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Abstract. The β-decay properties of the neutron-deficient nuclei25Si and 26P have been investigated at the
GANIL/LISE3 facility by means of charged-particle andγ-ray spectroscopy. The decay schemes obtained and the
Gamow-Teller strength distributions are compared to shell-model calculations based on the USD interaction.B(GT )
values derived from the absolute measurement of theβ-decay branching ratios give rise to a quenching factor of the
Gamow-Teller strength of 0.6. A precise half-life of43.7 (6) ms was determined for26P , theβ−(2)p decay mode of
which is described.

PACS. 29.30.Ep Charged-particle spectroscopy – 29.30.Kv X- and gamma-ray spectroscopy – 23.90.+w

1 Introduction

1.1 Generalities

Over the last decades,β-decay properties of light unstable nu-
clei have been extensively investigated in order to probe their
single-particle nuclear structure and to establish the proton and
neutron drip-lines. Hence, compilations of spectroscopicprop-
erties are available for manysd shell nuclei [1,2,3,4,5] from
which nucleon-nucleon interactions were derived [6].β-decay
studies of nuclei having a large proton excess are thereforeuse-
ful to test the validity of these models when they are appliedto
very unstable nuclei.

Moreover, in the standardV−A description ofβ decay, a
direct link between experimental results and fundamental con-
stants of the weak interaction is given by the reduced transition
probabilityft of the individual allowedβ decays. This param-
eter, which incorporates the phase space factorf and the partial
half-life t=T1/2/BR (T1/2 being the total half-life of the de-
caying nucleus andBR the branching ratio associated with the
β transition considered), can be written as follows:

ft =
K

g2
V |< f |τ |i> |2 + g2

A |< f |στ |i> |2
(1)

whereK is a constant and wheregV andgA are, respectively,
the vector and axial-vector current coupling constants related to
the Fermi and Gamow-Teller components ofβ decay.τ andσ
are the isospin and the spin operators, respectively. Hence, the
comparison of the measuredft values and the computed Fermi
and Gamow-Teller matrix elements appears to be a good test of
nuclear wave functions built in the shell-model frame, stressing
the role of the overlap between initial and final nuclear states as
well as the configuration mixing occurring in parent and daugh-
ter states. However, two systematic deviations from theoretical
predictions show the limitation of our theoretical understanding
and treatment of fundamental interactions. They are reported as
themirror asymmetry anomaly inβ decay[7,8,9,10] and the
quenching of the Gamow-Teller strength[11,12,13].

Mirror asymmetry in β decay: This phenomenon is re-
lated to the isospin non-conserving forces acting in the atomic
nucleus. If nuclear forces were charge independent, theβ+

(EC) and theβ− decays of analog states belonging to mir-
ror nuclei would be of equal strength. The deviation from this
simple picture is characterized by the asymmetry parameter
δ = (ft+/ft− − 1), where the+ and− signs are associated
with the decay of the proton- and the neutron-rich members of
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Fig. 1. Systematics of the experimental values of the asymmetry pa-
rameterδ for nuclei withA≤40. Only allowed Gamow-Teller transi-
tions withlog(ft)≤6 are considered.

the mirror pair, respectively. Figure 1 presents an updatedsys-
tematics ofδ values measured for mirror nuclei withA ≤ 40.
39 allowed Gamow-Teller mirror transitions withlog(ft)≤ 6
pertaining to14 pairs of nuclei are analyzed (see ref. [14] for
details). They lead to a mean deviation of about5 % for these
nuclei lying in thep and sd shells. The asymmetry reaches
11 (1)% if only p shell nuclei are considered, which stresses
the interplay between the Coulomb and the centrifugal barri-
ers.

It was often attempted to explain the mirror asymmetry
anomaly in thep shell either in terms of binding energy ef-
fects [8,9,15] or by introducing the concept of ”second class
currents” [16,17,18], which are not allowed within the frame
of the standard V-A model of the weak interaction. None of the
theoretical approaches were able to reproduce the measuredδ
values. Shell-model calculations are currently performedto test
the isospin non-conserving part of the interaction inβ decay by
studying the influence of isospin mixing effects and of radial
overlap mismatches of nuclear wave functions on the Gamow-
Teller matrix elements. These calculations are performed in the
p shell and in thesd shell, where reliable single-particle nuclear
wave functions are now available [7].

Gamow-Teller quenching: The axial-vector coupling con-
stantgA involved inβ transitions of the Gamow-Teller type is
not strictly constant and it has to be renormalized in order to
reproduce theft values measured experimentally [19]. The ef-
fective coupling constantgA,eff =q∗gA is deduced empirically
from nuclear structure experiments and shows a slight variation
over a wide range of masses:q=0.820 (15) in thep shell [20],
q = 0.77 (2) in thesd shell [21] (giving a quenching factorq2

of 0.6) andq=0.744 (15) in thepf shell [22].
Different theoretical approaches have been used in order

to derive the renormalization factor from core polarization ef-
fects (due to particle-hole excitations), isobar currentsand me-
son exchange [23]. Despite all these efforts, the origin of the
quenching effect is not very well understood. Nevertheless, the

Gamow-Teller strength functionB(GT ) = (gA/gV )2 |στ |2,
which translates the global response of the wave function to
spin-isospin excitations occurring inβ decay, is a useful link
between experimental results and theoretical predictionsand it
can be used as a comparative tool.

Experimental development: With the development of sec-
ondary radioactive beams and other experimental techniques
like the combination of helium-jet transport systems with tele-
scope detectors [24,25,26], a large set of neutron-deficient nu-
clei has been investigated since theβ-delayed proton emission
was first observed forty years ago [27]. AsQEC values are
increasing while nuclei become more exotic,β−p andβ−γ
spectroscopic studies of neutron-deficient nuclei give theop-
portunity to probe the Gamow-Teller strength function up to
more than 10 MeV in excitation energy. Hence, the whole en-
ergy window open inβ decay can be covered both by spectro-
scopic studies and charge exchange reactions [28]. Therefore,
the theoretical description of nuclear structure as well asour
understanding of the weak interaction can be tested far from
the stability line. As an illustration, we will report in thefol-
lowing on theβ-decay properties of two neutron-deficient light
nuclei, namely25Si and26P .

1.2 Previous studies

1.2.1 Studies of 25Si

With a lifetime of 218 ms and aQEC value of about 13 MeV,
theTZ =− 3

2
nucleus25Si has been studied several times since

the end of the 1960’s. These previous studies will be used in the
present work to validate the analysis procedure implemented to
derive theβ-decay properties of26P . However, none of these
studies measured the decay byγ emission of excited states fed
in theβ decay of25Si.

