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LIMIT LAWS FOR EMBEDDED TREES.

APPLICATIONS TO THE INTEGRATED SUPERBROWNIAN

EXCURSION

MIREILLE BOUSQUET-MÉLOU

Abstract. We study three families of labelled plane trees. In all these trees, the root is
labelled 0, and the labels of two adjacent nodes differ by 0, 1 or −1.

One part of the paper is devoted to enumerative results. For each family, and for all
j ∈ N, we obtain closed form expressions for the following three generating functions:
the generating function of trees having no label larger than j; the (bivariate) generating
function of trees, counted by the number of edges and the number of nodes labelled j;
and finally the (bivariate) generating function of trees, counted by the number of edges
and the number of nodes labelled at least j. Strangely enough, all these series turn out
to be algebraic, but we have no combinatorial intuition for this algebraicity.

The other part of the paper is devoted to deriving limit laws from these enumerative

results. In each of our families of trees, we endow the trees of size n with the uniform
distribution, and study the following random variables: Mn, the largest label occurring in
a (random) tree; Xn(j), the number of nodes labelled j; and X

+
n (j), the number of nodes

labelled j or more. We obtain limit laws for scaled versions of these random variables.
Finally, we translate the above limit results into statements dealing with the integrated

superBrownian excursion (ISE). In particular, we describe the law of the supremum of
its support (thus recovering some earlier results obtained by Delmas), and the law of its
distribution function at a given point. We also conjecture the law of its density (at a
given point).

1. Introduction

We study in this paper three families of labelled plane trees. In all these trees, the root
is labelled 0, and the labels of two adjacent nodes differ by 0, 1 or −1.

More precisely, the first family we consider is the set of plane trees, and the increments
of the labels along edges are constrained to be ±1. In the closely related second family,
these increments can be 0,±1. The third family is a bit different. It is simply the set of
(incomplete) binary trees, in which the nodes are labelled in a deterministic way: the label
of a node is the difference between the number of right steps and the number of left steps
occurring in the path that yields from the root to the node under consideration. See Figure 1
for an illustration. We call this labelling the natural labelling of the binary tree. Note that
the label of each node is simply its abscissa, if we draw the tree in the plane in such a way
the right (resp. left) son of a node lies one unit to the right (resp. left) of its father. For this
reason, we will sometimes call these labelled binary trees naturally embedded binary trees.
More generally, for any plane labelled tree, we may consider that the label of each node tells
where to embed it in Z; hence the title of the paper.

In each of these three families, we endow the set of trees having a given size (say, n edges)
with the uniform distribution. We address (via generating functions) the following three
questions:
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Figure 1. A labelled plane tree with increments ±1. — A labelled tree
with increments 0,±1. — A naturally embedded binary tree.

(1) What is the maximal label that occurs in the tree? This label is in fact a random
variable Mn. We prove that Mn/n1/4 converges in distribution to a random variable
N having a density. We give this density explicitly. We also compute the moments
of N and prove the convergence of the moments of Mn/n1/4 to those of N .

(2) How many nodes of the tree have label j? Let Xn(j) denote the corresponding
random variable. If j is fixed, and n goes to infinity, then the answer to this question
is independent of j. We prove that for any j ∈ Z, the variable Xn(j)/n3/4 converges
in distribution to cT−1/2, where c is a constant depending on which family of trees
we consider, and T follows a unilateral stable law of parameter 2/3.

Given that the maximal label grows like n1/4, we get a better insight on the
label distribution by asking how many nodes in a tree of size n have label ⌊λn1/4⌋.
We prove that, for any λ ∈ R, the random variable Xn(⌊λn1/4⌋)/n3/4 converges
in distribution to a limit variable Y (λ). This variable admits a Laplace transform,
which we give explicitly. The convergence of the Laplace transform, and of the
moments, hold as well. We say we have obtained a local limit law for embedded
trees, because we look at one value of the labels only.

(3) Finally, we also obtain a global limit law by studying the variable X+
n (j) that gives

the number of nodes having label j at least. Remarkably, we prove that X+
n (0)/n, the

(normalized) number of nodes having a non-negative label, converges to the uniform
distribution on [0, 1]. More generally, for λ ∈ R, the variable X+

n (λn1/4)/n converges
in distribution to a variable Y +(λ). This variable admits a Laplace transform, which
we give explicitly. Once again, the convergence of the Laplace transform, and of the
moments, hold as well.

The laws of N , Y (λ) and Y +(λ) naturally depend on which family of trees we consider, but
only by a simple normalization factor.

1.1. Embedded trees and the integrated superBrownian excursion

Why should one study such labelled trees?
The first two classes of trees we consider have a close connection with certain families of

planar maps [6, 8, 11]. In particular, the diameter of a random quadrangulation having n
faces is distributed like the largest label in non-negative random trees of our second family.
Moreover, once scaled by n1/4, this diameter has the same limit law as (Mn − mn)n−1/4,
where Mn (resp. mn) is the largest (resp. smallest) label occurring in a random tree of our
second family [8].

The third class we study is the good old family of binary trees, and this may suffice to
motivate its study! More seriously, the three questions addressed above have, for binary
trees, a natural geometric formulation. The random variable Mn (the maximum label) tells
us about the “true width” of a binary tree (as opposed to the maximal number of nodes lying
at the same level, which is known to grow like

√
n). More generally, the variables Xn(j) tell
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Figure 2. An (incomplete) binary tree having horizontal profile [1, 2, 4, 3, 2]
and vertical profile [2, 2, 4; 2, 1, 1].

us about the vertical profile of the tree (as opposed to the horizontal profile which describes
the repartition of nodes by level [13]). See Figure 2.

We may also invoke an a posteriori justification to the study of these trees: the form of
the generating functions we obtain is remarkable, whatever family of trees we consider, and
suggests that there must be some beautiful hidden combinatorics in these problems, which
should be explored further.

However, the main motivation for this work is the connection between embedded trees
and the integrated superBrownian excursion (ISE). Choose one of the three families of trees,
and consider the following random probability distribution on R:

µn =
1

n + 1

∑

j∈Z

Xn(j)δcjn−1/4 , (1)

where Xn(j) is the (random) number of nodes labelled j, δx denotes the Dirac measure at x,

and the constant c equals
√

2 for the first family,
√

3 for the second one and 1 for the family
of binary trees. Then µn is known to converge weakly to a limiting random probability
distribution called the ISE [1, 23, 22, 20]. See Figure 3 for simulations of µn.

Our limit results provide some information about the law of the ISE. For instance, we
prove that cMnn−1/4, the largest point having a positive weight under µn, converges in law
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Figure 3. The plot of Xn(j) vs. j for random binary trees with n = 1000 nodes.
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to Nise, the supremum of the support of the ISE. We denote this by

cMnn−1/4 d→ Nise.

The results we obtain for the limit law of Mnn−1/4 thus translate into expressions of the
moments, distribution function and density of the supremum of the ISE. Note that the
moments were already obtained by Delmas [12]. Our second limit result deals with the
random variables Xn(⌊λn1/4⌋). Observe that

µn(cλ − cn−1/4, cλ] =
1

n + 1
Xn(⌊λn1/4⌋). (2)

This leads us to conjecture that the random variable Y (λ) involved in our local limit law
satisfies

Y (λ)
d
= cfise(cλ) (3)

where fise is the (random) density of the ISE. Similarly,

µn[cλ, +∞) =
1

n + 1
X+

n (⌈λn1/4⌉),

and we prove that the random variable Y +(λ) involved in our global limit law satisfies

Y +(λ)
d
= gise(cλ)

where gise is the (random) tail distribution function of the ISE. The results we obtain about
the laws of Y (λ) and Y +(λ) thus translate into formulas for the Laplace transforms of fise(λ)
and gise(λ) (the formula for fise(λ) being conjectural).

Our conjecture on fise is naturally supported by the fact that the law of Y (λ/c)/c is
independent of the tree family we start from. This is one of the reasons why we consider as
many as three families of trees. The other reasons involve the connections with planar maps,
the remarkable form of the generating functions we obtain, and our unshakeable interest in
binary trees. The details of the calculations are only given for the first of the three families
(Sections 2 to 5), while the results are merely stated for the other two families (Section 6).

Let us finally mention that the moments of the center of mass of the ISE have recently
been determined by two different approaches [7, 19]. In our discrete setting, this boils down
to studying the convergence of the variable

1

n5/4

∑

j∈Z

jXn(j).

1.2. Overview of the paper

The starting point of our approach is a series of exact enumerative results dealing with
our first class of trees: plane trees in which the labels of adjacent nodes differ by ±1. These
results are gathered in the next section. We obtain for instance an explicit expression for
the bivariate generating function of labelled trees, counted by the number of edges and the
number of nodes labelled j (for j fixed). This section includes, and owes a lot to, some
results recently obtained by Bouttier, Di Francesco and Guitter [5, 6] on the enumeration of
trees having no label greater than j. This part of our work raises a number of challenging
combinatorial questions — why are these expressions so simple? — which are not addressed
in this paper.

The limit behaviours of the random variables Mn, Xn(⌊λn1/4⌋) and X+
n (λn1/4) are re-

spectively established in the next three sections (Sections 3 to 5). The main technique that
we use is the “analysis of singularities” of Flajolet and Odlyzko [17]. It permits to extract
the asymptotic behaviour of the coefficients of a generating function. This technique has
already proved useful in numerous occasions, in particular for proving limit theorems that
are similar in flavour to the ones obtained in this paper: these theorems deal with the height
of simply generated trees and their profile, which are known to be related to the height of
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the Brownian excursion and its local time [16, 13]. This technique is carefully exemplified
in Section 3 (which is devoted to the maximal label) before the more difficult questions of
the local and global limit laws are attacked (Sections 4 and 5).

Finally, two other families of trees are briefly studied in Section 6: trees with increments
0,±1 and naturally embedded binary trees. The emphasis is put on their enumerative
properties, which turn out to be as remarkable and surprising as those of our first family of
trees. The limit laws we obtain are (up to a scalar) the same as for the first family.

Let us conclude with some notation and a few definitions on formal power series and
generating functions. Let K be a field. We denote by K[t] the ring of polynomials in t with
coefficients in K, and by K(t) the field of rational functions in t with coefficients in K. We
denote by K[[t]] the ring of formal power series in t with coefficients in K. If A(t) ∈ K[[t]]
and n ∈ N, the notation [tn]A(t) stands for the coefficient of tn in A(t). The series A(t)
is said to be algebraic over K(t) if it satisfies a non-trivial polynomial equation of the form
P (t, A(t)) = 0, where P is a bivariate polynomial with coefficients in K. In this case, the
degree of A(t) is the smallest possible degree of P (in its second variable).

Let A be a set of discrete objects, equipped with a size that takes nonnegative integer
values. Assume that for all n ∈ N, the number of objects of A of size n is finite, and denote
this number by an. The generating function of the objects of A, counted by their size, is the
formal power series

A(t) =
∑

n≥0

antn.

The above notions generalize in a straightforward way to multivariate power series. Such
series arise naturally when enumerating objects according to several parameters.

2. Enumerative results

We consider in this section (and in the three following ones) our first family of labelled
plane trees: the root is labelled 0, and the labels of two adjacent nodes differ by ±1.

2.1. Trees with small labels

The first enumerative problem we address has already been studied by Bouttier, Di
Francesco and Guitter [5, 6]. It deals with the largest label occurring in a tree. For j ∈ N,
let Tj ≡ Tj(t) be the generating function of labelled trees in which all labels are less than
or equal to j. The indeterminate t keeps track of the number of edges. Let T ≡ T (t) be the
generating function of all labelled trees. Clearly, Tj converges to T (in the space of formal
power series in t) as j goes to infinity. It is very easy to describe an infinite set of equations
that completely defines the collection of series Tj.

Lemma 1. The series T satisfies

T = 1 + 2tT 2. (4)

More generally, for j ≥ 0,
Tj = 1 + t(Tj−1 + Tj+1)Tj

while Tj = 0 for j < 0.

Proof. The two ingredients of the proof will be useful for the other enumerative problems
we address below. Firstly, replacing each label k by j−k shows that Tj is also the generating
function of trees rooted at j and having only non-negative labels (we say that a tree is rooted
at j if its root has label j). Secondly, consider such a tree and assume it is not reduced to a
single node. The root has a leftmost child, which is the root of a labelled subtree, rooted at
j ± 1 and having only non-negative labels. Deleting this subtree leaves a smaller tree rooted
at j, having only non-negative labels (see Figure 4). The result follows.
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Figure 4. The decomposition of plane labelled trees.

The above lemma shows that the series T , counting labelled trees by edges, is algebraic,
and the short proof we have given provides a simple combinatorial explanation for this
property. What is far less clear — but nevertheless true — is that each of the series Tj is
algebraic too, as stated in the proposition below, which we borrow from [5, 6]. These series
will be expressed in terms of the series T ≡ T (t) and of the unique formal power series
Z ≡ Z(t), with constant term 0, satisfying

Z = t
(1 + Z)4

1 + Z2
. (5)

Observe that T and Z are related by:

T =
(1 + Z)2

1 + Z2
. (6)

Proposition 2 (Trees with small labels [5, 6]). Let Tj ≡ Tj(t) be the generating function
of trees having no label greater than j. Then Tj is algebraic of degree (at most) 2. In
particular,

T0 = 1 − 11 t − t2 + 4 t (3 + 2 t)T0 − 16 t2T0
2.

Moreover, for all j ≥ −1,

Tj = T
(1 − Zj+1)(1 − Zj+5)

(1 − Zj+2)(1 − Zj+4)
, (7)

where Z ≡ Z(t) is given by (5).

Proof. It is very easy to check, using (5–6), that the above values of Tj satisfy the recurrence
relation of Lemma 1 and the initial condition T−1 = 0. How to discover such a formula
is another story, which is told in [5]. The remarkable product form of Tj still awaits a
combinatorial explanation.

The equation satisfied by T0 is obtained by eliminating T and Z from the case j = 0
of (7). Then an induction of j, based on Lemma 1, implies that each Tj is quadratic (at
most) over Q(t).

Remarks
1. The product form (7), combined with the facts that T is quadratic over Q(t) and Z is
quadratic over Q(T ), shows that Tj belongs to an extension of Q(t) of degree 4. This is true,
but not optimal, since Tj is actually quadratic over Q(t). Hence this product form does not
give the best possible information on the degree of Tj .
2. The trees counted by T0 (equivalently, the trees having only non-negative labels) are
known to be in bijection with certain planar maps called Eulerian triangulations [6]. Through
this bijection, the number of edges of the tree is sent to the number of black faces of the
triangulation. These triangulations are nothing but the dual maps of the bicubic (that is,
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bipartite and trivalent) maps, which were first enumerated by Tutte [26]. In particular, the
coefficients of T0(t) are remarkably simple:

T0(t) =
(1 − 8t)3/2 − 1 + 12t + 8t2

32t2
= 1 +

∑

n≥1

3.2n−1

(n + 1)(n + 2)

(

2n

n

)

tn.

