two finite simple lattice is a larger finite simple
lattice. In general, what are the “ultimate building blocks” of, say, finite lattices,
by using elementary operations such as direct product, ordinal sum, and general-
izations of the tensor product?
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Problem 7. What can be said about relative tensor products, that is, lattice-
theoretical analogues of the module-theoretical construction A ⊗R B? Does there
exist such a construction?
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