The most recentβ-delayed proton emission study of25Si
was performed by Robertsonet al. [26]. It updates the first
investigation of Reederet al. in 1966 [29]. In both experi-
ments, the individual proton group intensities were measured
relative to the most intense one, emitted by the isobaric ana-
log state (IAS) in25Al. The absoluteβ-decay branching ra-
tio of 12.2 % towards this state was derived from the associ-
ated log(ft) value (log(ft) = 3.28), calculated assuming a
pure Fermiβ transition from the ground state of25Si. It led
to a summedβ feeding of proton-unbound states of25Al equal
to 38.1 (15)%. This normalization procedure is supported by
the measurement of Hatoriet al. [12]. In this work, absolute
branching ratios forβ decay were determined by counting the
total number ofβ particles emitted with the half-life of25Si and
theβ feeding of the IAS in25Al was indeed found to be equal
to 14.6 (6)%, giving rise to alog(ft) value of3.19 (2). The
summed feeding of the25Al proton-emitting states was mea-
sured to be40.7 (14)%, in good agreement with Robertsonet
al.

As mentioned above, in none of the experiments, theβ-
delayedγ decay of25Si was observed. As a consequence, the
β-decay branching ratios towards the proton-bound states of
25Al were tentatively estimated taking into account the summed
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β feeding and assuming that the relativeft values of these
states were equal to those of the mirror states in25Mg. The
weak point of such a procedure is that an averageβ asymmetry
of 20 % had to be taken into account for all proton-bound state,
which was assumed to be equally shared by the proton-bound
states disregarding their individual quantum characteristics.

1.2.2 Studies of 26P

Due to itsTZ value of−2 and its short lifetime of less than
100 ms, 26P has not been investigated in detail so far. Compi-
lations only report the observation by Cableet al.of β-delayed
proton and two-proton emission from this nucleus [25,30]. A
half-life of 20+35

−15 ms was deduced from the observation of the
most intense proton group. It led to aβ feeding of the IAS
in 26Si equal to1.9+3.5

−1.4 % using a calculatedlog(ft) value
of 3.19 (assuming a pure Fermi transition). Only three pro-
ton groups were observed linking the IAS to the two lowest
states of25Al (β−p decay) and to the ground state of24Mg
(β−2p decay). The two decay modes of the IAS were reported
to be of similar magnitude. However, the largeQEC value of
18 MeV together with a proton separation energy of5.5 MeV
for the daughter nucleus26Si are indications that theβ-delayed
charged-particle spectrum may be rather complex, involving a
large number of proton groups.

1.3 Present measurements

In our experiment, we determined the absolute branching ra-
tios for 25Si and26P by relating the intensity of a given proton
or γ line to the number of isotopes of each type implanted in
our set-up. For25Si, this measurement constitute a first unam-
bigous determination of branching ratios also for proton-bound
levels. We will use the decay of25Si in part to test our analysis
procedure, however, our study yields also new results for this
nucleus, in particular for theγ decay of itsβ-decay daughter.
In the case of26P, we deduce for the first time the feeding for
other states than the IAS and their decay by proton orγ emis-
sion. Therefore, we could establish a complete decay scheme
for branches with more than about 1% feeding for both nuclei
for the first time.

2 Experimental procedure

2.1 Fragment production and detection set-up

In addition to25Si and 26P , the β-delayed proton and two-
proton emitters22Al [31] and27S [32] have been studied dur-
ing the same experimental campaign. Theβ-delayed proton
emitter21Mg [24] and theβ-delayedγ emitter24Al [4] were
also produced for calibration and efficiency measurement pur-
poses.

All nuclei have been produced in the fragmentation of a 95
MeV/u 36Ar18+ primary beam with an intensity of about2µAe
delivered by the coupled cyclotrons of the GANIL facility. A
357.1 mg/cm2 12C production target was placed in the SISSI

Germanium
Clover

β−

E4E2 E3 E5

coincidence

E1

Energy loss Ion implantation
and decay

Time of flight

detectionγ−

Fig. 2. Schematic view of the identification and detection set-up. It
includes a germanium detector and five silicon detectors mounted
in close geometry, where selected ions were identified by means of
energy-loss and time-of-flight measurements. The last two detectors
were used to observe the charged particles emitted in decay events in
the implantation detectorE4.

nucleus production contamination implanted ions
rate (pps) (%) (∗ 103)

25Si 300 < 1 492 ( 1)
26P 65 ≈ 13 2180 (70)

Table 1. Production rate, contamination and total number of selected
ions during the experiment.

device [33], the high angular acceptance and focusing proper-
ties of which increased the selectivity of the fragment separa-
tion operated by the LISE3 spectrometer. The latter included
a shapedBe degrader (thickness 1062µm) at the intermediate
focal plane and a Wien filter at the end of the line to refine the
selection of the separated fragments.

Ions of interest were implanted in the fourth elementE4 of
a silicon stack (figure 2). The ion identification was performed
by means of time-of-flight and energy-loss measurements with
the silicon detectorsE1 to E4 (2 ∗ 300 µm and2 ∗ 500 µm in
thickness,4 ∗ 600 mm2 of surface). It led to a precision in the
counting rate of better than1 % for 25Si and about3 % for the
more exotic26P nucleus. The production method in associa-
tion with the high selectivity of the LISE3 spectrometer gave
rise to a very low contamination rate of the selected speciesby
only a few isotones (see table 1).

Protons were detected in the implantation detectorE4, in
coincidence with the observation ofβ particles in the detector
E5 (with a thickness of6 mm and an area of600 mm2). A
segmented germanium clover was finally used to study theβ-
delayedγ decay of implanted ions.

2.2 β-delayed proton spectroscopy

Contrary to previous experiments [24,25,26] in which ions were
deposited at the surface of an ion catcher,β-delayed protons
are emitted inside the implantation detectorE4. As a first con-
sequence, the proton spectrum rises on a largeβ background
and the identification of low-energy, low-intensity protonlines
is difficult. Secondly, the energy deposit in the detectorE4 of
an emitted proton cannot be disentangled from the energy-loss
contribution of the associatedβ particle and the recoiling ion.

To minimize these effects, ions were implanted in the last
100 µm of the detectorE4 and aβ coincidence with the thicker
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Fig. 3. The upper part of the figure shows the influence of theβ-
coincidence condition (E5 > 0) on the energy spectrum delivered by
the detector E4 for the setting on25Si. The lower part of the figure
presents a GEANT simulation of the effect of the coincidencecon-
dition on the shape of aβ-delayed proton emission peak. The dotted
lines show the35keV energy shift due to theβ pile-up, i.e. a4MeV

proton peak is in fact observed at an energy of4.035MeV . This shift
depends on the implantation depth and varies for the different nuclei
studied in this work. The coincidence condition does not alter this shift
significantly.

detectorE5 was requested in the analysis. As shown in the up-
per part of figure 3, theβ particle energy deposit in the coinci-
dence spectrum was strongly reduced and proton peaks could
be easily identified and fitted with the help of Gaussian dis-
tributions. The energy calibration of the detectorE4 as well
as the measurement of the proton group intensities were per-
formed on the basis of thisE4-E5 coincidence condition.