2.2. The number of nodes labelled j

Let us now turn our attention to a bivariate counting problem. For j ∈ Z, let Sj ≡ Sj(t, u)
be the generating function of labelled trees, counted by the number of edges (variable t) and
the number of nodes labelled j (variable u). Clearly, Sj(t, 1) = T (t) for all j. Moreover, an
obvious symmetry entails that Sj = S−j .

Lemma 3. For j 6= 0,

Sj = 1 + t(Sj−1 + Sj+1)Sj (8)

while for j = 0,

S0 = u + t(S−1 + S1)S0 = u + 2tS1S0. (9)

Proof. Observe that Sj ≡ Sj(t, u) is also the generating function of labelled trees rooted at
j, counted by the number of edges and the number of nodes labelled 0. The decomposition
of trees illustrated in Figure 4 then provides the lemma. The only difference between the
cases j = 0 and j 6= 0 lies in the generating function of the tree reduced to a single node.

Again, the series Sj(t, u) turn out to be algebraic, for reasons that currently remain
mysterious (from the combinatorics viewpoint). They can be expressed in terms of the series
T and Z given by (5–6).

Proposition 4 (The number of nodes labelled j). For any j ∈ Z, the generating
function Sj ≡ Sj(t, u) that counts labelled trees by the number of edges and the number of
nodes labelled j is algebraic over Q(T, u) of degree at most 3 (and hence has degree at most
6 over Q(t, u)). More precisely,

(T − S0)
2

(u − 1)2
= 1 − 2(1 − T 2)

2 + S0 − S0T
, (10)

and all the Sj belong to Q(t, u, S0). Moreover, for all j ≥ 0,

Sj = T
(1 + µZj)(1 + µZj+4)

(1 + µZj+1)(1 + µZj+3)
, (11)

where Z ≡ Z(t) is given by (5) and µ ≡ µ(t, u) is the unique formal power series in t
satisfying

µ = (u − 1)
(1 + Z2)(1 + µZ)(1 + µZ2)(1 + µZ3)

(1 + Z)(1 + Z + Z2)(1 − Z)3(1 − µZ2)
. (12)

The series µ(t, u) has polynomial coefficients in u, and satisfies µ(t, 1) = 0. It has degree 3
over Q(Z, u) and 12 over Q(t, u).

At some point, we will need a closed form expression for µ in terms of Z. Here is one.

Proposition 5. Write

v =
(u − 1)Z(1 + Z2)

(1 + Z)(1 + Z + Z2)(1 − Z)3
.

Then the algebraic series µ involved in the expression (11) of Sj, and defined by (12), is

µ(t, u) =
1

Z2

(

2

1 + v(1 − Z)2/3 + 2/3
√

3 + v2(1 − Z)4 cos(φ/3)
− 1

)
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where

φ = arccos

(−9v(1 + 4Z + Z2) + v3(1 − Z)6

(3 + v2(1 − Z)4)3/2

)

.

Proof of Propositions 4 and 5.1 First, observe that the family of series S0, S1, S2, . . . is
completely determined by (8) (taken for j > 0) and the second part of (9). The fact that
for any series µ ∈ Q(u)[[t]], the expression (11) satisfies (8) for all j > 0 is a straighforward
verification, once t and T have been expressed in terms of Z (see (5) and (6)). The form
of (11) is borrowed from [5]. In order for (11) to be the correct expression of Sj , it remains
to satisfy the second part of (9). This last condition provides a polynomial equation relating
µ, T , Z, t and u. In this equation, replace t and T by their expressions in terms of Z (given
by (5–6)). This gives exactly (12). It can be easily checked that µ has degree 6 over Q(T, u)
and degree 12 over Q(t, u).

The equation (10) satisfied by S0 is obtained by eliminating µ and Z (using (12) and (6))
from the expression (11) of S0. This equation gives an equation of degree 6 over Q(t, u) if
one eliminates T thanks to (4).

Now the equations (9), (8) and (4), combined with an induction on j, imply that for j ≥ 1,
the series Sj belongs to the field Q(T, u, S0), which has just been proved to be an extension
of Q(T, u) of degree 3. This concludes the proof of Proposition 4.

Let us finally prove Proposition 5. The equation (12) that defines µ can be rewritten

µ =
v

Z

(1 + µZ)(1 + µZ2)(1 + µZ3)

1 − µZ2
.

Hence µ is the unique formal power series in v (with rational coefficients in Z) that satisfies
the above equation and equals 0 when v is 0. It is not hard to check that the closed form
expression we give satisfies these two conditions.

Remarks
1. The product form (11) of Proposition 4 refines the product form (7) that deals with trees
with small labels. Indeed, when u = 0, Eq. (12) gives µ = −1, and the expression of Sj(t, 0)
coincides, as it should, with the expression of Tj−1(t) given by Proposition 2.
2. There exists an alternative way to derive an equation for S0 from the system of Lemma 3.
As was observed in [6, p. 645] for the problem of counting trees with bounded labels, Eq. (8)
implies that for j ≥ 1,

I(Sj−1, Sj) = I(Sj , Sj+1)

where the “invariant” function I is given by

I(x, y) = xy(1 − tx)(1 − ty) + txy − x − y.

But Sj converges to T as j goes to infinity, in the set of formal power series in t. This implies

I(S0, S1) = I(T, T ).

Eliminating S1 between the above equation and (9) gives an equation between S0, T and t.

2.3. The number of nodes labelled j or more

Let us finally study our third and last enumeration problem. For j ∈ Z, let Rj ≡ Rj(t, u)
be the generating function of labelled trees, counted by the number of edges (variable t) and
the number of nodes labelled j at least (variable u).

1All the calculations in this paper have been done using Maple. We do not recommend the reader to
check them by hand.
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Lemma 6. The set of series R0, R1, R2, . . . is completely determined by the following equa-
tions: for j ≥ 1,

Rj = 1 + tRj(Rj−1 + Rj+1) (13)

and

R0(t, u) = uR1(tu, 1/u). (14)

More generally, for all j ∈ Z, one has:

R−j(t, u) = uRj+1(tu, 1/u). (15)

Proof. For all j ∈ Z, the series Rj ≡ Rj(t, u) is also the generating function of trees rooted
at j, counted by their number of edges and the number of nodes having a non-positive label.
The equation satisfied by j, for j ≥ 1, follows once again from the decomposition of trees
illustrated in Figure 4. It remains to prove the symmetry relation (15). For any tree τ ,
let n≤0(τ) denote the number of nodes of τ having a non-positive label. We use similar
notations for the number of nodes having label at most j, etc. Let Tj,n denote the set of
trees rooted at j and having n edges. As observed above,

R−j(t, u) =
∑

n≥0

tn
∑

τ∈T−j,n

un≤0(τ) =
∑

n≥0

tn
∑

τ∈T−j,n

un+1−n>0(τ),

because a tree with n edges has a total of n+1 nodes. A translation of all labels by −1 gives

R−j(t, u) = u
∑

n≥0

(tu)n
∑

τ∈T−j−1,n

u−n≥0(τ),

while replacing each label k by −k finally gives

R−j(t, u) = u
∑

n≥0

(tu)n
∑

τ∈Tj+1,n

u−n≤0(τ) = uRj+1(tu, 1/u).

Again, the series Rj are algebraic, and admit a closed form expression in terms of T and
Z.

Proposition 7 (The number of nodes labelled j or more). Let j ∈ Z. The generating
function Rj(t, u) ≡ Rj that counts labelled trees by the number of edges and the number of
nodes labelled j or more is algebraic of degree at most 2 over Q(T (t), T (tu)). Hence it has
degree at most 8 over Q(t, u). More precisely, it belongs to the extension of Q(T (t), T (tu))
generated by

√

(T + T̃ )2 − 4T T̃ (T − 1)(T̃ − 1)

where T ≡ T (t) and T̃ ≡ T (tu).
Moreover, for all j ≥ 0,

Rj = T
(1 + νZj)(1 + νZj+4)

(1 + νZj+1)(1 + νZj+3)
, (16)

where Z ≡ Z(t) is given by (5) and ν ≡ ν(t, u) is a formal power series in t, with polynomial
coefficients in u, which is algebraic of degree 4 over Q(u, Z), and of degree 16 over Q(t, u).
This series satisfies ν(t, 1) = 0. The first terms in its expansion are:

ν(t, u) = (u − 1)
(

1 + 2 ut +
(

7 u + 6 u2
)

t2 +
(

32 u + 36 u2 + 23 u3
)

t3 + O(t4)
)

.

Before we prove this proposition, let us give something like a closed form for ν. Since ν
has degree 4 over Q(u, Z), and Z has degree 4 over Q(t), the series ν is in theory expressible
in terms of radicals... It turns that this expression is less terrible than one could fear.
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Proposition 8. Define the following four formal power series in t with polynomial coeffi-
cients in u:

δ ≡ δ(t, u) = 1 − 8(u − 1)
Z(1 + Z2)

(1 − Z)4
=

1 − 8tu

1 − 8t
,

V ≡ V (t, u) =
1 −

√
δ

4
=

1 −
√

1−8tu
1−8t

4
,

∆ ≡ ∆(t, u) = (1 − V )2 − 4ZV 2

(1 + Z)2
,

and

P = (1 + Z)
1 − V −

√
∆

2V Z
.

Then P has degree 16 over Q(t, u), degree 2 over Q(V, Z), and satisfies the following “La-
grangian” equation:

P =
V

1 + Z
(1 + P )(1 + ZP ).

Moreover, the algebraic series ν involved in the expression (16) of Rj is

ν =
P

Z

1 − P (1 + Z) − P 2(1 + Z + Z2)

1 + Z + Z2 + PZ(1 + Z) − P 2Z2
.

Proof of Proposition 7. We have already checked, in the proof of Proposition 4, that for
any formal power series ν in t, the series defined by (16) for j ≥ 0 satisfy the recurrence
relation (13) for j ≥ 1. It remains to prove that one can choose ν so as to satisfy (14).

For any formal power series A in t having rational coefficients in u, we denote by Ã the

series Ã(t, u) = A(tu, 1/u). Observe that ˜̃A = A. With this notation, if Rj is of the generic
form (16), the relation (14) holds if and only if

1 + ν = u
T̃

T

(1 + νZ)(1 + νZ3)(1 + ν̃Z̃)(1 + ν̃Z̃5)

(1 + νZ4)(1 + ν̃Z̃2)(1 + ν̃Z̃4)
. (17)

Let Rm[u] denote the space of polynomials in u, with real coefficients, of degree at most
m. Let Rn[u][[t]] denote the set of formal power series in t with polynomial coefficients in u
such that for all m ≤ n, the coefficient of tm has degree at most m. Observe that this set of
series in stable under the usual operations on series: sum, product, and quasi-inverse. Write
ν =

∑

n≥0 νn(u)tn. We are going to prove, by induction on n, that (17) determines uniquely

each coefficient νn(u), and that this coefficient belongs to Rn+1[u].
First, observe that for any formal power series ν, the right-hand side of (17) is u + O(t).

This implies ν0(u) = u − 1. Now assume that our induction hypothesis holds for all m < n.
Recall that Z is a multiple of t: this implies that νZ belongs to Rn[u][[t]]. The induction
hypothesis also implies that the coefficient of tm in uν̃ belongs to Rm+1[u], for all m < n.

Note that Z̃ = Z(tu) = tu+O(t2) is a multiple of t and u and also belongs to Rn[u][[t]]. This

implies that ν̃Z̃ belongs to Rn[u][[t]] too. The same is true for all the other series occurring

in the right-hand side of (17), namely T, T̃ , Z, Z̃. Given the closure properties of the set
Rn[u][[t]], we conclude that the right-hand side of (17), divided by u, belongs to this set.

Moreover, the fact that Z and Z̃ are multiples of t guarantees that the coefficient of tn in
this series only involves the νi(u) for i < n. By extracting the coefficient of tn in (17), we
conclude that νn(u) is uniquely determined and belongs to uRn[u] ⊂ Rn+1[u].

This completes the proof of the existence and uniqueness of the series ν satisfying (17).

Also, setting u = 1 (that is, T̃ = T and Z̃ = Z) in this equation shows that ν(t, 1) = 0.
Let us now replace t by tu and u by 1/u in (17). This gives:

1 + ν̃ =
1

u

T

T̃

(1 + ν̃Z̃)(1 + ν̃Z̃3)(1 + νZ)(1 + νZ5)

(1 + ν̃Z̃4)(1 + νZ2)(1 + νZ4)
. (18)
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In the above two equations, replace T by its expression (6) in terms of Z. Similarly, replace T̃

by its expression in terms of Z̃. Finally, it follows from (5) and from the fact that Z̃ = Z(tu)
that

u =
Z̃

Z

(1 + Z)4(1 + Z̃2)

(1 + Z̃)4(1 + Z2)
. (19)

Replace u by this expression in (17) and (18). Eliminate ν̃ between the resulting two equa-

tions: this gives a polynomial equation that relates ν, Z and Z̃, of degree 2 in ν. The
elimination of Z̃ between this quadratic equation and (19) provides an equation of degree
4 in ν that relates ν to Z and u. Finally, the elimination of Z shows that ν is algebraic of
degree 16 over Q(t, u).

Let us now focus on the first part of the proposition. From the form (16), and the fact
that ν has degree 4 over Q(u, Z) and Z has degree 4 over Q(t), we conclude that the degree
of Rj over Q(t, u) is a divisor of 16. Let us prove that is is actually a divisor of 8. The proof
goes as follows:

(1) Using the generic form (16), and the equations satisfied by T, Z and ν, we obtain a
polynomial equation of degree 8 over Q(t, u) for R0.

(2) Using (4) to express t in terms of T , and

u =
T 2

T̃ 2

1 − T̃

1 − T
,

(which also follows from (4)), we convert the equation satisfied by R0 into a polyno-

mial equation (still of degree 8 in R0) relating R0 to T and T̃ . This equation factors
into four quadratic polynomials in R0. The factor that actually vanishes is identified
by setting u = 1 (in which case T̃ = T = R0).

(3) From this equation, we conclude that R0 belongs to the extension of Q(T, T̃ ) gener-
ated by

√
∆1 =

√

(T + T̃ )2 − 4T T̃(T − 1)(T̃ − 1).

Observe that this extension of Q(t, u) is left invariant by the transformation A 7→ Ã.

(4) From the fact that R1 = uR̃0 (see (15)), we conclude that R1 also belongs to

Q(T, T̃ ,
√

∆1).
(5) The recurrence relation (13) on the Rj allows us to extends this to all Rj , for j ≥ 0.
(6) Finally, (15) shows that our algebraicity result actually holds for all Rj , for j ∈ Z.

Proof of Proposition 8. In the course of the proof of Proposition 7, we have obtained
a polynomial equation P (ν, Z, u) = 0, of degree 4 in ν, relating the series ν(t, u), Z(t), and
the variable u. This equation is not written in the paper (it is a bit too big), but it follows
from (17) and (18). In this equation, replace u by its expression in terms of δ and Z. Then
replace δ by its expression in terms of V : the resulting equation factors into two terms! Each
of them is quadratic in ν. In order to decide which of these factors cancels, one uses the fact
that when u = 1 (that is, V = 0), the series ν must be 0. It remains to solve a quadratic
equation in ν. Its discriminant is found to be ∆, and one may find convenient to introduce
the series P which is Lagrangian in V .

Remark. Again, the product form (16) of Proposition 7 includes as a special case the
enumeration of trees with labels at most j − 1, obtained when u = 0. Indeed, (17) shows
that ν = −1 when u = 0, and (16) then reduces to (7).
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3. The largest label, and the support of the ISE

Let T0 denote the set of labelled trees (rooted at 0), and let T0,n denote the subset of
T0 formed by trees having n edges. We endow T0,n with the uniform distribution. In other
words, any of its elements occurs with probability

1

2nCn

where Cn = 1
n+1

(

2n
n

)

is the nth Catalan number, and is well-known to be the number of

(unlabelled) plane trees with n edges.
Let Mn denote the random variable equal to the largest label occurring in a random tree

of T0,n. The law of Mn is related to the series Tj studied in Proposition 2:

P (Mn ≤ j) =
[tn]Tj

2nCn
.

Let us define a normalized version of Mn by

Nn =
Mn

n1/4
.

The aim of this section is to prove the convergence of Nn in distribution2.

Theorem 9. As n goes to infinity, the random variable Nn converges in distribution to a
non-negative random variable N . The tail distribution function of N , defined by G(λ) =
P(N > λ), satisfies

G(λ) =
12

i
√

π

∫

Γ

v5ev4

sinh2(λv)
dv =

6√
πλ6

∫ ∞

0

1 − cosu coshu

(cosh u − cosu)2
u5e−u4/(4λ4)du

where the contour Γ is formed of two half-lines:

Γ = {1 − te−iπ/4, t ∈ (∞, 0]} ∪ {1 + te−iπ/4, t ∈ [0,∞)}.
Equivalently, the variable N has density

f(λ) =
24

i
√

π

∫

Γ

cosh(λv)v6ev4

sinh3(λv)
dv =

6√
πλ11

∫ ∞

0

1 − cosu coshu

(coshu − cosu)2
u5(6λ4 − u4)e−u4/(4λ4)du

with respect to the Lebesgue measure on R+. The moments of N are finite, and admit simple
expressions:

E(N) =
3
√

π

2Γ(3/4)
, E(N2) = 3

√
π,

and for k ≥ 3,

E(Nk) =
24

√
πk!ζ(k − 1)

2kΓ((k − 2)/4)
.

Finally, the moments of Nn = Mn/n1/4 converge to the moments of N .

The functions G and f are plotted in Figure 5.
The proof of this theorem will be split into four subsections (Sections 3.1 to 3.4). In view of
the following proposition, this theorem gives the density, distribution function and moments
of the supremum of the support of the ISE.

2The above convention will be used throughout the paper: if a random variable depending on n is
denoted by some letter of the alphabet, then its suitably normalized version is denoted by the next letter of
the alphabet.
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Figure 5. The tail distribution function G and the density f of the limit
distribution N .

Proposition 10 (The supremum of the support of the ISE). Let Nise denote the
supremum of the support of the ISE

Nise = sup{y : µise(y,∞) > 0}.
Then Nise has the same law as the random variable

√
2N described in Theorem 9.

Remark. The moments of Nise are thus

E(Nise) =
3
√

π√
2Γ(3/4)

, E(N2
ise) = 6

√
π,

and for k ≥ 3,

E(Nk
ise) =

24
√

πk!ζ(k − 1)
√

2
k
Γ((k − 2)/4)

.

They were already obtained by Delmas [12] using a completely different (and continuous)
approach. The expressions he gives actually differ from ours by a factor 2k/4, due to a
different choice of normalization. Note that the zeta function also appears in the moments
of the maximum of the Brownian excursion, which follows a theta law [10]. This law is known
to describe the limiting normalized height of simple trees [16]. Finally, let us mention that
another, more complicated expression of the density of the limiting variable N was obtained
in [5] (maybe in a slightly less rigorous way). Proposition 10 is proved in Section 3.5.

3.1. Convergence of the distribution function

We prove in this section that the tail distribution function of Nn converges pointwise. Let
λ ≥ 0 and j = ⌊λn1/4⌋. The probability we are interested in is

P(Nn > λ) = P(Mn > λn1/4) = P(Mn > j) =
[tn]Uj(t)

2nCn
, (20)

where

Uj(t) ≡ Uj = T − Tj =
(1 + Z)

2
Zj+1

(

1 + Z + Z2
)

(1 − Z)
2

(1 + Z2) (1 − Zj+2) (1 − Zj+4)
(21)

is the generating function of trees having at least one label greater than j. This algebraic
series has a positive radius of convergence3, and by Cauchy’s formula,

[tn]Uj =
1

2iπ

∫

C
Uj(t)

dt

tn+1

=
1

2iπ

∫

C

(1 + Z)
2
Zj+1

(

1 + Z + Z2
)

(1 − Z)
2

(1 + Z2) (1 − Zj+2) (1 − Zj+4)

dt

tn+1
, (22)

for any contour C included in the analyticity domain of Uj and enclosing positively the origin.
This leads us to study the singularities of Uj , and therefore those of Z. We gather in the

following lemma a few properties of this series.

3So do all algebraic power series
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Lemma 11 (Analytic properties of Z). Let Z ≡ Z(t) be the unique formal power series
in t with constant term 0 satisfying (5). This series has non-negative integer coefficients.
It has radius of convergence 1/8, and can be continued analytically on the domain D =
C \ [1/8, +∞). In the neighborhood of t = 1/8, one has

Z(t) = 1 − 2(1 − 8t)1/4 + O(
√

1 − 8t). (23)

Moreover, |Z(t)| < 1 on the domain D. More precisely, the only roots of unity that are
accumulation points of the set Z(D) are 1 and −1, and they are only approached by Z(t)
when t tends to 1/8 and when |t| tends to ∞, respectively.

Proof. In order to establish the first statement, we observe that

Z = W (1 + Z)2

where W ≡ W (t) is the only formal power series in t with constant term zero satisfying

W = t + 2W 2. (24)

These equations imply that both W and Z have non-negative integer coefficients.

The general approach for studying the singularities of algebraic series (see for instance [18])
gives the second part of the lemma (up to (23)). The polynomial equation defining Z(t) has
leading coefficient t and discriminant 4(1− 8t)3, so that the only possible singularity of Z is
1/8. Alternatively, one can exploit the following closed form expression:

Z(t) =

√

1 − 4t +
√

1 − 8t
(

√

1 − 4t +
√

1 − 8t −
√

2(1 − 8t)1/4
)

4t
. (25)

Let us now come to the third part of the lemma, and prove that |Z(t)| never reaches 1 on
the domain D. Assume Z(t) = eiθ, with θ ∈ [−π, π]. From (5), one has

t = tθ where tθ =
cos θ

8 cos4(θ/2)
and θ ∈ (−π, π).

This shows that t is real, and belongs to (−∞, 1/8). But the expression (25) of Z(t) shows
that Z(t) is real, which contradicts the hypothesis Z(t) = eiθ, unless θ = 0. But then t = 1/8
and does not belong to the domain D. Hence the modulus of Z never reaches 1 on D. One
can actually prove that, for θ ∈ (−π, 0),

Z(tθ) =
1 + sin θ

cos θ
,

but we do not need so much precision here.
Finally, if a sequence tn of D is such that Z(tn) → eiθ as n → ∞, with θ ∈ (−π, π], then

either θ = π and, by (5), the sequence |tn| tends to ∞, or θ ∈ (−π, π) and tn converges to
tθ. But then by continuity, Z(tn) actually converges to Z(tθ), which, as argued above, only
coincides with eiθ when θ = 0, that is, tθ = 1/8. In this case, Z(tn) → 1.

Let us now go back to the evaluation of the tail distribution function of Nn via the

integral (22). We choose a contour C = Cn that depends on n and consists of two parts C(1)
n

and C(2)
n (see Figure 6):

• C(1)
n is an arc of radius rn/8 = (1 + log2 n/n)/8, centered at the origin; note that its

radius tends to 1/8 as n goes to infinity,

• C(2)
n is a Hankel contour around 1/8, at distance 1/(8n) of the real axis, which

meets C(1)
n at both ends; this contour shrinks around 1/8 as n goes to infinity; more

precisely, as t runs along C(2)
n , the variable z defined by

t =
1

8

(

1 +
z

n

)
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rn/8

1/8

C(1)
n

C(2)
n

Figure 6. The integration contour Cn.

runs over the truncated Hankel contour Hn shown on the right of Figure 7:

Hn = {x − i, x ∈ [0, xn]} ∪
{

−eiθ, θ ∈ [−π/2, π/2]
}

∪ {x + i, x ∈ [0, xn]}

where (1 + xn/n)2 + 1/n2 = r2
n, so that xn ≤ log2 n and xn = log2 n + O(1/n).

We denote by zn = xn + i the top right end of Hn. This point tends to infinity as n does.

The integral (22) on C = Cn is the sum of the contributions of the contours C(1)
n and C(2)

n .

We shall see that the dominant contribution is that of C(2)
n , because of the vicinity of the

singularity at t = 1/8.
Let us first bound carefully Z(t) for t ∈ Cn. Let tn ∈ Cn be such that

|Z(tn)| = max
t∈Cn

|Z(t)|.

By Lemma 11, |Z(tn)| tends to 1 as n grows. Moreover, every accumulation point a of the
sequence tn satisfies |a| ≤ 1/8 and |Z(a)| = 1. This forces a = 1/8, and we conclude that
tn → 1/8. Write tn = (1 − un)/8. Then un → 0, but |un| ≥ 1/n. By (23),

Z(tn) = 1 − 2u1/4
n (1 + o(1)) .

Let us write, for short, vn = 1 − Z(tn). Then vn → 0 but

|vn| = 2|un|1/4 (1 + o(1)) ≥ n−1/4 (26)

0

i

−1

xn ∼ log2 n

Hn

zn

0

i

−1

H

Figure 7. The Hankel contour H and its truncated version Hn.
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for n large enough. Moreover,

| arg vn| =
1

4
| arg(un)| + o(1) ≤ π

4
+ o(1),

so that

cos(arg vn) ≥ 1√
2

+ o(1).

Finally,

|Z(tn)|2 = |1 − vn|2 = 1 − 2|vn| cos(arg vn) + |vn|2 ≤ 1 −
√

2|vn| (1 + o(1)) ,

that is,

|Z(tn)| ≤ 1 − 1√
2
|vn| (1 + o(1)) ≤ 1 − 1

2
n−1/4.

The latter inequality follows from (26), and holds for n large enough. Finally, for t ∈ Cn,

1 − |Z(t)| ≥ 1

2
n−1/4. (27)

Let us now consider the integral on the contour C(1)
n . By Lemma 11, the quantity

(1 + Z)
2
Zj+1

(

1 + Z + Z2
)

(1 − Z)
2

1 + Z2

is uniformly bounded on this contour by some constant c, independant of n and t. Moreover,

|1 − Zj+2| ≥ 1 − |Z|j+2 ≥ 1 − |Z| ≥ 1

2
n−1/4

by (27). The same bound holds for the term 1 − Zj+4. Therefore the modulus of the

contribution of C(1)
n in the integral (22) is bounded by

4c 8nn1/2 r−n
n = O(8nn1/2−log n) = o(8n/nm) (28)

for any m > 0.

Let us now study the contribution of the contour C(2)
n . As t varies along C(2)

n , the variable
z defined by t = (1 + z/n)/8 varies along the contour Hn. As n goes to infinity, this contour
converges to the contour H shown on the left side of Figure 7. Let z ∈ H. Then z ∈ Hn for
n large enough, |z| ≤ |zn| ∼ log2 n, and, as n goes to infinity, the following approximations
hold with error terms independent of z:











































Z(t) = 1 − 2(−z)1/4n−1/4 + O
(

n−1/2 log n
)

1 − Z(t) = 2(−z)1/4n−1/4
(

1 + O(n−1/4
√

log n)
)

Z(t)j = exp(−2λ(−z)1/4)
(

1 + O(n−1/4log n)
)

(recall j = ⌊λn1/4⌋)

t−n−1 = 8n+1e−z
(

1 + O(log4 n/n)
)

.

(29)

Observe that, for z ∈ H, the real part of (−z)1/4 is bounded from below by a positive
constant α. Hence

| exp(−2λ(−z)1/4)| = exp(−2λℜ(−z)1/4) ≤ exp(−2λα),

so that exp(−2λ(−z)1/4) does not approach 1. This allows us to write

1

1 − Zj+2
=

1

1 − exp(−2λ(−z)1/4)

(

1 + O(n−1/4log n)
)

.
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Hence, uniformly in t ∈ C(2)
n , we have

Uj(t)t
−n−1 =

(1 + Z)
2
Zj+1

(

1 + Z + Z2
)

(1 − Z)
2

(1 + Z2) (1 − Zj+2) (1 − Zj+4)
t−n−1

=
6.8n+1

n1/2

√−ze−z

sinh2(λ(−z)1/4)
(1 + O(n−1/4 log n))

with 8t = 1 + z/n. Let us now integrate this over C(2)
n :

∫

C(2)
n

Uj(t)
dt

tn+1
=

6.8n

n3/2

∫

Hn

√−ze−z(1 + O(n−1/4 log n))

sinh2(λ(−z)1/4)
dz

=
6.8n

n3/2

(∫

H

√−ze−z

sinh2(λ(−z)1/4)
dz + o(1)

)

.

We now put together our estimates of the integrals on C(1)
n (Eq. (28)) and C(2)

n and obtain

[tn]Uj(t) =
6.8nn−3/2

2iπ

(∫

H

√−ze−z

sinh2(λ(−z)1/4)
dz + o(1)

)

.

Using (20) and the estimation Cn ∼ 4nn−3/2/
√

π, this gives

P(Nn > λ) → 3

i
√

π

∫

H

√−ze−z

sinh2(λ(−z)1/4)
dz.

The next step in our proof of Theorem 9 is to set v = (−z)1/4 in the above integral. As z
runs on H, the variable v runs on the contour J of Figure 8, and the corresponding integral
is easily seen to coincide with the integral on the contour Γ defined in the statement of the
theorem. This gives the first expression of G(λ).

–2

–1

0

1

2

0.5 1 1.5 2 2.5

Figure 8. The contours Γ (two half lines) and J .

We now want to express G(λ) as a real integral. We first observe that the integration
contour Γ can be replaced by its translated version

Γ0 = {−re−iπ/4, r ∈ (∞, 0]} ∪ {reiπ/4, r ∈ [0,∞)}.
This parametrization of Γ0 by r splits the integral into two real integrals, and one finds:

G(λ) = − 12√
π

∫ ∞

0

(

1

sinh2(λreiπ/4)
+

1

sinh2(λre−iπ/4)

)

r5e−r4

dr

=
48√
π

∫ ∞

0

1 − cos(
√

2λr) cosh(
√

2λr)

(cosh(
√

2λr) − cos(
√

2λr))2
r5e−r4

dr.
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The expected expression of G(λ) follows, upon setting u =
√

2λr.