2.2.1 Energy calibration of the implantation detector

Theβ particle energy deposit leads to a shift in energy of the
Gaussian-like part of the proton peaks. This effect could bere-

Fig. 4.GEANT simulation of the proton detection efficiency of the im-
plantation detectorE4. The error bars on the plotted data are deduced
from different parametrizations of the ion implantation profiles. An
uncertainty due to the detector thickness is not included, as it is of the
same order of magnitude as the uncertainty of the implantation profile.
(see text for details).

produced by means of a GEANT simulation [34], as shown in
the lower part of figure 3 for a representativeβ-delayed proton
peak. It could also be shown that the energy shift is roughly
independent on the proton andβ-particle energies but linearly
dependent on the implantation depth of the ions, that is to say,
on the distance theβ particles travel in the detectorE4 before
leaving it to enter the coincidence detectorE5. The energy cal-
ibrations of the detectorE4 for the settings on21Mg, 25Si and
26P were therefore assumed to differ only by a shift propor-
tional to the implantation depths of the ions.

The calibration parameters for the settings were deduced
from the identification of the major proton groups expected at
1315 (9), 1863 (2), 2037 (4), 2589 (9), 4908 (3) and6542 (3)
keV for the decay of21Mg [24] and at402 (1), 1925 (3), 2169
(7), 2312 (4), 3472 (10),4261 (2) and5630 (2) keV for the de-
cay of25Si [26]. The proton group energies were recalculated
using the excitation energies of the proton-emitting states and
the proton separation energies reported in a compilation [4].

2.2.2 Proton detection efficiency

Since ions were implanted at the end of the detectorE4, the
proton detection efficiencyEp is very sensitive to the implan-
tation profile of the emitting ion and to the proton energy. The
detection efficiency for protons between0.5 and10 MeV was
computed by means of GEANT simulations. Following exper-
imental observations, implantation profiles were approximated
by Gaussian distributions in the beam direction (with a stan-
dard deviation of20 µm) and with a two dimensional square
shaped function in the orthogonal plane [35].

Results are shown in figure 4. An uncertainty on the detec-
tion efficiency of less than6 % was obtained. This uncertainty
was determined by varying the implantation depth by± 10µm,
which is roughly the width of the implantation distribution.
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Fig. 5. High energy part of theβ-delayed proton spectrum in the de-
cay of 25Si. The areas of the two main proton peaks above4MeV

obtained with (inset) and without (main figure) coincidencecondition
were used to extract an average normalization factorKcp for the set-
ting on25Si.

2.2.3 Absolute intensities of the observed proton groups

The absolute intensityIi
p of a given proton groupi was derived

from the following relation:

Ii
p =

Sci
p

Kcp ∗ Nimpl ∗ E i
p

(2)

whereSci
p is the area of the proton peak observed in the coin-

cidence spectrum (E5 > 0), Kcp the normalization factor to be
taken into account due to the coincidence condition,Nimpl the
number of ions implanted inE4 andE i

p the proton detection
efficiency for a given proton energy.

The extraction of the factorKcp is illustrated in figure 5
for the setting on25Si. Several proton peaks were fitted in the
high energy part of theE4 energy spectrum, where theβ back-
ground is low enough and where proton peaks are well sepa-
rated. TheKcp coefficients were deduced from the average ra-
tio of the areas of theβ-delayed proton peaks obtained with and
without coincidence condition. For the coincidence spectrum,
peaks were fitted by means of Gaussian distributions on a linear
background (see inserts of figure 5) leading to theSci

p values.
For the unconditioned energy spectrum, fit functions convolut-
ing a Gaussian distribution and an exponential tail on top of
an exponential background were used. For each ion of interest,
the parameters of the exponential tail were fixed regardlessof
the proton peak energies. TheKcp coefficients obtained were
about13 %, with an uncertainty of1 to 2%.

2.3 γ-ray spectroscopy

As shown in figure 2, a segmented germanium clover detector
was placed at 0 degree, a few centimeters away from the silicon
stack. To reduce the dead time of the acquisition system, theγ-
ray signals were not used to trigger the data acquisition. Asa
consequence, the probability to observe aγ decay depended on
the type of radioactivity event that had triggered the acquisi-
tion system. Since the energy loss of a proton inE4 was larger
than a few hundredkeV , a trigger signal was obtained each
time a proton was emitted. Subsequentγ rays were then auto-
matically detected, depending only on the Germanium detector
efficiency.

On the other hand, most of theβ particles emitted with-
out accompanying protons did not lose enough energy inE4
to trigger the acquisition system. As a consequence, the trigger
efficiency forβ-γ events was given mainly by the fraction of
the total solid angle under which the large silicon detectorE5
is seen fromE4. This efficiency was determined by means of
24Al which decays byβ-γ emission. The absolute intensities
of the two mainγ lines at1077 and1369 keV were measured
and compared with the expected values [4]. Theβ-trigger rate
was then derived, taking into account the intrinsic efficiency
of the Germanium detector, which was obtained with conven-
tional calibration sources. The overallγ-detection efficiency in
the300 to 2000 keV range was about2 to 3 %, with a relative
uncertainty of about20 %. Theβ-trigger efficiency was equal
to 35.0 (45)%.

To a large extent, corrections due to true summing effects
[36] were included in the calculatedβ-trigger rate. However,
this effect was not under control when the acquisition was trig-
gered by the detection of protons, where the trigger efficiency
was 100%. Hence,γ-ray intensities could not be determined re-
liably for β−p−γ decay events and thereforeβ-decay branch-
ing ratios towards proton-emitting states could not be cross-
checked by means ofγ spectroscopy.

3 Experimental results

Theβ-decay properties of25Si are compared in the following
to the results obtained in previous work. For the two settings on
25Si and on26P , the relative intensities of the identified pro-
ton groups are given as well as the deduced absoluteβ-decay
branching ratios towards the proton-unbound nuclear states of
the daughter nuclei. The analysis ofβ-delayedγ spectra gives
rise, for the first time, to the measurement of the absolute feed-
ing of the proton-bound states. The decay schemes are then
proposed and compared to calculations performed in the full
sd shell by Brown [37] with the OXBASH code [38] using the
USD interaction [6]. Finally, the Gamow-Teller strength distri-
butions are compared to those expected from the mirrorβ de-
cays and to those extracted from the calculatedlog(ft) values.
The main characteristics of26P are given, including a precise
measurement of its lifetime as well as a derivation of its proton
separation energySp and of its atomic mass excess∆ (26P ).
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Fig. 6.β-delayed proton spectrum obtained in coincidence with a sig-
nal inE5 in the decay of25Si. The peak labels correspond to the peak
numbers used in tables 2 and 3.