3.2. The limit law and its density

We now want to prove that G(λ) is the tail distribution function of a random variable.
Since it is the limit of non-increasing functions, it is non-increasing. Its integral expressions
show that it is a continuous, and even a differentiable function of λ on (0, +∞). In order to
conclude, we still need to prove that [3, Thm. 14.1]

lim
λ→∞

G(λ) = 0 and lim
λ→0

G(λ) = 1.

In order to prove the first statement, we use the second expression of G(λ) given in the
theorem. We note that the function

u 7→ 1 − cosu coshu

(coshu − cosu)2

is well-defined, bounded and continuous on [0, +∞). Moreover, as u goes to infinity,
∣

∣

∣

∣

1 − cosu coshu

(coshu − cosu)2

∣

∣

∣

∣

= O(e−u),

so that the integral
∫ ∞

0

∣

∣

∣

∣

1 − cosu coshu

(cosh u − cosu)2

∣

∣

∣

∣

u5du

is convergent. The term 1/λ6 in the expression of G(λ) then implies the convergence of G(λ)
to 0 as λ → ∞.

In order to study the limit of G(λ) as λ → 0+, we consider instead the first expression of

G(λ). Since x2/ sinh2(x) is analytic in the disk of radius π, with expansion 1−x2/3+O(x4),
there exists a constant c such that for |v| ≤ π/(2λ),

∣

∣

∣

∣

1

sinh2(λv)
− 1

λ2v2
+

1

3

∣

∣

∣

∣

≤ cλ2|v|2. (30)

Let us write
∫

Γ

v5ev4

sinh2(λv)
dv =

∫

Γ

(

1

sinh2(λv)
− 1

λ2v2
+

1

3

)

v5ev4

dv +

∫

Γ

(

v3

λ2
− v5

3

)

ev4

dv.

Recall the Hankel expression of the reciprocal of the Gamma function, valid for any s ∈ C:

1

Γ(s)
=

1

2iπ

∫

H
(−z)−se−zdz =

2

iπ

∫

Γ

v3−4sev4

dv. (31)

Consequently,
∫

Γ

v3ev4

dv =
iπ

2Γ(0)
= 0,

∫

Γ

v5ev4

dv =
iπ

2Γ(−1/2)
= − i

√
π

4
,

and we can rewrite

G(λ) =
12

i
√

π

∫

Γ

v5ev4

sinh2(λv)
dv = 1 +

12

i
√

π

∫

Γ

(

1

sinh2(λv)
− 1

λ2v2
+

1

3

)

v5ev4

dv.

Let us cut the above integral into two parts, |v| ≤ π/(2λ) and |v| > π/(2λ). The first part
is easily seen to tend to 0 as λ does, thanks to (30). For the second part, we observe that
for λ|v| > π/2,

∣

∣

∣

∣

1

sinh2(λv)
− 1

λ2v2
+

1

3

∣

∣

∣

∣

is bounded (by a constant independent of λ and v), that the integral of v5ev4

on Γ is
absolutely convergent, and that the contour {v ∈ Γ : |v| > π/(2λ)} “shrinks to ∞” as λ → 0.
We finally conclude that G(λ) tends to 1 as λ → 0.
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Consequently, there exists a random variable N having distribution function 1 − G(λ),
and Nn converges in law to N . Since G is differentiable, N has a density with respect to the
Lebesgue measure on R+, which is f(λ) = −G′(λ). The two expressions of G given in the
theorem provide the two expressions of f .

3.3. The moments of N

Let us first prove that for all k ≥ 0, the tail distribution function of N satisfies

G(λ) = o(λ−k) as λ → ∞. (32)

This is easily seen to imply the existence of moments of N of all orders. In order to prove
the above bound, we write

G(λ) =
24

iλ
√

π

∫

Γ

v4(5 + 4v4)ev4

e2λv − 1
dv.

This is obtained from the first expression of G(λ) using an integration by parts. Now, for
λ > 0 and v ∈ Γ,

|e2λv − 1| ≥ |e2λv| − 1 = e2λℜ(v) − 1 ≥ e2λ − 1.

From this, and from the term ev4

in the integral, we conclude that there exists a constant c
such that

G(λ) ≤ c

e2λ − 1
.

The bound (32) follows. This bounds also guarantees that for k ≥ 1,

E(Nk) = k

∫ ∞

0

λk−1G(λ)dλ. (33)

The generic case: k ≥ 3. Recall the following integral representations of the Riemann
zeta function: for ℜ(s) > 1,

ζ(s) =
1

Γ(s)

∫ ∞

0

ws−1

ew − 1
dw =

1

4Γ(s + 1)

∫ ∞

0

ws

sinh2(w/2)
dw =

2s−1

Γ(s + 1)

∫ ∞

0

ys

sinh2(y)
dy.

The second expression follows from the first one after an integration by parts.
Let us now combine (33) with the first expression of G(λ):

E(Nk) =
12k

i
√

π

∫ ∞

0

λk−1dλ

∫

Γ

v5ev4

sinh2(λv)
dv. (34)

Assume for the moment that we can exchange the order of integration (this will be justified
later). Exchange the integrals, and replace the variable λ by y/v, where y is a new variable:

E(Nk) =
12k

i
√

π

∫

Γ

v5−kev4

dv

∫

vR+

yk−1

sinh2(y)
dy.

For k ≥ 3, the function y 7→ yk−1/sinh2(y) is meromorphic on C, with poles at ikπ for k ∈ Z

and k 6= 0. From this, and from the strong decay of this function as ℜ(y) → ∞, it follows
that the integral on y is actually independent of the choice of v ∈ Γ. In particular, it is equal
to its value at v = 1, which is

∫ ∞

0

yk−1

sinh2(y)
dy =

4Γ(k)ζ(k − 1)

2k
,

as recalled above. The integral on v is then evaluated in terms of the Gamma function
using (31), and the expected expression of E(Nk) follows.

It remains to justify the exchange of integrals in (34). Observe that

| sinh(y)| = |ey − e−y|/2 ≥
(

|ey| − |e−y|
)

/2 = sinh(ℜ(y)),
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so that for v ∈ Γ,
1

| sinh2(λv)|
≤ 1

sinh2(λ)
.

Moreover, the integral of v5ev4

along Γ is absolutely convergent, and so is the integral of
λk−1/ sinh2(λ) over R+. It follows that the integral (34), once converted into two real
integrals, is absolutely convergent, so that the integrals can be exchanged.

The case k = 1. We cannot apply exactly the same procedure as above, because the integral
of 1/ sinh2(λ) over R+ is divergent. However, in view of (31), we can write

G(λ) =
12

i
√

π

∫

Γ

v5ev4

(

1

sinh2(λv)
− 1

λ2v2

)

.

Also, replacing Γ by Γ0 in the latter integral does not change its value. The technique is
then the same as above:

E(N) =
12

i
√

π

∫ ∞

0

dλ

∫

Γ0

v5ev4

(

1

sinh2(λv)
− 1

λ2v2

)

dv (35)

=
12

i
√

π

∫

Γ0

v4ev4

dv

∫

vR+

(

1

sinh2(y)
− 1

y2

)

dy

(assuming we can change the order of integration). Again, the integral on y is independent
of v, and equal to

∫ ∞

0

(

1

sinh2(y)
− 1

y2

)

dy =

[

1

y
− 2

e2y − 1

]∞

0

= −1.

Using again (31) to evaluate the integral on v, one finds

E(N) = − 6
√

π

Γ(−1/4)
=

3
√

π

2Γ(3/4)
.

In order to justify the exchange of integrals in (35), we wish to prove that (35) is abso-
lutely convergent. In order to do so, we split the integral over Γ0 into two real integrals,
corresponding respectively to v = reiπ/4 and v = re−iπ/4. We are thus led to prove that

∫ ∞

0

dλ

∫ ∞

0

r5e−r4

∣

∣

∣

∣

1

sinh2(λreiπ/4)
− 1

iλ2r2

∣

∣

∣

∣

dr

is absolutely convergent (and a similar result when i is replaced by −i). But we can exchange
the order of integration in this integral of positive functions. Doing so, and setting λ = y/r
as above, proves that this integral is finite.

The case k = 2. Let us start from another expression of G(λ), obtained by writing v = w/λ:

G(λ) =
12

i
√

πλ6

∫

λΓ

w5

sinh2(w)
ew4/λ4

dw =
12

i
√

πλ6

∫

Γ

w5

sinh2(w)
ew4/λ4

dw.

The second expression follows from the analyticity properties of the integrand. Now, take
ǫ > 0, and let us evaluate

∫ ∞

ǫ

λG(λ)dλ =
12

i
√

π

∫ ∞

ǫ

1

λ5
dλ

∫

Γ

w5

sinh2(w)
ew4/λ4

dw (36)

=
12

i
√

π

∫

Γ

w5

sinh2(w)
dw

∫ ∞

ǫ

ew4/λ4

λ5
dλ

=
12

i
√

π

∫

Γ

w5

sinh2(w)

[

−ew4/λ4

4w4

]∞

ǫ

dw

=
3

i
√

π

∫

Γ

w

sinh2(w)

(

ew4/ǫ4 − 1
)

dw.
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The absolute convergence of integrals that legitimates the exchange of integrals in (36) is,
this time, obvious (thanks to the fact that λ > ǫ). Now, the analyticity of the function

w 7→ w/sinh2(w) for ℜ(w) > 0, and its strong decay as ℜ(w) → ∞, imply that
∫

Γ

w

sinh2(w)
dw = 0.

Hence
∫ ∞

ǫ

λG(λ)dλ =
3

i
√

π

∫

Γ

wew4/ǫ4

sinh2(w)
dw =

3ǫ2

i
√

π

∫

Γ

vev4

sinh2(ǫv)
dv

=
3

i
√

π

∫

Γ

ev4

v
dv + o(1) =

3
√

π

2
(by (31)).

Now, observe that

2

∫ ∞

ǫ

λG(λ)dλ = E(N21N>ǫ) − ǫ2G(ǫ).

The announced expression of the second moment of N follows.

3.4. Convergence of the moments of Nn

In this section, we prove that the moments of Nn = Mn/n1/4 converge to the correspond-
ing moments of N . In order to do so, we first express E(Mk

n ) as the coefficient of tn in a
certain series. Then, we apply the general consequences of the analysis of singularities: if
this series is regular enough (with a precise meaning of regular), one can derive the asymp-
totic behaviour of its coefficients from the singular behaviour of the series near its dominant
singularities [17].

Recall that the series Uj , given by (21), counts the trees that contain at least one label
larger than j. Hence Uj−1 − Uj counts the trees having maximal label j. Also, note that

Uj = V (Zj) − V (Zj+2), (37)

where

V (x) =
xZ(1 + Z)(1 − Z3)

(1 + Z2)(1 − xZ2)
.

Consequently, for k ≥ 1,

E(Mk
n) =

1

2nCn

∑

j≥1

jk[tn](Uj−1 − Uj) =
1

2nCn
[tn]

∑

j≥0

(

(j + 1)k − jk
)

Uj. (38)

For k = 1, this gives

2nCnE(Mn) = [tn]
∑

j≥0

(

V (Zj) − V (Zj+2)
)

= [tn] (V (1) + V (Z)) = [tn]
Z(1 + 2Z + 2Z2)

1 + Z2
.

By Lemma 11, the latter series is analytic in C \ [1/8,∞). The generic consequences of the
analysis of singularities apply: one can derive the asymptotic behaviour of the coefficients
from the singular behaviour of the series [17]. Given that, when t → 1/8,

Z(1 + 2Z + 2Z2)

1 + Z2
=

5

6
− 6(1 − 8t)1/4 + O(

√
1 − 8t),

the behaviour of the nth coefficient of this series is

[tn]
Z(1 + 2Z + 2Z2)

1 + Z2
= −6

8nn−5/4

Γ(−1/4)
(1 + o(1)) =

3

2

8nn−5/4

Γ(3/4)
(1 + o(1)).

It remains to divide by 2nCn ∼ 8nn−3/2/
√

π to conclude that

E(Mnn−1/4) → 3
√

π

2Γ(3/4)
,
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which is also the first moment of N .
Now, by combining the expression (37) of Uj and (38), one obtains, for k ≥ 2,

2nCnE(Mk
n) = [tn]



V (1) + (2k − 1)V (Z) +
∑

j≥2

(

(j + 1)k − jk − (j − 1)k + (j − 2)k
)

V (Zj)



 .

(39)
Observe that (j + 1)k − jk − (j − 1)k + (j − 2)k is a polynomial in j of degree k − 2 and
leading coefficient 2k(k − 1). Let

Aℓ(t) =
∑

j≥−1

(j + 2)ℓV (Zj).

We are going to prove that, for ℓ ∈ N,

an(ℓ) := [tn]Aℓ(t) =











3

4

8n

n
if ℓ = 0,

3.8nℓ!ζ(ℓ + 1)nℓ/4−1

2ℓΓ(ℓ/4)
if ℓ ≥ 1.

(40)

Assume for the moment this is proved, and let us conclude about the limiting moments of
Nn = Mnn−1/4. First, we observe that for j ≥ 0, V (Zj) has (only) a fourth root singularity,
so that the coefficient of tn in V (Zj) grows like 8nn−5/4, up to a multiplicative constant.
This observation, combined with (39) and the above asymptotics of an(ℓ), implies that the
dominant term in the asymptotic behaviour of 2nCnE(Mk

n) is that of 2k(k − 1)an(k − 2).
After normalizing by 2nCnnk/4, this gives

E(Mk
nn−k/4) →







3
√

π if k = 2,
24

√
πk!ζ(k − 1)

2kΓ((k − 2)/4)
if k ≥ 3.

These limiting moments are exactly those of N .

It remains to study the asymptotic behaviour of the numbers an(ℓ) (for ℓ fixed, and n
going to infinity). We have:

Aℓ(t) =
(1 + Z)(1 − Z3)

Z(1 + Z2)

∑

j≥1

jℓ Zj

1 − Zj

=
(1 + Z)(1 − Z3)

Z(1 + Z2)

∑

j≥1,m≥1

jℓZjm

=
(1 + Z)(1 − Z3)

Z(1 + Z2)

∑

N≥1

ZNσℓ(N)

where

σℓ(N) =
∑

j|N
jℓ.

The function

Dℓ(z) =
∑

N≥1

zNσℓ(N)

is easily seen to have radius of convergence 1. Moreover, as z tends to 1 in such a way
| arg(1 − z)| < φ < π/2,

Dℓ(z) ∼















1

1 − z
log

(

1

1 − z

)

if ℓ = 0,

ℓ!ζ(ℓ + 1)

(1 − z)ℓ+1
if ℓ ≥ 1
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(this can be obtained using a Mellin transform [16, 15]). The above expression of Aℓ(t),
combined with Lemma 11 and these properties of Dℓ(z), shows that Aℓ(t) is analytic in the
domain D = C \ [1/8,∞). Moreover, since | arg(1 − Z)| ≤ π/4 + o(1) as t → 1/8 in D, we
can use the above estimates of Dℓ(z). This gives

Aℓ(t) ∼















−3 log 2 +
3

4
log

(

1

1 − 8t

)

if ℓ = 0,

3ℓ!ζ(ℓ + 1)

2ℓ(1 − 8t)ℓ/4
if ℓ ≥ 1.

The generic results derived from the analysis of singularities apply, and give the asymptotic
behaviour (40) of the numbers an(ℓ). This concludes the proof of Theorem 9.

3.5. The supremum of the support of the ise

Let us finally prove Proposition 10. The following argument requires a detour via discrete
snakes and Brownian snakes. We refer to [21, 23, 20] for definitions and notation4. In
particular, we use the following integral representation of the random measure µise: for any
continuous bounded function g on R,

∫

R

g(y)dµise(y) =

∫ 1

0

g(r(t))dt (41)

where r(.) is a random process, continuous on [0, 1], called the head of the Brownian snake.
In other words, µise is the occupation measure of the process r. (Again, the definition of r
varies from one paper to the other. The above formula fixes our normalization of r.)

The random variable Nn = Mnn−1/4 coincides with max(rn), where rn is the (normal-

ized) head of the discrete snake associated with our tree family. The random process
√

2rn

converges weakly to r, the head of the Brownian snake [23]. Since max is a continuous func-

tional on C[0, 1], this implies that
√

2Nn =
√

2 max(rn) converges in distribution to max(r).

Thus max(r) has density f(λ/
√

2)/
√

2, where f is defined in Theorem 9.

λ + ǫλ

1

x

fλ,ǫ(x)

λ

1

gλ,ǫ(x)

λ − ǫ λ + ǫλ

x

1

hλ,ǫ(x)

λ − ǫ

Figure 9. The functions fλ,ǫ, gλ,ǫ and hλ,ǫ.

It remains to prove that max(r) is equal (in distribution) to Nise, the supremum of the
support of the ISE. Let λ ∈ R and ǫ > 0. Let fλ,ǫ be the function plotted on the left-hand
side of Figure 9. We have

Nise ≤ λ ⇐⇒ µise(−∞, λ] = 1 ⇐⇒
∫

R

fλ,1(y)dµise(y) = 1.

Thanks to (41), this gives

Nise ≤ λ ⇐⇒
∫ 1

0

fλ,1(r(t))dt = 1

4We warn the reader that normalizations change from one paper to another.
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Taking probabilities yields to

P(Nise ≤ λ) = P

(∫ 1

0

fλ,1(r(t))dt = 1

)

= P(max(r) ≤ λ),

since r is almost surely continuous.

4. A local limit law

For j ∈ Z, let Xn(j) denote the random variable equal to the number of nodes having
label j in a random tree of T0,n. This quantity is related to the series Sj(t, u) studied in
Proposition 4. In particular,

E

(

eaXn(j)
)

=
[tn]Sj(t, e

a)

2nCn
.

Also, observe that

Xn(j) = 0 ⇐⇒ Mn < j,

where Mn is the largest label, studied in the previous section. Let us define a normalized
version of Xn(j) by

Yn(j) =
Xn(j)

n3/4
.

Let λ ∈ R. The aim of this section is to prove that Yn(⌊λn1/4⌋) converges in distribution,
as n goes to infinity, to a random variable Y (λ) that we describe by its Laplace transform.
This is achieved in Theorem 14 below, but we first want to present two consequences of this
theorem, which have a simpler formulation. The first consequence deals with the case λ = 0.
Recall that, up to a normalization by n3/4, the random variable Yn(0) gives the number of
nodes labelled 0 in a tree rooted at 0.

Proposition 12 (The number of nodes labelled 0). As n goes to infinity, the random

variable 3Yn(0)/
√

2 converges in distribution to T−1/2, where T follows a unilateral stable
law of parameter 2/3. The convergence of the moments holds as well: for k ≥ 0,

E
(

Yn(0)k
)

→
(√

2

3

)k
Γ(1 + 3k/4)

Γ(1 + k/2)
=

(√
2

3

)k

E(T−k/2).

This proposition will be proved in Section 4.2. I am indebted to Alain Rouault, who rec-
ognized that the above moments were related to T . Recall that T is given by its Laplace
transform:

E(e−aT ) = e−a2/3

for a ≥ 0.

The second consequence of Theorem 14 is an explicit expansion in λ of the limiting first
moment of Yn(j).

Proposition 13 (The first moment). Let λ ∈ R. Denote j = ⌊λn1/4⌋. Then, as n goes
to infinity,

E (Yn(j)) → 1√
π

∑

m≥0

(−2|λ|)m

m!
cos

(m + 1)π

4
Γ

(

m + 3

4

)

.

This function of λ is plotted on Figure 10.

Similar, but more and more complicated expressions may be written for the next moments of
Y (λ). This proposition will be proved in Section 4.3. Let us, finally, state our main theorem,
from which the two above propositions derive.
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Figure 10. The average number of nodes labelled ⌊λ√n⌋ in a tree of size
n, when n → ∞.

Theorem 14 (A local limit law). Let λ ≥ 0. The sequence Yn(⌊λn1/4⌋) converges in
distribution to a non-negative random variable Y (λ) whose Laplace transform is given, for

|a| < 4/
√

3, by

E

(

eaY (λ)
)

= L(λ, a)

where

L(λ, a) = 1 +
48

i
√

π

∫

Γ

A(a/v3)e−2λv

(1 + A(a/v3)e−2λv)2
v5ev4

dv,

A(x) ≡ A is the unique solution of

A =
x

24

(1 + A)3

1 − A
(42)

satisfying A(0) = 0, and the integral is taken over

Γ = {1 − te−iπ/4, t ∈ (∞, 0]} ∪ {1 + te−iπ/4, t ∈ [0,∞)}.
More precisely, the Laplace transform of Yn(⌊λn1/4⌋) converges pointwise to L(λ, ·) on the

interval (−4/
√

3, 4/
√

3). The convergence of moments holds as well.

It is believed (or known?) that the random measure µise is almost surely absolutely
continuous with respect to the Lebesgue measure on R. Eq. (2) leads us to the following
conjecture.

Conjecture 15 (The density of the ISE). There exists a random continuous process
fise(λ), defined for λ ∈ R, such that µise = fiseLeb, where Leb denotes the Lebesgue measure
on R. Moreover, fise(λ) satisfies

fise(λ)
d
=

1√
2

Y

( |λ|√
2

)

,

where the law of Y (λ) is given in Theorem 14.

Comments
1. The limit random variable Y (λ) equals 0 with a positive probability as soon as λ > 0.
Indeed, by the portmanteau Theorem [14, Thm. 11.1.1],

P(Y (λ) = 0) ≥ lim sup P(Yn(⌊λn1/4⌋) = 0) = lim sup P(Mn < ⌊λn1/4⌋).
But, by Theorem 9,

P(Mn < ⌊λn1/4⌋) → 1 − G(λ) > 0.
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2. Let us add a few words on the series A(x) defined by (42), in order to convince ourselves
that the integral giving L(λ, a) is well-defined. Clearly, the expansion of A(x) at x = 0
has non-negative coefficients. Looking at the discriminant of the equation that defines A
shows that A has radius of convergence at least 4/

√
3. Moreover, it is easy to prove that

A(4/
√

3) = 2 −
√

3 = 0.26 . . . Consequently, |A(x)| is bounded by 2 −
√

3 for |x| ≤ 4/
√

3.

Since |v| ≥ 1 for v ∈ Γ, the modulus of A(a/v3) is bounded from above by 2−
√

3. Moreover,
ℜ(v) ≥ 1, so that |e−2λv| ≤ e−2λ < 1. Hence

A(a/v3)e−2λv

(1 + A(a/v3)e−2λv)2

is uniformly bounded on Γ, and L(λ, a) is well-defined.
Note that the series A(x) admits the following closed form expression:

A(x) =
2

1 + 2√
3

cos(arccos(−x
√

3/4)
3 )

− 1. (43)

This can be checked by proving that this expression satisfies (42) and the initial condition
A(0) = 0.

4.1. Proof of Theorem 14

Let λ ≥ 0 and j = ⌊λn1/4⌋. Let us first express the Laplace transform of Yn(j) in terms
of the generating functions Sj(t, u) of Proposition 4:

E

(

eaYn(j)
)

= E

(

ean−3/4Xn(j)
)

=
[tn]Sj(t, e

an−3/4

)

2nCn
. (44)

Again, we will evaluate this Laplace transform thanks to the analysis of singularities [17].
We wish to use again the integration contour Cn of Figure 6. This requires to prove that

Sj(t, u) is analytic in a neigborhood of this contour (for n large and u = ean−3/4

). This is
guaranteed by the following lemma. This lemma naturally includes some properties of the
series µ involved in the product form (11) of Sj . We denote by In the part of the complex
plane enclosed by Cn (including Cn itself).

Lemma 16 (Analytic properties of µ and Sj). Let a be a real number such that |a| <

4/
√

3. Then there exists ǫ > 0 such that for n large enough, the series µ(t, un), with un =

ean−3/4

, is analytic in the domain

En = {t : |t − 1/8| > 1/((8 + ǫ)n)} \ [1/8, +∞).

In particular, µ(t, un) is analytic in a neighborhood of In. Its modulus in In is smaller
than α, for some α < 1 independent of a and n. The series Sj(t, un) is also analytic in a
neighborhood of In.

Proof. The lemma is clear if a = 0: in this case, un = 1, the series µ(t, un) vanishes, and
the series Sj reduces to the size generating function of labelled trees, namely T , which is

analytic in C \ [1/8,∞). We now assume that a 6= 0 and |a| < 4/
√

3. This guarantees that
A(a) is well-defined, where the series A is defined in Theorem 14.

Let us first study the singularities of the series µ̄ ≡ µ̄(z, u) defined as the unique formal
power series in z satisfying

µ̄ = (u − 1)
(1 + z2)(1 + µ̄z)(1 + µ̄z2)(1 + µ̄z3)

(1 + z)(1 + z + z2)(1 − z)3(1 − µ̄z2)
.

Note that µ̄ has polynomial coefficients in u, and vanishes when u = 1. Assume that u is a
fixed real number close to, but different from, 1. Recall that, as all algebraic formal power
series, µ̄(t, u) has a positive radius of convergence. Let us perform a classical analysis to
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detect its possible singularities. These singularities are found in the union of two sets S1 and
S2:

• S1 is the set of non-zero roots of the dominant coefficient of the equation defining µ̄.
That is, S1 = {±i} ,

• S2 is the set of the roots of the discriminant of the equation defining µ̄. For u = 1 + x
and x small, these roots are found to be

z = ±1, z = −1 + O(x), z = e±2iπ/3 + O(x), z = 1 + ω121/6x1/3 + O(|x|2/3),

where ω satisfies ω6 = 1. (The term ω allows us to write loosely x1/3 without saying which
determination of the cubic root we take.)
Observe that the moduli of all these “candidates for singularities” go to 1 as x goes to 0.

Now the series µ = µ(t, u) involved in the expression (11) of Sj(t, u) satisfies

µ(t, u) = µ̄(Z(t), u)

where Z(t) is defined by (5). In other words, we could have defined the series µ̄ by

µ̄(z, u) = µ

(

z(1 + z2)

(1 + z)4
, u

)

.

Recall that Z is analytic in the domain D = C \ [1/8,∞). Take u = un = ean−3/4

= 1 + x,
with x = an−3/4(1 + o(1)). By Lemma 11, for n large, the only values of S1 ∪ S2 that may
be reached by Z(t), for t ∈ D, are of the form

z = 1 + ω121/6a1/3n−1/4 + O(n−1/2).

In view of (5), these values of Z(t) are reached for

t =
1

8
− ω4(12)2/3

128

a4/3

n
+ O(n−5/4).

Since |a| < 4/
√

3, these values of t are at distance less than 1/((8 + ǫ)n) of 1/8, for some
ǫ > 0, and hence outside the domain En. Consequently, µ(t, un) is analytic inside En.

We now want to bound µ(t, un) inside In. Let tn ∈ In be such that

|µ(tn, un)| = max
t∈In

|µ(t, un)|.

In particular, |µ(tn, un)| ≥ |µ((1−1/n)/8, un)|. In order to evaluate the latter quantity, note
that Z((1−1/n)/8) = 1−2n−1/4+O(n−1/2). Thanks to the closed form expression of µ given
in Proposition 5, and to the expression (43) of the series A, we see that µ((1−1/n)/8, un) →
A(a). Since a 6= 0, A(a) 6= 0, and for n large enough,

|µ(tn, un)| ≥ |µ((1 − 1/n)/8, un)| = |A(a)| + o(1) > 0. (45)

Recall that all the sets In are included in a ball of finite radius centered at the origin. Let
α be an accumulation point of the sequence tn. Then |α| ≤ 1/8.

Assume first that α 6= 1/8. Then there exists N such that α is in En for all n ≥ N , that
is, in the analyticity domain of µ(·, un). Let tn1 , tn2 , . . . converge to α. By continuity of µ
in t and u, we have

µ(tni , uni) → µ(α, 1) = 0.

This contradicts (45). Hence the only accumulation point of tn is 1/8, and tn converges to
1/8. Let us thus write

tn =
1

8

(

1 − xn

n

)

.

We have xn = o(n), but also |xn| > 1 since tn belongs to In. We wish to estimate µ(tn, un).
From the singular behaviour of Z (Lemma 11), we derive

Z(tn) = 1 − 2
(xn

n

)1/4

+ O

(

(xn

n

)1/2
)

.
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Moreover,

un − 1 = an−3/4
(

1 + O(n−3/4)
)

.

This gives
un − 1

(1 − Z)3
=

a

8x
3/4
n

(

1 + O

(

(xn

n

)1/4
))

.

If the sequence xn was unbounded, then there would exist a subsequence xni converging to
infinity. Then (uni − 1)/(1 − Z)3 would tend to 0. The closed form expression of µ given
in Proposition 5 implies that µ(tni , uni) would tend to 0, contradicting (45). Hence the
sequence xn is bounded, and one derives from the explicit expressions of µ and A that

µ(tn, un) = A(ax−3/4
n ) + o(1).

Since A is bounded by 2 −
√

3 inside its disk of convergence, |µ(tn, un)| is certainly smaller
than some α for α < 1 and n large enough. This concludes the proof of the second statement
of Lemma 16.

By continuity of µ(t, un), this function of t is still bounded by 1 (in modulus) is a neigh-
borhood of In. Recall also that the modulus of Z(t) never reaches 1 for t ∈ C \ [1/8,∞).
The form (11) then implies that Sj(t, un) is an analytic function of t in a neigbourhood of
In.

Let us now go back to the expression (44) of the Laplace transform of Yn(j). Thanks to
the lemma we have just proved, we can use the Cauchy formula to extract the coefficient of
tn in Sj(t, un). We use the following expression of Sj :

Sj = T + T
(1 − Z)2(1 + Z + Z2)µZj

(1 + µZj+1)(1 + µZj+3)
,

which is easily derived from (11). Thus

[tn]Sj(t, un) = 2nCn +
1

2iπ

∫

Cn

T
(1 − Z)2(1 + Z + Z2)µZj

(1 + µZj+1)(1 + µZj+3)

dt

tn+1
.