3.1 β-decay study of 25Si

3.1.1 β-delayed proton emission

The β-delayed proton emission spectrum obtained in coinci-
dence with the detectorE5 is shown in figure 6 for the setting
on 25Si. Most of the proton groups reported in previous work
by Robertsonet al.[26] and Hatoriet al. [12] have been identi-
fied. Their center of mass energies and their relative intensities
are compared in table 2 and discussed in the following.

Missing transitions: Nine of the thirty-two proton groups
reported by Robertsonet al. were not observed in the present
work. Six of these transitions (see table 2) were already notob-
served in the work of Hatoriet al. and it is therefore plausible
that they are due to the decay ofβ-p contaminants in the ex-
periment performed by Robertsonet al.. The three remaining
missing transitions have a relative intensity lower than1 % and
it may be that the residualβ background in the spectrum con-
ditioned byE5 is too large in the present experiment to allow
for their identification.

Identification of the observed proton groups: All the ob-
served proton groups were attributed to proton transitionsre-
ported in the work of Robertsonet al. on the basis of their
measured center of mass energies. Two groups at2980 (9) and
3899 (2) keV were tentatively identified as being the same tran-
sitions as those at3021 (9) and3864 (20) keV by Robertson
et al. although the energy differences are about40 keV . The
proton group at401 (1) in the present work corresponds most
likely to the 382 (20) keV group of Robertsonet al. because
of their high relative intensities. The transition at1377 (6) keV
was attributed to an emission from the IAS of25Al and was
therefore identified as the transition at1396 (20) keV of Robert-
son et al. The same is most likely true for the transitions at

1573 (7) and1592 (20) keV . The proton group at3326 (6) keV
was observed at the same energy as in the work of Hatoriet al.
and corresponds most likely to the transition at3342 (15) keV
in reference [26]. All other transitions identified were measured
at energies differing by less than15 keV with respect to the
work of Robertsonet al.

High-energy proton groups: Only one of the three high en-
ergy transitions reported by Zhouet al. [39] was identified at
6802 (7) keV . Its relative intensity of2.2 (5)% is significantly
higher that the values given in references [12] and [39], which
might reflect an underestimation of the proton detection effi-
ciency at high energies in the present work.

New transition: A new proton transition at3077 (14) keV
(label 13) was observed but could not be attributed. Due to
its low intensity of0.25 (11)%, the transition could not be as-
signed neither by means of aβ−p−γ coincidence nor by any
other means.

Assignment of proton transitions: Apart from the transition
at 3326 keV which, according to Hatoriet al., originates from
the5597 keV excited level in25Al, all identified proton groups
were assigned following the work of Robertsonet al. The de-
duced energies and absoluteβ-decay branching ratios of the
proton-unbound states of25Al are presented in table 3. The
obtained excitation energies are compared to the data of the
compilation [5]. Large discrepancies of more than25 keV are
found for the proton groups at2980, 3899 and5407 keV . The
IAS of 25Al was found at an excitation energy of7892 (2) keV ,
in agreement with the value of7896 (6) reported by Robertson
et al. [26].

The overall agreement between the threeβ-delayed pro-
ton decay studies of25Si is reasonable, leading to a summed
β-decay branching ratio towards the proton unbound states of
25Al equal to35 (2)% (this work),38 (2)% [26] and41 (1)%
[12]. The difference originates for a large part from the deter-
mination of the absolute intensity of the least energetic proton
group at about400 keV in the center of mass. This proton tran-
sition is reported in the previous work to compete with aγ de-
excitation of the associated nuclear state, but no evidencewas
found in theγ-decay spectrum for such a decay mode.

Regarding the absoluteβ feeding of the IAS in25Al, the
value of12.8 (8)% obtained in this work is in good agreement
with the theoretically expected value of12.2 % used by Robert-
sonet al. and is significantly lower than the one measured by
Hatori et al. It leads to alog(ft) value of3.25 (3) for the β
decay of25Si towards the IAS in25Al. This result confirms
the assumption that the involvedβ transition is almost purely
of the Fermi type, since alog(ft) value of3.28 is expected in
this case [26].

3.1.2 β-delayed γ decay

The γ-ray spectrum obtained in the decay of25Si is shown
in figure 7. The fourγ lines at452 (absolute branching ra-
tio of 18.4 (42)%), 493 (15.3 (34)%), 945 (10.4 (23)%) and
1612 keV (15.2 (32)%) were assigned to theβ-delayedγ de-
cay of25Si. The lastγ line is a doublet of twoγ rays from the
decay of the7

2

+

1
states at1612.4 keV in 25Al and at1611.7 keV

in its daughter nucleus25Mg [4]. Taking into account the ex-
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This experiment Robertsonet al. [26] Hatori et al. [12]
C.M. Energy Relative Absolute C.M. Energy Relative C.M. Energy RelativePeak

(keV ) intensity (%) intensity (%)
Peak

(keV ) intensity (%) (keV ) intensity (%)
1 401 ( 1) 49.8 (48) 4.75 (32) 1 382 (20) 73.7 (3) 403 ( 1) 57.7 (63)
2 555 (11) 7.2 (27) 0.69 (25) 2 550 (25) < 2.5 (1)
3 943 ( 2) 17.1 (24) 1.63 (20) 3 943.4 (−) 17 (1) 945 ( 2) 11.5 (24)

4 1040 (20) 1.53 (3)
4 1268 ( 6) 6.1 (18) 0.58 (17) 5 1272 (20) 2.26 (7)
5 1377 ( 6) 4.3 (12) 0.41 (11) 6 1396 (20) 2.89 (5)
6 1489 ( 7) 5.0 (15) 0.48 (14) 7 1501 (20) 2.90 (5)
7 1573 ( 7) 4.3 (13) 0.41 (12) 8 1592 (20) 1.46 (3) 1586 ( 3) 2.1 ( 9)

9 1685 (20) 0.93 (6)
8 1804 ( 8) 6.1 (14) 0.58 (13) 10 1805 (15) 6.73 (6) 1791 ( 3) 5.4 (10)
9 1917 ( 2) 23.5 (27) 2.24 (21) 11 1925.2 (−) 27.4 (1) 1925 ( 3) 17.6 (13)
10 2162 ( 4) 18.1 (26) 1.73 (22) 12 2165 (10) 17.2 (1) 2169 ( 7) 12.8 (11)
11 2307 ( 4) 16.5 (25) 1.57 (21) 13 2311.4 (−) 14.1 (1) 2312 ( 4) 11.2 ( 9)