Again, we split the contour Cn into two parts C(1)
n and C(2)

n , shown in Figure 6. As in the

proof of Theorem 9, the contribution of C(1)
n is easily seen to be o(8n/nm) for all m > 0,

thanks to the results of Lemmas 11 and 16. On C(2)
n , one has

t =
1

8

(

1 +
z

n

)

where z lies in the truncated Hankel contour Hn. Conversely, let z ∈ H. Then z ∈ Hn

for n large enough, and, in addition to the estimations (29) already used in the proof of
Theorem 9, one finds

µ(t, un) = A(a(−z)−3/4)(1 + o(1)), (46)

where A(x) is the series defined by (42). After a few reductions, one finally obtains

[tn]Sj(t, un) = 2nCn+
12.8nn−3/2

iπ

∫

H

A(a(−z)−3/4) exp(−2λ(−z)1/4)
√−ze−z

(1 + A(a(−z)−3/4) exp(−2λ(−z)1/4))2
dz+o(8nn−3/2).

It remains to normalize by 2nCn = 8nn−3/2/
√

π, and then to set v = (−z)1/4 to obtain the
expected expression for the limit of the Laplace transform of Yn(j), with j = ⌊λn1/4⌋.

The limit Laplace transform L(λ, a) is clearly continuous at a = 0, and equals 1 at this
point. A version of Lévy’s continuity theorem [14, Thm. 9.8.2] adapted to Laplace transforms
implies that the sequence Yn(j) converges in distribution to a limit random variable Y (λ)
having Laplace transform L(λ, ·).
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From the convergence of the Laplace transform in a neighbourhood of the origin, it is
easy to derive that for every k, the sequence of random variables Yn(j)k is uniformly inte-
grable. But then the convergence in distribution implies the convergence of the moments [4,
Thm. 5.4]. This concludes the proof of Theorem 14.

4.2. Proof of Proposition 12

When λ = 0, the limiting Laplace transform reduces to

L(0, a) = 1 +
48

i
√

π

∫

Γ

A(a/v3)

(1 + A(a/v3))2
v5ev4

dv = 1 +
12

i
√

π

∫

Γ

χ(a/v3)

1 + χ(a/v3)
v5ev4

dv

where χ(x) is the unique series in x satisfying

χ =
x

6
(1 + χ)3/2.

The Lagrange inversion formula [25, p. 38] gives, for k ≥ 1,

[xk]
χ(x)

1 + χ(x)
=

1

6k

Γ(3k/2 − 1)

k!Γ(k/2)
.

Consequently,

L(0, a) = 1 +
12

i
√

π

∫

Γ

∑

k≥1

1

6k

Γ(3k/2 − 1)

k!Γ(k/2)
akv5−3kev4

dv.

The convergence is absolute, so that we can exchange the sum and the integral:

L(0, a) = 1 +
12

i
√

π

∑

k≥1

1

6k

Γ(3k/2 − 1)

k!Γ(k/2)
ak

∫

Γ

v5−3kev4

dv.

Using (31), and picking the coefficient of ak, we find that the kth moment of the random
variable Y (0) is

E(Y (0)k) =

√
π

6k−1

Γ(3k/2 − 1)

Γ(k/2)Γ((3k − 2)/4)
.

The duplication formula,

22s−1Γ(s)Γ(s + 1/2) =
√

π Γ(2s),

applied to s = (3k − 2)/4, finally gives

E(Y (0)k) =

(√
2

3

)k
Γ(1 + 3k/4)

Γ(1 + k/2)
= lim

n→∞
E
(

Yn(0)k
)

.

Since Y (0) has a Laplace transform, it is uniquely determined by its moments [3, Thm. 30.1].
But

mk =
Γ(1 + 3k/4)

Γ(1 + k/2)

is known to be the kth moment of T−1/2, where T follows a unilateral stable law of parameter
2/3 (see [9, p. 111]). Proposition 12 follows.



30 MIREILLE BOUSQUET-MÉLOU

4.3. Proof of Proposition 13

We have derived above the moments of Y (0) from the expression of its Laplace transform.
This extends to the moments of Y (λ), for λ > 0: for k ≥ 1,

E(Y (λ)k) =
48.k!

i
√

π

∫

Γ

[ak]
A(a/v3)e−2λv

(1 + A(a/v3)e−2λv)2
v5ev4

dv.

Since A(x) = x/24 + O(x2), the case k = 1 of the above identity reads

E(Y (λ)) =
2

i
√

π

∫

Γ

e−2λvv2ev4

dv.

In the above expression, expand the exponential as a series. The convergence of the sum
and integral is absolute, so that one can exchange them. This gives:

E(Y (λ)) =
2

i
√

π

∑

m≥0

(−2λ)m

m!

∫

Γ

vm+2ev4

dv.

Using (31) (which is valid for any s with the convention 1/Γ(−n) = 0 for n ∈ N), this can
be rewritten as

E(Y (λ)) =
√

π
∑

m≥0

(−2λ)m

m!Γ((1 − m)/4)
=

1√
π

∑

m≥0

(−2λ)m

m!
Γ

(

m + 3

4

)

cos

(

(m + 1)π

4

)

.

The last equality follows from the complement formula,

Γ(s)Γ(1 − s) =
π

sin(πs)
. (47)

5. A global limit law, and the distribution function of the ISE

In Section 4, we have derived from Proposition 4 some local limit results; for instance,
a limit law for Xn(0)/n3/4, the (normalized) number of nodes labelled 0. In this section,
we proceed with a similar study, which aims at deriving from Proposition 7 a global limit
result — in particular, the limit law of X+

n (0)/n, the normalized number of nodes having a
non-negative label. The technique is copied on Section 4, and we do not give all the details.

For j ∈ Z, let X+
n (j) denote the random variable equal to the number of nodes having

label at least j in a random tree of T0,n. Let us define a normalized version of X+
n (j) by

Y +
n (j) =

X+
n (j)

n
.

These quantities are related to the series Rj(t, u) studied in Proposition 7. In particular,

E

(

eaY +
n (j)

)

= E

(

ean−1X+
n (j)

)

=
[tn]Rj(t, e

a/n)

2nCn
.

We extend the definition of X+
n and Y +

n to real values in a natural way by setting X+
n (x) =

X+
n (⌈x⌉) and Y +

n (x) = Y +
n (⌈x⌉). Let λ ≥ 0. The aim of this section is to prove that

Y +
n (λn1/4) converges in distribution, as n goes to infinity, to a random variable Y +(λ) that

we describe by its Laplace transform. This is achieved in Theorem 19 below, but we first
want to present two consequences of this theorem, which have a simpler formulation. The
first consequence is a striking limit law for Y +

n (0). Recall that, up to a normalization by n,
this random variable gives the number of nodes having a non-negative label in a tree rooted
at 0.

Proposition 17 (The number of non-negative nodes). As n goes to infinity, the ran-
dom variable Y +

n (0) converges in law to the uniform distribution on [0, 1].

This proposition will be proved in Section 5.2. The second consequence of Theorem 19 is an
explicit expansion in λ of the limiting first moment of Y +

n (λn1/4).
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Proposition 18 (The first moment). Let λ ≥ 0. Then, as n goes to infinity,

E

(

Y +
n (λn1/4)

)

→ 1

2
√

π

∑

m≥0

(−2λ)m

m!
cos
(mπ

4

)

Γ

(

m + 2

4

)

.

This proposition will be proved in Section 5.3.
Let us, finally, state our main theorem, from which the two above propositions derive.

Theorem 19 (A global limit law). Let λ ≥ 0.The sequence Y +
n (λn1/4) converges in

distribution to a random variable Y +(λ) whose Laplace transform is given, for |a| < 1, by

E

(

eaY +(λ)
)

= G(λ, a),

where

G(λ, a) = 1 +
48

i
√

π

∫

Γ

B(a/v4)e−2λv

(1 + B(a/v4)e−2λv)2
v5ev4

dv,

B(x) = − (1 − D)(1 − 2D)

(1 + D)(1 + 2D)
, D =

√

1 +
√

1 − x

2
, (48)

and the integral is taken over

Γ = {1 − te−iπ/4, t ∈ (∞, 0]} ∪ {1 + te−iπ/4, t ∈ [0,∞)}.
Moreover, the Laplace transform of Y +

n (λn1/4) converges pointwise to G(λ, ·) on the interval
(−1, 1). The convergence of moments holds as well.

The sequence Y +
n (−λn1/4) converges in distribution to the random variable 1 − Y +(λ).

This theorem will be proved in the next subsection. In view of the following proposition,
it tells us about the law of the distribution function of the ISE.

Proposition 20 (The tail distribution function of the ISE). Let gise(λ) =
µise(λ, +∞) denote the tail distribution function of the ISE. Then for λ ≥ 0,

gise(λ)
d
= Y +(λ/

√
2),

where the law of the variable Y +(λ) is given in Theorem 19. In particular, gise(0) is uni-
formly distributed on [0, 1]. The random variable gise(−λ) has the same distribution as

1 − Y +(λ/
√

2).

Comments
1. The law of gise(0) was already given by Aldous [1, Eq. (12)].
2. Let us add a few words on the series B and D to convince ourselves that the integral
giving G(λ, a) is well-defined as long as |a| < 1. Let E(x) = 1 − D(x). Then E admits the
following expansion:

E(x) = 1 −

√

1 − 1 −
√

1 − x

2
= 2

∑

n≥1

Cn−1

(

1 −
√

1 − x

8

)n

where Cn is the nth Catalan number. Similarly,

1 −
√

1 − x = 2
∑

n≥1

Cn−14
−nxn,

and these two identities imply that E(x) has non-negative coefficients. Moreover, its radius

of convergence is easily seen to be 1, so that |E(x)| ≤ E(1) = 1−1/
√

2 for |x| ≤ 1. Moreover,
expressing B in terms of E gives:

B =
E(1 − 2E)

(2 − E)(3 − 2E)
,
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which shows that B(x) is also analytic for |x| < 1 and satisfies in this domain

|B(x)| ≤ E(1)(1 + 2E(1))

(2 − E(1))(3 − 2E(1))
= 22

√
2 − 31 = 0.11...

For v ∈ Γ, |v| ≥ 1 and ℜ(v) ≥ 1. This implies that

B(a/v4)e−2λv

(1 + B(a/v4)e−2λv)2

is uniformly bounded on Γ, and G(λ, a) is well-defined.

5.1. Proof of Theorem 19

Let j = ⌈λn1/4⌉. Given that the product forms for the series Sj and Rj are very similar,
it is not surprising that we use an approach copied on that of the previous section. We start
from

E(eaY +
n (j)) = E(u

X+
n (j)

n ) =
[tn]Rj(t, un)

2nCn
,

with un = ea/n. For technical reasons, we choose to modify slightly the integration contour
of Figure 6. The Hankel part of this contour, which was lying at distance 1/8 of the real
axis, is now moved a bit further, at distance 1/6 of the real axis. More precisely, the new

contour Cn consists of two parts C(1)

n and C(2)

n such that

• C(1)

n is an arc of radius (1 + log2 n/n)/8, centered at the origin;

• C(2)

n is a Hankel contour around 1/8, at distance 1/(6n) of the real axis, which meets

C(1)

n at both ends.

We first need to prove that the series Rj(t, un) is analytic in a neighborhood of In, the

region lying inside the integration contour Cn. The following lemma is the counterpart of
Lemma 16.

Lemma 21 (Analytic properties of ν and Rj). Let a be a real number such that |a| < 1.

Then ν(t, un) is analytic in a neighborhood of In. Its modulus in In is smaller than α, for
some α < 1 independent of a and n. The series Rj(t, un) is also analytic in a neighborhood

of In.

Proof. Again, the lemma is obvious if a = 0. We thus assume a 6= 0 and |a| < 1.
Let us first study the singularities of the series ν̄ ≡ ν̄(z, u) defined by

ν̄(z, u) = ν

(

z(1 + z2)

(1 + z)4
, u

)

.

According to Proposition 7, ν̄ is a formal power series in z with polynomial coefficients in u,
and by (5), one has:

ν(t, u) = ν̄(Z(t), u).

In the course of the proof of Proposition 7, we have obtained a polynomial equation
P (ν, Z, u) = 0, of degree 4 in ν, relating ν(t, u), Z(t) and the variable u. This equation
is not written in the paper (it is a bit too big), but it can be easily obtained using the
expression of ν given in Proposition 8. By definition of ν̄, we have P (ν̄, z, u) = 0.

Assume that u is a fixed real number close to 1. That is, u = 1 + x, with x small. In
order to study the singularities of ν̄, we look again at the zeroes of the leading coefficient of
P , and at the zeroes of its discriminant. This gives several candidates for the singularities of
ν̄(z, u), which we classify in three series according to their behaviour when x is small. First,
some candidates tend to a limit that is different from 1,

z = −1, z = ±i, z = e±2iπ/3, z = e±2iπ/3 + O(x), z = −1 + O(x).
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Then, some candidates tend to 1 and lie at distance at most |x|1/4 of 1 (up to a multiplicative
constant):

z = 1 + ω(cx)1/4 + O(
√

|x|),
where ω is a fourth root of unity and c is in the set {0, 16, 64/3,−16/3}. Finally, some
candidates tend to 1 but lie further away from 1 (more precisely, at distance |x|1/6):

z = 1 + 2eiπ/6ω′x1/6 + O(|x|1/3),

where ω′ is a sixth root of unity.
Let us now consider ν(t, u) = ν̄(Z(t), u) with u = un = ea/n = 1 + x, where x =

a/n(1 + o(1)). Recall that Z is analytic in C \ [1/8,∞). By Lemma 11, the series Z(t) never
approaches any root of unity different from 1. Hence for n large enough, Z(t) never reaches
any of the candidates z of the first series.

The candidates of the second series are of the form

z = 1 + ω(ac/n)1/4 + O(n−1/2)

for some constant c, with |c| ≤ 64/3, depending on the candidate. By (5), Z(t) may only
reach these values for

t =
1

8
− ac

128n
+ O(n−5/4).

Since |a| < 1, there exists ǫ > 0 such that these values lie at distance less that 1/((6 + ǫ)n)
of 1/8, that is, outside a neighborhood of the domain In.

The candidates of the third series are more worrying: Z(t) may reach them for

t =
1

8
− ω′′

8
(a/n)

2/3
+ O(n−5/6), (49)

where ω′′ is a cubic root of unity, and these values may lie inside In. If a > 0 and ω′′ =
e±2iπ/3, or if a < 0 and ω′′ = e2iπ/3, the modulus of the above value of t is found to be
1/8(1+ cn−2/3 + o(n−2/3)), for some positive constant c: this is larger than the radius of the
contour Cn, which implies that t lies outside a neighborhood of In. However, if a > 0 and
ω′′ = 1, or if a < 0 and ω′′ = 1 or e−2iπ/3, the above value of t lies definitely inside In. Its
modulus is 1/8(1 − cn−2/3 + o(n−2/3)), for some positive constant c.

In order to rule out the possibility that ν(t, un) has such a singularity, we are going to
prove, by having a close look at the expression of ν given in Proposition 8, that the radius of
convergence of ν(t, un) is at least 1/8−O(1/n). We use below the notation of Proposition 8.