14 2373 (20) 2.02 (3)
15 2453 (25) 0.40 (2)
16 2486 (25) 0.96 (2) 2483 ( ? ) < 1.4
17 2608 (25) 0.39 (5) 2636 (10) 0.5 ( 2)

12 2980 ( 9) 1.7 ( 7) 0.16 ( 7) 18 3021 (15) 3.74 (9) 3022 ( 9) 5.0 (14)
13 3077 (14) 2.6 (12) 0.25 (11)
14 3231 ( 8) 5.4 (13) 0.51 (12) 19 3237 (15) 4.15 (5) 3243 (10) 2.4 ( 6)
15 3326 ( 6) 5.9 (12) 0.56 (11) 20 3342 (15) 6.57 (6) 3356 (30)
16 3463 ( 3) 28.1 (34) 2.68 (26) 21 3466 (10) 34.5 (1) 3472 (10)

44.7 (48)

17 3610 (11) 5.9 (18) 0.56 (17) 22 3597 (10) 10.86 (8) 3608 ( 5) 13.3 (18)
18 3899 ( 2) 3.4 ( 7) 0.32 ( 6) 23 3864 (20) 1.15 (7) 3852 ( 8) 3.9 (12)
19 4252 ( 2) 100 (10) 9.54 (66) 24 4258.3 (−) 100 (2) 4261 ( 2) 100

25 4303 (20) 3.32 (7)
20 4545 (10) 6.6 (18) 0.63 (17) 26 4556 (20) 1.28 (5) 4552 ( 8) 1.3 ( 6)

27 4626 (25) 0.25 (1) 4612 (10) 0.4 ( 4)
21 4850 ( 6) 10.3 (17) 0.98 (15) 28 4853 (15) 7.29 (7) 4841 ( 5) 16.7 (18)
22 4986 ( 8) < 4.9 ( 9) < 0.47 ( 8) 29 4992 (15) 2.30 (4) 4977 ( 5) 1.4 ( 4)
23 5407 ( 7) 3.6 ( 7) 0.34 ( 6) 30 5394 (20) 1.98 (5) 5366 ( 6) 0.8 ( 3)

31 5549 (15) 3.19 (6)
24 5624 ( 3) 25.1 (27) 2.39 (20) 32 5630 (10) 16.9 (2) 5630 ( 2) 21.1 (15)

25 6802 ( 7) 2.2 ( 5) 0.21 ( 4) ref. [39] 6520 (10) 0.72 (4) 6795 (17) 0.7 ( 3)

Table 2.β-delayed proton emission of25Si. The center of mass energy and the relative intensity of the identified proton groups are compared
to previous experimental data. The relative and absolute intensities of theβ-delayed proton transitions obtained in this work are also reported.

pected contribution of this second transition in25Mg, the ab-
solute intensity of the1612 keV γ ray in 25Al was deduced to
be equal to14.7 (32)%.

Theγ lines at493 and945 keV are associated with the de-
excitation of the3

2

+

1
state at945 keV in 25Al towards its5

2

+

1

ground state and towards the1

2

+

1
excited state at452 keV . The

intensity ratio of the two linesIγ(945)/Iγ(493) = 68 (26)%
is in agreement with the value of79 (6)% obtained in an in-
beam experiment [4].

Since the intensities of the493 and452 keV γ rays were
found to be equal within their uncertainties, we conclude that
the 452 keV state is not fed directly in theβ decay of25Si.
Such aβ transition would be indeed a first-forbidden one and
is therefore unlikely to be observed in the present experiment.

Noγ rays were observed at845,1338 and1790 keV . There-
fore, it was assumed that the7

2

+

2
proton-bound state of25Al at

1790 keV [5] is not fed in theβ decay of25Si. Hence, the
measurements of the absolute intensities of the threeγ lines
at 493, 945 and1612 keV led to a summedβ-decay branch-

ing ratio towards the proton-bound excited states of25Al of
41 (5)% (see table 4 for details). Taking into account the pre-
viously determined summedβ-decay branching ratio towards
the proton-unbound states (35 (2)%), this leads to an absolute
β feeding of the25Al ground state of24 (7)%.

The γ line observed at1369 keV corresponds to the de-
excitation of the first excited state of24Mg populated in the
β−p decay of25Si. Due to the quite lowγ-detection efficiency
and the weakness of most of the proton transitions feeding ex-
cited states of24Mg, neither the4+

1 → 2+

1 nor the2+

2 → 4+

1

transitions were seen. Only a few counts at anE4 energy of
about4.25 MeV were observed in coincidence with theγ ray
at1369 keV , in agreement with the assignment of the strongest
proton group to the IAS in25Al. Theγ line at1461 keV is the
well-known backgroundγ ray from40K.
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C.M. proton energies (keV ) in the decay to24Mg states Excitation energies andβ feeding

(B.R.) of 25Al proton-unbound states

Ground state 1369 keV 4123 keV 4238 keV This work ref. [5] B.R. (%)

1−401 (1) 2672 (1) 2673.5 (6) 4.8 (3)

7−1573 (7) 3844 (7) 3858.8 (8) 0.4 (1)

9−1917 (2) 2−555 (11) 4189 (2) 4196 (3) 2.9 (3)

11−2307 (4) 3−943 (2) 4582 (2) 4583 (4) 3.2 (3)

4−1268 (6) 4908 (6) 4906 (4) 0.6 (2)

15−3326 (6) 5597 (6) 5597 (5) 0.56 (11)

10−2162 (4) 5802 (4) 5808 (6) 1.7 (2)

18−3899 (2) 6170 (2) 6122 (3) 0.32 (6)

12−2980 (9) 6620 (9) 6645 (4) 0.16 (7)

14−3231 (8) 6871 (8) 6881 (6) 0.5 (1)

21−4850 (6) 16−3463 (3) 7107 (3) 7121 (6) 3.7 (2)

22−4986 (8) 17−3610 (11) 7255 (7) 7240 (3) < 1.0 (6)

23−5407 (7) 7678 (7) 7637 (6) 0.34 (6)

24−5624 (3) 19−4252 (2) 6−1489 (7) 5−1377 (6) 7892 (2) 7902 (2) 12.8 (8)

20−4545 (10) 8−1804 (8) 8193 (6) 8186 (3) 1.2 (2)

25−6802 (7) 9073 (7) 9065 (10) 0.21 (4)

Table 3.Excitation energies andβ feeding of25Al proton-unbound nuclear states. Absolute branching ratiosfor the present work, which are
deduced from the absolute intensity measurements of theβ-delayed proton transitions, are given in the last column.
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Fig. 7.25Si γ-decay spectrum. Allγ lines except the one at 1461keV

are attributed to the decay of25Si.