Clearly, the series V (t, un) has radius of convergence min(1/8, 1/(8un)). In particular,
this radius is at least ρn := 1/(8(1 + |x|)) (with un = 1 + x). Moreover, the series V admits
the following expansion

V (t, 1 + x) =
1

4

(

1 −
√

1 − 8tx

1 − 8t

)

=
1

2

∑

n≥1

Cn−1

(

2tx

1 − 8t

)n

,

where Cn is the nth Catalan number. This shows that V (t, 1 + |x|) is a series in t with
positive coefficients and that for all t such that |t| ≤ ρn,

|V (t, 1 + x)| ≤ V (|t|, 1 + |x|) ≤ V

(

1

8(1 + |x|) , 1 + |x|
)

=
1

4
.

The next step is to prove that ∆(t, un) never vanishes for |t| ≤ ρn. Indeed,

∆ = (1 − V )2 − 4WV 2,

where W ≡ W (t) is the formal power series in t defined by (24). This series has radius
1/8, and non-negative coefficients. Hence for all t such that |t| ≤ 1/8, one has |W (t)| ≤
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W (1/8) = 1/4. Consequently, for |t| ≤ ρn,

|∆(t, 1 + x)| ≥ (1 − |V (t, 1 + x)|)2 − 4|W (t)||V (t, 1 + x)|2 ≥
(

1 − 1

4

)2

− 1

16
=

1

2
.

Hence ∆(t, un) does not vanish in the centered disk of radius ρn. It follows that the series
P (t, un) is analytic inside this disk.

According to the expression of ν given in Proposition 8, the series ν(t, un) is meromorphic
for |t| ≤ ρn. The final question we need to answer is whether ν has poles in this disk, and
where. Returning to the polynomial P such that P (ν, Z, u) = 0 shows that this can only
happen if the coefficient of ν4 in this polynomial vanishes. But this can only occur if z = Z(t)
has one of the following forms:

z = ±i, z = e±2iπ/3 + O(x), z = −1 + O(x), z = 1 + ω(64x/3)1/4 + O(x1/2).

As argued above, only the last value of z is likely to be reached by Z(t), and this may only
occur if

t =
1

8
− 1

6
(a/n) + O(n−5/4).

Consequently, the radius of ν(t, un) is at least 1/8 − O(1/n), and this proves that the val-
ues (49) that have been shown to lie in the centered disk of radius 1/8, are not, after all,
singularities of ν(t, un). This completes our proof that ν(t, un) is analytic in a neighborhood
of In.

We now want to bound ν(t, un) inside In. From now on, we can walk safely in the steps
of the proof of Lemma 16. Let tn ∈ In be such that

|ν(tn, un)| = max
t∈In

|ν(t, un)|.

We first give a lower bound for this quantity, by estimating ν(t, un) for t = 1/8 − 1/(6n).
This is easily done by combining the closed form expressions of ν (Proposition 8) and B
(Theorem 19). One obtains:

|ν(tn, un)| ≥ |µ(1/8 − 1/(6n), un)| = |B(3a/4)| + o(1) > 0.

This lower bound is then used to rule out the possibility that the sequence tn has an accu-
mulation point different from 1/8. Thus tn converges to 1/8, and one can write

tn =
1

8

(

1 − xn

n

)

.

We have xn = o(n), but also |xn| > 4/3 since tn belongs to In. We want to estimate
ν(tn, un). Since

Z(tn) = 1 − 2
(xn

n

)1/4

+ O

(

(xn

n

)1/2
)

and
un − 1 = a/n (1 + O(1/n)) ,

one has
u − 1

(1 − Z)4
=

a

16xn

(

1 + O

(

(xn

n

)1/4
))

.

The closed form expressions of ν and B imply that the sequence xn is bounded and

ν(tn, un) = B(a/xn) + o(1).

Since B is bounded by 0.12 inside its disk of convergence, |ν(tn, un)| is certainly smaller than
some α for α < 1 and n large enough. This concludes the proof of the second statement of
Lemma 21.

By continuity of ν(t, un), this function of t is still bounded by 1 (in modulus) is a neigh-
borhood of In. Recall also that the modulus of Z(t) never reaches 1 for t ∈ C \ [1/8,∞).
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The form (16) then implies that Rj(t, un) is an analytic function of t in a neigborhood of

In.

Once this rather painful lemma is at last established, the rest of the proof of Theorem 19
copies the end of the proof of Theorem 14, with Sj , µ and A respectively replaced by Rj , ν
and B. The counterpart of (46) is

ν(t, un) = B(−a/z)(1 + o(1)).

Recall that the Hankel part of the contour Cn is now at distance 1/(6n) of the real axis.
Hence, when n goes to infinity, one finds

[tn]Rj(t, un) = 2nCn+
12.8nn−3/2

iπ

∫

4/3H

B(−a/z) exp(−2λ(−z)1/4)
√−ze−z

(1 + B(−a/z) exp(−2λ(−z)1/4))2
dz+o(8nn−3/2).

After normalizing by 2nCn and setting v = (−z)1/4, this gives

E(eaY +
n (j)) → 1 +

48

i
√

π

∫

(4/3)1/4Γ

B(a/v4)e−2λv

(1 + B(a/v4)e−2λv)2
v5ev4

dv,

but the analyticity properties of the integrand allow us to replace the integration contour by
Γ.

5.2. Proof of Proposition 17

When λ = 0, the limiting Laplace transform reduces to

G(0, a) = 1 +
48

i
√

π

∫

Γ

B(a/v4)

(1 + B(a/v4))2
v5ev4

dv = 1 +
4

3i
√

π

∫

Γ

χ(a/v4)(3 − χ(a/v4))

1 + χ(a/v4)
v5ev4

dv

where χ(x) is the unique formal power series in x satisfying

χ =
x

4
(1 + χ)2.

The Lagrange inversion formula gives, for k ≥ 1,

[xk]
χ(x)(3 − χ(x))

1 + χ(x)
=

6

4k

(2k − 2)!

(k − 1)!(k + 1)!
.

Consequently,

G(0, a) = 1 +
8

i
√

π

∫

Γ

∑

k≥1

1

4k

(2k − 2)!

(k − 1)!(k + 1)!
akv5−4kev4

dv.

The convergence is absolute, so that we can exchange the sum and the integral:

G(0, a) = 1 +
8

i
√

π

∑

k≥1

1

4k

(2k − 2)!

(k − 1)!(k + 1)!
ak

∫

Γ

v5−4kev4

dv.

Using (31), and picking the coefficient of ak, we find that the kth moment of the random
variable Y +(0) is

E(Y (0)k) =
8

i
√

π

1

4k

(2k − 2)!

(k − 1)!(k + 1)

iπ

2Γ(k − 1/2)
=

1

k + 1
.

The unique distribution having its kth moment equal to 1/(k+1) is the uniform distribution
on [0, 1]. Proposition 17 follows.
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5.3. Proof of Proposition 18

We have derived above the moments of Y +(0) from the expression of its Laplace transform.
This extends to the moments of Y +(λ), for λ > 0: for k ≥ 1,

E(Y +(λ)k) =
48.k!

i
√

π

∫

Γ

[ak]
B(a/v4)e−2λv

(1 + B(a/v4)e−2λv)2
v5ev4

dv.

Since B(x) = x/48 + O(x2), the case k = 1 of the above identity gives

E(Y +(λ)) =
1

i
√

π

∫

Γ

e−2λvvev4

dv.

In the above expression, expand the exponential as a series. The convergence of the sum
and integral is absolute, so that one can exchange them. This gives:

E(Y +(λ)) =
1

i
√

π

∑

m≥0

(−2λ)m

m!

∫

Γ

vm+1ev4

dv.

Using (31), this can be rewritten as

E(Y +(λ)) =

√
π

2

∑

m≥0

(−2λ)m

m!Γ((2 − m)/4)
=

1

2
√

π

∑

m≥0

(−2λ)m

m!
Γ

(

m + 2

4

)

cos
(mπ

4

)

.

The last equality follows from the complement formula (47).

5.4. The distribution function of the ISE

Let us finally prove Proposition 20.
Let µn be a sequence of random probability measures on R converging weakly to a prob-

ability measure µ. Let Fn denote the (random) distribution function of µn: for λ ∈ R,

Fn(λ) = µn(−∞, λ].

Similarly, let F denote the distribution function of µ. It is not very hard to prove that, for
all λ ∈ R such that µ{λ} = 0, Fn(λ) converges in distribution to F (λ). (We prove this in
the appendix of the paper, but it is certainly written somewhere in the literature.)

Let us now apply this general result to our context. The probability measure µn is given
by (1), with c =

√
2. It is known to converge to the random measure µise. Assume for

the moment that this measure does not assign a positive weight to any point. Then, with
the above notation, Fn(λ) converges in distribution to F (λ), for all λ ∈ R. But, given the
definition (1) of µn,

Fn(λ) = 1 − µn(λ,∞) = 1 − 1

n + 1
X+

n (λn1/4/
√

2) +
1

n + 1
Xn(λn1/4/

√
2),

where the definition of Xn is extended to all reals by Xn(x) = 0 if x ∈ R\Z. By Theorems 14

and 19, the right-hand side converges in distribution to 1 − Y +(λ/
√

2). Consequently, the

tail distribution function of the ISE (that is, µise(λ,∞)) has the same law as Y +(λ/
√

2).
It remains to prove that µise does not weight points positively (almost surely). Let λ ∈ R.

Then

P(µise{λ} > 0) = 0 ⇐⇒ E(µise{λ}) = 0. (50)

Let ǫ > 0, and let hλ,ǫ be the function plotted on the right-hand side of Figure 9. Then

µise{λ} = lim
ǫ→0+

∫

R

hλ,ǫ(y)dµise(y)

= lim
ǫ→0+

∫ 1

0

hλ,ǫ(r(t))dt (by (41))

=

∫ 1

0

1λ=r(t)dt.
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Taking expectations, we obtain

E(µise{λ}) = E

(∫ 1

0

1λ=r(t)dt

)

=

∫ 1

0

P(λ = r(t))dt.

But P(λ = r(t)) = 0 for all t ∈ (0, 1) and λ, since r(t) has a density with respect to the
Lebesgue measure for all t. By (50), we conclude that µise does not weight points positively.

The last statement of Proposition 20 is then easily proven, using a the symmetry of µise

and the fact that it does not assign a positive probability to any point.

6. Other tree models and universality

6.1. Trees with increments 0,±1

We consider in this section a slight variation on the previous family of trees: the increments
of the labels along edges may now be 0,±1. This family of trees has attracted a lot of interest
in relation to planar maps [6, 8, 11, 24].

6.1.1. Enumerative results. As above, let Tj ≡ Tj(t) be the generating function of labelled
trees in which all labels are at most j, counted by their number of edges. Let Sj ≡ Sj(t, u)
be the generating function of labelled trees, counted by the number of edges (variable t) and
the number of nodes labelled j (variable u). Finally, let Rj ≡ Rj(t, u) be the generating
function of labelled trees, counted by the number of edges and the number of nodes having
label j at least. As above, it is easy to write an infinite system of equations defining any of
the families Tj , Sj or Rj . The only difference with our first family of trees is that a third case
arises in the decomposition of trees illustrated by Figure 4: the leftmost child of the root
may have label j. In particular, the generating function T ≡ T (t) counting plane labelled
trees now satisfies

T = 1 + 3tT 2,

while for j ≥ 0,

Tj = 1 + t(Tj−1 + Tj + Tj+1)Tj . (51)

The equations of Lemmas 3 and 6 are modified in a similar way. The three infinite systems
of equations thus obtained can be solved using the same techniques as in Section 2. The
solutions are expressed in terms of the above series T ≡ T (t) and of the unique formal power
series Z ≡ Z(t), with constant term 0, satisfying

Z = t
(1 + 4Z + Z2)2

1 + Z + Z2
. (52)

Observe that T and Z are related by:

T =
1 + 4Z + Z2

1 + Z + Z2
.

We state without proof the counterparts of Propositions 2, 4 and 7.

Proposition 22 (Trees with small labels [5, 6]). Let Tj ≡ Tj(t) be the generating
function of trees having no label greater than j. Then Tj is algebraic of degree (at most) 2.
In particular,

T0 = 1 − 16 t + 18 tT0 − 27 t2T0
2.

Moreover, for all j ≥ −1,

Tj = T
(1 − Zj+1)(1 − Zj+4)

(1 − Zj+2)(1 − Zj+3)
,

where Z ≡ Z(t) is given by (52).
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Remarks
1. As observed in [6, p. 645], there is an “invariant” function attached to equations of the
form (51): for j ≥ 0,

I(Tj−1, Tj) = I(Tj, Tj+1)

where I is now given by

I(x, y) = xy(1 − t(x + y)) − x − y.

As explained in the remark that follows Propositions 4 and 5, this can be used to derive
rapidly from (51) the value of T0.
2. As was the case for trees with increments ±1, the trees counted by T0 (equivalently, the
trees having only non-negative labels) are closely related to planar maps. More precisely,
there is a one-to-one correspondence between non-negative trees having n edges and planar
maps having n edges [8, 11]. The coefficients of T0(t) are also remarkably simple:

T0(t) =
(1 − 12t)3/2 − 1 + 18t

54t2
=
∑

n≥0

2.3n

(n + 1)(n + 2)

(

2n

n

)

tn.

A combinatorial explanation for the algebraicity of T0 is given in [11].

Proposition 23 (The number of nodes labelled j). For any j ∈ Z, the generating
function Sj ≡ Sj(t, u) that counts labelled trees by the number of edges and the number of
nodes labelled j is algebraic of degree at most 4 over Q(T, u) (and hence has degree at most
8 over Q(t, u)). More precisely,

9T 4(u − 1)2

(T − S0)2
= 9T 2 − 2T (T − 1)(2T + 1)S0 + (T − 1)2S2

0

and all the Sj belong to Q(t, u, S0). Moreover, for all j ≥ 0,

Sj = T
(1 + µZj)(1 + µZj+3)

(1 + µZj+1)(1 + µZj+2)
,

where Z ≡ Z(t) is given by (52) and µ ≡ µ(t, u) is the unique formal power series in t
satisfying

µ = (u − 1)
(1 + Z + Z2)(1 + µZ)2(1 + µZ2)2

(1 + Z)2(1 − Z)3(1 − µ2Z3)
.

The series µ(t, u) has polynomial coefficients in u, and satisfies µ(t, 1) = 0. It has degree 4
over Q(Z, u) and 16 over Q(t, u).

Proposition 24 (The number of nodes labelled j or more). Let j ∈ Z. The generating
function Rj(t, u) ≡ Rj that counts labelled trees by the number of edges and the number of
nodes labelled j or more is algebraic over Q(t, u), of degree at most 8. It has degree at most

2 over Q(T, T̃ ), where T ≡ T (t) and T̃ ≡ T (tu). More precisely, it belongs to the extension

of Q(T, T̃ ) generated by
√

4(T + T̃ )2 − T T̃ (4 + 3T T̃).