3.1.3 β-decay scheme of 25Si

Figure 8 shows theβ-decay scheme proposed for25Si. The
experimental branching ratios and the correspondinglog(ft)
values are compared to shell-model calculations performedby
Brown [37]. Only excited states predicted to be fed with a

states populated in25Al Excitation energy (keV ) B.R. (%)

5

2

+

1
0 25 (7)

3

2

+

1
944.8 (4) 26 (4)

7

2

+

1
1612.4 (4) 15 (3)

Table 4. β-decay branching ratios towards proton-bound nuclear
states of25Al.

branching ratio of more than0.1 % are taken into account. In
terms of nuclear structure, the agreement between experimen-
tal results and theoretical calculations appears to be verygood,
most of the observed nuclear states being reproduced by the
model within a few hundredkeV .

The summed Gamow-Teller strength distribution as a func-
tion of the excitation energy of25Al is shown in figure 9. The
experimental distribution is in good agreement with the one
deduced from the shell-model calculations up to6 MeV . Be-
yond, the model predicts the feeding of a lot of high-energy
excited states by low intensityβ transitions that are not visible
experimentally. Due to the small phase-space factorf associ-
ated with such transitions, the relatedB(GT ) values are of im-
portance, which explains the divergence at more than6 MeV
of excitation energy. The global agreement below6 MeV is
obtained for11 individualβ transitions for which the Gamow-
Teller strength is quenched equivalent to a quenching factor of
about 0.6.

At low excitation energy, the Gamow-Teller strength seems
to be close to the one expected from theβ decay of the25Si
mirror nucleus, assuming that nuclear forces are isospin in-
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Fig. 8. β-decay scheme of25Si. Experimental results are compared to shell-model calculations performed by Brown [37] in the fullsd shell
with the USD interaction and the OXBASH code. The dotted lines tentatively connect experimentally determined levels tolevels predicted by
theory.

dependent (δ = 0). Unfortunately, the error for theβ-decay
branching ratios towards these states is too large (see table 8
below) due to the uncertainty on theγ-detection efficiency and
the individual values of the asymmetry parameterδ could not
be derived precisely for the(A=25, T =3/2) isospin multiplet
(25Na,25Mg, 25Al,25Si).

3.2 β-decay study of 26P

The experimental procedure established and tested with25Si
is now applied to26P. Theβ-delayed proton spectrum condi-
tioned by the detection ofβ particles inE5 is shown in figure
10. The contamination from otherβ-delayed proton emitters
was determined from energy-loss and time-of-flight measure-
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Fig. 9. Theoretical and experimental distributions of the summed
Gamow-Teller strength (ΣB(GT )) for the decay of25Si. At low exci-
tation energy, the distributions are also compared to the one obtained
from the mirrorβ decay of25Na assuming isospin symmetry. The
error of the Gamow-Teller strength distribution as determined in the
present work is about 20%.

ments to be0.6 % for 27S and1.2 % for 25Si. The most intense
proton transition occurring in the decay of the latter nucleus is
expected at4.25 MeV . It was not observed in the present set-
ting and all identified proton groups were therefore attributed
to the decay of26P .

3.2.1 β-delayed proton emission

The center of mass energies as well as the relative and abso-
lute intensities of the identifiedβ-delayed proton or two-proton
transitions are given in table 5. The large amount of produced
nuclei allowed to performedβ−p−γ coincidences. Table 5 in-
dicates the energy of theγ rays that were seen in coincidence
with the corresponding proton peaks. Allγ lines except the one
at1369 keV are assigned to the decay of excited states of25Al.
Theγ ray at1369 keV is due to theβ-delayed two-proton de-
cay (transition22, see below) of26P towards the first excited
state of24Mg.

Proton and two proton emission of the IAS in26Si: By
means of energy considerations andβ − p− γ coincidences,
the five transitions labelled29 to 33 could be assigned to the
proton decay of the isobaric analog state in26Si. Its excitation
energy was determined to be equal to13015 (4) keV . Based
on this first set of assignments, the two groups22 and28 were
identified as two-proton transitions from the IAS to the first
excited state and to the ground state of24Mg. The IAS ex-
citation energy deduced from these two transitions is slightly
higher in energy (13036 keV instead of13015 keV ) due to the
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Fig. 10. β-delayed one-proton and two-proton spectrum obtained in
coincidence with a signal inE5 in the decay of26P . The peak labels
correspond to the peak numbers used in table 5.

lower pulse-height defect in two-proton emission. In the case
of nearly back-to-back emission of the two protons, the recoil
has an energy close to zero, whereas for parallel emission of
the two protons, the recoil has a maxiumun energy comparable
to one-proton emission. As the process of two-proton emission
is supposed to be isotropic, the average recoil energy is about
half compared to the one-proton emission value leading to a
lower pulse height defect.

As described later, the determination of the excitation en-
ergy of the IAS was used to calculate the atomic mass excess
of 26P . The precise measurement of the26P lifetime (see be-
low), and the summedβ-decay branching ratio of5.28 (35)%
towards the IAS in26Si led to alog(ft) value for this state of
3.13 (5). This result is close to the expected model-independent
value of3.186.

Emission from known excited states of26Si: Due to their
energy, transitions3, 8, 12 and13 were attributed to the decay
of the previously observed excited states of26Si at 6350 (25),
7489 (15), 8570 (30) and8120 (20) keV [4]. Although transi-
tion12 is therefore expected to populate the first excited state of
25Al, noγ ray at452 keV was observed in coincidence and the
assignment of the transition is somewhat questionable. How-
ever, the intensity of this proton peak is rather weak which pre-
vents most likely the observation of a coincidentγ ray.

β−p−γ coincidences: γ rays occurring in the deexcitation
of 25Al states were observed in coincidence with the proton
groups labelled5−7, 9−10, 16−21, 25 and27. Therefore, these
transitions were assigned to transitions between initial and final
states based onp − γ coincidences. Noγ rays were seen in
coincidence with the transitions1, 2 and4, although they are
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Peak C.M. Energy Relative Absolute γ rays observed
(keV ) intensity (%) intensity (%) in coincidence