Moreover, for all j ≥ 0,

Rj = T
(1 + νZj)(1 + νZj+3)

(1 + νZj+1)(1 + νZj+2)
,

where Z ≡ Z(t) is given by (52) and ν ≡ ν(t, u) is a formal power series in t, with polynomial
coefficients in u, which is algebraic of degree 4 over Q(u, Z), and of degree 16 over Q(t, u).
This series satisfies ν(t, 1) = 0. The first terms in its expansion are:

ν(t, u) = (u − 1)
(

1 + 3 ut +
(

15 u + 14 u2
)

t2 +
(

104 u + 117 u2 + 83 u3
)

t3 + O(t4)
)

.
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6.1.2. Limit laws. We now endow the set of labelled trees having n edges with the uniform
distribution, and consider the same random variables as for our first family of trees: Mn,
the largest label, Xn(j), the number of nodes having label j, and finally X+

n (j), the number
of nodes having label j at least.

Again, we can prove that Mnn−1/4 converges in law to Nise/
√

3, where Nise is the
supremum of the support of the ISE, and that for all λ ∈ R, the sequence X+

n (λn1/4)/n

converges in law to gise(
√

3λ) where gise is the tail distribution function of the ISE. The
arguments are the same as for our first class of trees (Sections 3.5 and 5.4).

Hence we could just as well have started from the enumerative results of Section 6.1.1,
rather than from those of Section 2, to characterize the laws of Nise and gise(λ) (Propo-
sitions 10 and 20). More remarkably, we have performed on Xn(j) an analysis similar to
that of Section 4, and obtained the same local limit law. In other words, for all λ ≥ 0, the
sequence Xn(⌊λn1/4⌋)n−3/4 converges in law to

√
3fise(

√
3λ) where fise is the conjectured

density of the ISE, given in Conjecture 15.
In all three cases, the convergence of the moments holds as well.

6.2. Naturally embedded binary trees

We study in the section the incomplete binary trees5 carrying their natural labelling, as
shown on the right of Figure 1. Such trees are either empty, or have a root, to which a
left and right subtree (both possibly empty) are attached. A (minor) difference with the
two previous families of trees is that the main enumeration parameter is now the number of
nodes rather than the number of edges.

6.2.1. Enumerative results. Let Tj ≡ Tj(t) be the generating function of (naturally la-
belled) binary trees in which all labels are at most j, counted by their number of nodes. Let
Sj ≡ Sj(t, u) be the generating function of binary trees, counted by the number of nodes
(variable t) and the number of nodes labelled j (variable u). Finally, let Rj ≡ Rj(t, u) be
the generating function of binary trees, counted by the number of nodes and the number of
nodes having label j at least. It is easy to write an infinite system of equations defining any
of the families Tj , Sj or Rj . The decomposition of trees that was crucial in Section 2 is now
replaced by the decomposition of Figure 11. The generating function T ≡ T (t) counting
naturally labelled binary trees satisfies

T = 1 + tT 2,

(as it should!) while for j ≥ 0,

Tj = 1 + tTj−1Tj+1. (53)

Note that the initial condition is now T−1 = 1 (accounting for the empty tree).

j

Tj−1 Tj+1

j

= +∅

Figure 11. The decomposition of naturally labelled binary trees rooted at j.

5The author has obtained similar, but slightly heavier results for embedded complete binary trees.
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The equations of Lemmas 3 and 6 respectively become:

Sj =

{

1 + tSj−1Sj+1 if j 6= 0,
1 + tuS2

1 if j = 0,
(54)

while

Rj = 1 + tRj−1Rj+1 for j ≥ 1, (55)

and

R−j(t, u) = Rj+1(tu, 1/u) for all j ∈ Z. (56)

The three infinite systems of equations thus obtained can be solved using the same tech-
niques as in Section 2. The solutions are expressed in terms of the above series T ≡ T (t)
and of the unique formal power series Z ≡ Z(t), with constant term 0, satisfying

Z = t

(

1 + Z2
)2

1 − Z + Z2
. (57)

Observe that T and Z are related by:

T =
1 + Z2

1 − Z + Z2
.

We state without proof the counterparts of Propositions 2, 4 and 7. Once again, the results
below are dying for combinatorial explanations!

Proposition 25. Let Tj ≡ Tj(t) be the generating function of binary trees having no label
greater than j. Then Tj is algebraic of degree (at most) 2. In particular,

T0 =
(1 − 4t)3/2 − 1 + 8t − 2t2

2t(1 + t)
.

Moreover, for all j ≥ −1,

Tj = T
(1 − Zj+2)(1 − Zj+7)

(1 − Zj+4)(1 − Zj+5)
,

where Z ≡ Z(t) is given by (57).

It is easy to check that the above series Tj satisfy the equations (53) and the initial condition
T−1 = 1. The method we used to discover this product form is again borrowed from [5].

Remark. For this family of trees as well, we have found an “invariant” function attached
to equations of the form (53): for j ≥ 0,

I(Tj−1, Tj) = I(Tj, Tj+1)

where

I(x, y) = (x + y) t2 +

(

x2 − x − y + y2
)

t

xy
+

−1 + x + y

xy
.

This can be used to derive rapidly from (53) the value of T0.

Proposition 26 (The number of nodes labelled j). For any j ∈ Z, the generating
function Sj ≡ Sj(t, u) that counts binary trees by the number of nodes and the number of
nodes labelled j is algebraic of degree at most 4 over Q(T, u) (and thus has degree at most 8
over Q(t, u)). More precisely,

T 2(u − 1)2

u(T − S0)2
=

(T − 1)4S2
0 − 2TS0(T − 1)2(3 − 9T + 7T 2) + T 2(T 2 + T − 1)2

(T − 1)(S0 − 1)(T 2 + TS0 − S0)2

and all the series Sj belong to Q(t, u, S0). Moreover, for all j ≥ 0,

Sj = T
(1 + µZj)(1 + µZj+5)

(1 + µZj+2)(1 + µZj+3)
,
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where Z ≡ Z(t) is given by (57) and µ ≡ µ(t, u) is the unique formal power series in t
satisfying

µ = (u − 1)
Z(1 + µZ)2(1 + µZ2)(1 + µZ6)

(1 + Z)2(1 + Z + Z2)(1 − Z)3(1 − µ2Z5)
.

The series µ(t, u) has polynomial coefficients in u, and satisfies µ(t, 1) = 0. It has degree 4
over Q(Z, u) and 16 over Q(t, u).

Comment on the proof. The proof is similar to the proof of Proposition 7 until one
computes the equation satisfied by S0. But then, the relation S0 = 1 + tS2

1 does not allow
us to conclude that S1 belongs to Q(t, u, S0). Instead, we compute the algebraic equation
satisfied by S1. It is found to have degree 4 over Q(u, T ). The above relation between S0

and S1 shows that S0 belongs to the extension of Q(t, u) generated by S1. Comparing the
degrees implies finally that Q(t, u, S0) = Q(t, u, S1). Then (54) shows, by induction on j,
that all the series Sj belong to this field.

Proposition 27 (The number of nodes labelled j or more). Let j ∈ Z. The generating
function Rj(t, u) ≡ Rj that counts binary trees by the number of nodes and the number
of nodes labelled j or more is algebraic over Q(t, u). More precisely, R0 has degree 16

over Q(t, u) and degree 4 over Q(T, T̃ ), with T̃ = T (tu), and all the series Rj belong to

Q(T, T̃ , R0) = Q(t, u, R0). Moreover, for all j ≥ 0,

Rj = T
(1 + νZj)(1 + νZj+5)

(1 + νZj+2)(1 + νZj+3)
,

where Z ≡ Z(t) is given by (52) and ν ≡ ν(t, u) is a formal power series in t, with polynomial
coefficients in u, which is algebraic of degree 8 over Q(u, Z) and 32 over Q(t, u). This series
satisfies ν(t, 1) = 0. The first terms in its expansion are:

ν(t, u) = (u − 1)
(

t + (u + 1)t2 + (2u2 + 3u + 3)t3 + O(t4)
)

.

Comment on the proof. The proof is similar to the proof of Proposition 7 until one
computes the equation satisfied by R0. One finds that R0 has degree 4 over Q(T, T̃ ), and
degree 16 over Q(t, u). Using (56), one then derives an equation satisfied by R1. Strangely

enough, it turns out that the minimal polynomials of R0 and R1 over Q(T, T̃ ) (or over
Q(t, u)) are the same. The two series are of course different:

R0(t, u) = 1 + tu + u(1 + u)t2 + u(2u2 + 2u + 1)t3 + u(1 + u)(4u2 + u + 2)t4 + O(t5),
R1(t, u) = 1 + t + (1 + u)t2 + (u2 + 2u + 2)t3 + (1 + u)(2u2 + u + 4)t4 + O(t5).

Let P (x) be the minimal polynomial of R0 and R1 over K ≡ Q(T, T̃ ). We want to prove
that R1 belongs to the extension of K generated by R0. Note that this property does not
simply follow from the fact that R0 and R1 are conjugate roots of P . For instance, for a
generic polynomial P of degree 4 over K, with Galois group S4, the four extensions of K

generated by the roots of P are different. We are going to determine the Galois group of
our polynomial P , using the general strategy described in [2, p. 141–142]. The resolvent
cubic of P , which we denote R below, is found to factor into a linear term and a quadratic
one. Hence the Galois group of R over K has order 2. This implies that the Galois group
G of P over K is either the cyclic group of order 4 or the dihedral group of order 8. In the
former case, the four extensions of K generated by the roots of P coincide (and are equal
to the splitting field of P ) and we are done. In the latter case, there exists a labelling of
the four roots of P , say X0, X1, X2, X3, such that the group G, seen as a subgroup of the
permutations of {0, 1, 2, 3}, is

G = {id, (0, 1), (2, 3), (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2), (0, 2, 1, 3), (0, 3, 1, 2)}.
Then
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• the simple extensions of K generated by the Xi satisfy K(X0) = K(X1) and K(X2) =
K(X3),

• the root of the resolvent that belongs to K is Y = X0X1 + X2X3.
The root of R that belongs to K = Q(T, T̃ ) is found to be Y = t−3/(u(1 + u)) + O(t−2).

We already know two roots of P , namely R0 and R1, which are equal to 1+O(t). The other
two roots are respectively of the form Q2 = −t−2/u+O(t−1) and Q3 = −t−1/(1+u)+O(1).
From the value of Y , we conclude that the above properties hold with X0 = R0, X1 = R1,
X2 = Q2 and X3 = Q3. In particular, R0 and R1 belong to the same extension of degree 4
of Q(T, T̃ ).

Then, an induction on j, based on (55), implies that for all j ≥ 2, the series Rj belongs to

the extension of K = Q(T, T̃ ) generated by R0. Since R1(t, u) = R0(tu, 1/u) and K(R0) =
K(R1), the field K(R0) is invariant under the transformation A(t, u) 7→ A(tu, 1/u). This
property, combined with (56), implies that for j ≥ 1, the series R−j belongs to K(R0).

6.2.2. Limit laws. We now endow the set of binary trees having n nodes with the uniform
distribution, and consider the same random variables as for above: Mn, the largest label,
Xn(j), the number of nodes having label j, and X+

n (j), the number of nodes having label j
at least.

Again, we can prove that Mnn−1/4 converges in law to Nise, where Nise is the supremum
of the support of the ISE, and that for all λ ∈ R, the sequence X+

n (λn1/4)/n converges in
law to gise(λ) where gise is the tail distribution function of the ISE. The arguments are the
same as for our first class of trees (Sections 3.5 and 5.4). Hence we could just as well have
started from the enumerative results of Section 6.2.1, rather than from those of Section 2,
to characterize the laws of Nise and gise(λ) (Propositions 10 and 20).

More remarkably, we have performed on Xn(j) an analysis similar to that of Section 4,
and obtained the same local limit law. In other words, for all λ ≥ 0, the sequence
Xn(⌊λn1/4⌋)n−3/4 converges in law to fise(λ) where fise is the conjectured density of the
ISE, given in Conjecture 15.

In all three cases, the convergence of the moments holds as well.
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Appendix: convergence of random distribution functions
We want to prove the result stated without proof at the beginning of the proof of Section 5.4.

Recall that a sequence of real random variables Zn converges in law to another random
variable Z if and only if for all x ∈ R such that P(Z = x) = 0,

lim
n

P(Zn ≤ x) = P(Z ≤ x).

This implies the so-called portmanteau inequality: for all x ∈ R,

P(Z < x) ≤ lim inf P(Zn ≤ x) ≤ lim supP(Zn ≤ x) ≤ P(Z ≤ x). (58)

Let us now use the notation of Section 5.4. The convergence of µn to µ implies that for
any bounded Lipschitz function f on R [27, p. 71–74]:

∫

R

f(x)dµn(x)
d→
∫

R

f(x)dµ(x).

Let λ ∈ R and let fλ,ǫ and gλ,ǫ be the functions plotted in Figure 9. Then
∫

R

gλ,ǫ(y)dµn(y) ≤ Fn(λ) = µn(−∞, λ] ≤
∫

R

fλ,ǫ(y)dµn(y).

Hence, for all x ∈ R,

P

(∫

R

fλ,ǫ(y)dµn(y) ≤ x

)

≤ P(Fn(λ) ≤ x) ≤ P

(∫

R

gλ,ǫ(y)dµn(y) ≤ x

)

.
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Since µn converges to µ, and gλ,ǫ is a bounded Lipschitz function,
∫

R

gλ,ǫ(y)dµn(y)
d→
∫

R

gλ,ǫ(y)dµ(y).

A similar result holds for the integral involving fλ,ǫ. Thus (58) implies

P

(∫

R

fλ,ǫ(y)dµ(y) < x

)

≤ lim inf P(Fn(λ) ≤ x) ≤ lim sup P(Fn(λ) ≤ x) ≤ P

(∫

R

gλ,ǫ(y)dµ(y) ≤ x

)

.

The integral occurring in the rightmost expression of this inequality is bounded from below
by µ(−∞, λ − ǫ], while the integral involving fλ,ǫ is bounded from above by µ(−∞, λ + ǫ].
Hence

P(µ(−∞, λ + ǫ] < x) ≤ lim inf P(Fn(λ) ≤ x) ≤ lim supP(Fn(λ) ≤ x) ≤ P(µ(−∞, λ− ǫ] ≤ x).

Taking the limit ǫ → 0+ gives:

P(µ(−∞, λ] < x) ≤ lim inf P(Fn(λ) ≤ x) ≤ lim sup P(Fn(λ) ≤ x) ≤ P(µ(−∞, λ) ≤ x).

If, in addition, the measure µ does not assign a positive probability to λ, the rightmost
expression in the above inequality equals P(µ(−∞, λ] ≤ x). The inequality becomes

P(F (λ) < x) ≤ lim inf P(Fn(λ) ≤ x) ≤ lim supP(Fn(λ) ≤ x) ≤ P(F (λ) ≤ x),

so that for all x such that P(F (λ) = x) = 0,

lim P(Fn(λ) ≤ x) = P(F (λ) ≤ x).

That is, Fn(λ) converges in law to F (λ).
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