1 412 ( 2) 100.0 (71) 17.96 (90)
2 778 ( 3) 4.3 ( 5) 0.78 ( 7)
3 866 ( 2) 9.5 (10) 1.71 (15)
4 1248 ( 2) 8.4 ( 8) 1.51 (12)
5 1499 ( 2) 5.5 ( 5) 0.99 ( 7) 493, 945
6 1638 ( 3) 3.6 ( 4) 0.65 ( 6) 452
7 1798 ( 4) 1.1 ( 3) 0.20 ( 5) 452, 493
8 1983 ( 2) 13.3 (11) 2.39 (16)
9 2139 ( 4) 3.0 ( 8) 0.54 (14) 452, 493, 1338
10 2288 ( 3) 8.2 ( 9) 1.47 (12) 1612
11 2541 ( 6) 0.5 ( 2) 0.09 ( 3)
12 2593 (13) 1.5 ( 3) 0.27 ( 6)
13 2638 (18) 0.6 ( 2) 0.11 ( 4)
14 2732 ( 4) 2.6 ( 4) 0.47 ( 6)
15 2855 (17) < 0.8 ( 2) < 0.14 ( 4)
16 2908 (11) 0.3 ( 3) 0.06 ( 5) 452, 493
17 2968 ( 5) 1.8 ( 3) 0.32 ( 5) 452, 493
18 3097 ( 6) 1.7 ( 4) 0.31 ( 6) 452, 493, 845, 1790
19 3258 ( 4) 1.9 ( 2) 0.23 ( 4) 452, 493
20 3766 ( 9) 2.0 ( 4) 0.36 ( 7) 452
21 3817 ( 6) 0.7 ( 3) 0.13 ( 5) 452, 945
22 3879 ( 3) 4.4 ( 6) 0.79 (12) 1369
23 3920 ( 5) 6.7 ( 9) 1.21 (14)
24 4097 ( 5) < 2.1 ( 3) < 0.37 ( 4)
25 4719 ( 6) 1.3 ( 2) 0.24 ( 4) 452
26 4793 ( 3) 3.0 ( 4) 0.54 ( 6)
27 4858 ( 4) 2.5 ( 3) 0.44 ( 5) 452
28 5247 ( 3) 7.6 (13) 1.37 (22)
29 5710 ( 3) 7.8 ( 7) 1.40 (11) 452, 845, 1790
30 5893 ( 4) 4.1 ( 8) 0.73 (13) 1612
31 6551 ( 4) 1.2 ( 5) 0.21 ( 8) 452, 945
32 7039 ( 5) 1.0 ( 1) 0.17 ( 2)
33 7494 ( 4) 3.4 ( 3) 0.61 ( 5)

Table 5.β-delayed one-proton and two-proton emission of26P . The center of mass energy, the relative intensity and the absolute intensity of
proton groups identified in figure 10 are given. The last column reports theγ rays observed in coincidence with the proton peaks. Transitions
22 and 28 are due to two-proton emission from the IAS of26Si.

quite intense. Hence, they were assumed to populate directly
the ground state of25Al.

Assignments based on energy criteria: The excitation ener-
gies of the proton-emitting states in26Si derived fromβ−p−γ
coincidences were used to identify the proton groups14, 23
and26 as transitions from these states towards the ground state
of 25Al (c.f. table 6).

Unassigned proton transitions: The three transitions11, 15
and24 could not be assigned to the decay of excited states of
26Si. Neither a coincidentγ ray could be observed for these
proton lines, nor their energy corresponds to an energy differ-
ence of identified levels. The 3 transitions represent less than
1.11 % (one-sigma limit) of the measuredβ-decay strength of
26P .

Atomic mass excess∆(26P ): The mass excess of26P was
derived from the following relation:

∆(26P ) = ∆(26Si) + E∗(IAS) + ∆Ec − ∆nH (3)

where∆(26Si) is the atomic mass excess of26Si. E∗(IAS)=
13015 (4) keV is the previously obtained excitation energy of
the IAS in26Si and∆nH is the mass excess difference between
a neutron and a hydrogen atom.∆Ec is the Coulomb energy
difference between the IAS of26Si and the ground state of26P .
It can be deduced from the semi-empirical relation given in
reference [40]:

∆Ec = 1440.8 ∗

(

Z̄

A
1

3

)

− 1026.3 (4)

Taking Z̄ = 14.5 as a mean atomic number for the two
A = 26 nuclei, the atomic mass excess of26P was deduced
to be equal to11114 (90) keV . This value is in agreement with
the mass prediction from Audiet al.[41] of 10970(200)keV . It
leads to aQEC value ofQEC =∆(26P )−∆(26Si) = 18258 (90)
keV .

Search for other charged-particle emission modes: The one-
proton separation energy of26P is given by the relationSp(

26P )
=∆(H)+∆(25Si)−∆(26P ), where∆(H) and∆(25Si) are the
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atomic mass excesses of hydrogen and25Si [41]. The deduced
valueSp(

26P )=0 (90) keV suggests that26P can hardly be a
direct proton emitter since the available energy for such a dis-
integration would not exceed100 keV .

In the same way, the relevance ofβ-delayedα emission
can be discussed. Assuming thatα particles would be emitted
by the IAS of26Si, the correspondingQα value is given by the
following relation:

Qα = E∗(IAS) + ∆(26Si) − ∆(22Mg) − ∆(4He) (5)

Taking into account the atomic mass excesses given in ref-
erence [41] and the excitation energy of the IAS measured in
this work, the available energy in such aβ-delayedα decay
would be equal to3842 (15) keV . Theα transitions towards the
ground state and the first two excited states of22Mg are there-
fore energetically possible and would lead to threeα groups at
3840, 2600 and530 keV , the last two being followed byγ rays
at 1250 and2060 keV . No evidence for suchγ lines was ob-
served and the proton groups whose energy could match with
an α decay to the ground state of22Mg (transitions21 and
22 in table 5 and 6) were convincingly identified as26P β-
delayed one- and two-proton transitions. In addition, these α
transitions would be forbidden transitions. Hence, we conclude
thatβ-delayed one- and two-proton emission are the only de-
cay modes of the IAS in26Si.

The excitation energy and theβ feeding of proton emitting
states in26Si deduced from the present analysis are given in
table 6. The summed feeding of26Si proton-unbound excited
states is deduced to be equal to39 (2)%.

3.2.2 β-delayed γ decay

Theγ-ray spectrum obtained during the26P setting is shown in
figure 11. The sixγ lines at972 (1.27 (54)%),988 (5.2 (11)%),
1796 (52 (11)%), 1960 (1.32 (34)%), 2046 (1.44 (40)%) and
2342 keV (1.28 (51)%) are assigned to theβ-delayedγ decay
of 26P according to reference [4]. A newγ ray at1400.5 (5) keV
(2.82 (69)%) was attributed to the deexcitation of the4184 keV
excited state of26Si to the state at2784 keV . The measured
absolute intensities were combined with previously measured
relativeγ-ray intensities [4] to determine absoluteβ feedings.
The values obtained are reported in table 7.

The β decay of the ground state of26Si is followed by
two γ rays at830 and1622 keV . The two lines at1341 and
2307 keV are due to the summing of the511 keV γ rays (from
the annihilation of the emitted positrons) with the intenseγ
rays at830 and1796 keV .

Theβ-delayed one-proton and two-proton decays towards
excited states in25Al and24Mg give rise to the observation of
theγ rays at452,493,845, 945,1612,1790 keV and1369 keV .
The absolute intensity of the1790 keV γ line, which forms a
doublet with theγ line at 1796 keV , was deduced from the
previous determination of the proton-group intensities tothe
related excited level in25Al. Some of theseγ lines are also
due to the presence of contaminating nuclei:25Si (see chapter
3.1),24Al (γ rays at1073 and1369 keV ) and23Mg (γ ray at
440 keV ). Backgroundγ lines are also visible in the spectrum
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Energy  (keV)

Fig. 11.γ-decay spectrum of26P : Backgroundγ lines from60Co and
40K are indicated within parenthesis.γ rays within brackets are due to
the contaminating nuclei23Mg and24Al. All other γ lines are related
to theβ decay of26P, except the one at 1285 keV which could not be
attributed.

at 1461 keV (40K), and at1173 and1333 keV (60Co). Theγ
ray at 1285keV could not be assigned.

According to tables 6 and 7, the summed feeding of26Si
proton-unbound and proton-bound states is equal to39 (2)%
and54 (12)%, respectively. The spin of the ground state of the
even-even nucleus26Si being equal to0+ [4], this state is not
expected to be fed significantly by a second forbiddenβ decay
of the3+ ground state of26P . The summed feeding of the ex-
cited states of26Si obtained in the present work is therefore
equal to93 (13)%. Taking into account the large uncertainty,
the result is in agreement with the expected value of100 %.
However, unidentified weak proton groups orγ lines (see com-
parison to shell-model calculations below) may also contribute
to the missing strength. In addition, it cannot be excluded that
theβ feeding of the1796 keV state was underestimated or that
the γ decay of proton-bound states lying in the gap between
4184 and5929 keV of excitation energy (see decay scheme,
figure 13) was not observed.

3.2.3 Measurement of the half-life of 26P

The lifetime of26P was determined by means of a time corre-
lation procedure. The applied technique is schematically shown
in the inset of figure 12. It consists in measuring the time differ-
ence between the implantation of26P ions, identified by means
of time-of-flight and energy-loss measurements, and the obser-
vation ofβ or β(2)p decay events.

Decay events that are correlated to the selected implanta-
tion event follow an exponential decay curve, whereas uncor-
related events due to the decay of contaminant ions, due to26P
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C.M. proton energy (keV ) from the decay to25Al states 26Si proton
emitting states

5

2

+

1
; 0 1

2

+

1
; 452 3

2

+

1
; 945 7

2

+

1
; 1612 5

2

+

2
; 1790 Energy B.R. (%)

1: 412 (2) 5929 ( 5) 17.96 (90)
2 : 778 (3) 6295 ( 6) 0.78 ( 7)
3 : 866 (2) 6384 ( 5) 1.71 (15)

4 :1248 (2) 6765 ( 5) 1.51 (12)
8 :1983 (2) 7501 ( 5) 2.39 (16)

6 :1638 (3) 7606 ( 6) 0.65 ( 6)
5 :1499 (2) 7962 ( 5) 0.99 ( 7)

13:2638 (18) 8156 (21) 0.11 ( 4)
14:2732 (4) 7 :1798 (4) 8254 ( 5) 0.67 ( 7)

12:2593(13) 8563 (17) 0.27 ( 6)
16:2908(11) 9370 (15) 0.06 ( 5)

23:3920 (5) 17:2968 (5) 10:2288 (3) 9 :2139 (4) 9433 ( 4) 3.54 (20)
20:3766 (9) 19:3258 (4) 9725 ( 7) 0.59 ( 8)

26:4793 (3) 21:3817 (6) 10299 (6) 0.67 ( 7)
18:3097 (6) 10405 ( 5) 0.31 ( 6)

25:4719 (6) 10688 ( 9) 0.24 ( 4)
27:4858 (4) 10827 ( 8) 0.44 ( 5)

33:7494 (4) 32:7039 (5) 31:6551 (4) 30:5893 (4) 29:5710 (3) 13015 (4) 3.12 (20)

C.M. two-proton energy (keV ) from the decay to24Mg states 26Si two-proton
emitting states

0+

1 ; 0 2+

1 ; 1369 Energy B.R. (%)
28:5247 (3) 22:3879 (3) 13036 (4) 2.16 (24)

Table 6.Excitation energies andβ feeding of the proton-unbound excited states of26Si. They are deduced from the data compiled in table 5.
On the left-hand side, in the top row and in the row last but one, we give the final states on which the one- or two-proton emission ends. Then
we indicate the peak numbers according to figure 10 and their center of mass proton energy. On the right-hand side, we use this information to
determine the excitation energy of the emitting states in26Si as well as theβ-decay branching ratio for the feeding of these states.

26Si populated states Excitation energy (keV ) B.R. (%)
2+

1 1795.9 (2) 44 (12)

2+

2 2783.5 (4) 3.3 (20)

( 3+

1 ) 3756 (2) 2.68 (68)

( 4+

1 ) 3842 (2) 1.68 (47)

2+ 4138 (1) 1.78 (75)

( 3+

2 ) 4184 (1) 2.91 (71)

Table 7.β-decay branching ratios towards proton-bound excited states
of 26Si.

daughter nuclei or due to26P implantations other than the one
considered for the correlation are randomly distributed. The
large time correlation window of500 ms enabled us to estimate
accurately the contribution of uncorrelated events to the decay
curve. The half-life of26P was measured to be43.7 (6)ms, in
agreement with the value given by Cableet al.[25] of 20+35

−15 ms.
We verified that, due to its relatively long half-life (2.21 s), the
daughter decay of26Si does not alter the fit result.

3.2.4 β-decay scheme of 26P

The proposedβ-decay scheme of26P is shown in figure 13.
The measured half-life as well as theQEC value obtained ex-
perimentally are reported. The distribution of26Si excited states
appears to be well reproduced up to an energy of7 MeV by the
shell-model calculations performed by Brown [37].

3200
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0 50 100 150 200 250 300 350 400 450 500
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C
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Implantation radioactivity

Time correlation intervals

t

500 ms

Fig. 12. Determination of the26P half-life by means of timing cor-
relations between implantation and radioactivity events within a time
window of500 ms. The inset shows the correlation of each implanta-
tion event with each subsequent decay event within 500ms.
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Fig. 13.26P β-decay scheme as deduced from the data presented in this work. The dotted lines tentatively connect experimentally determined
levels to levels predicted by theory.

As shown in figure 14, the summed Gamow-Teller strength
distribution is also well reproduced up to an excitation energy
of more than10 MeV . It can therefore be concluded that the
quenching of the Gamow-Teller strength in theβ decay of26P
is about60 %, as it was the case for25Si.

At low excitation energy, the experimental Gamow-Teller
strength distribution is in disagreement with the one derived
theoretically between4 and6 MeV . The discrepancy can be
due to the non-observation of populated excited states in this re-

gion, as it was mentioned before. The summedB(GT ) strength
converges around6 MeV because of the highβ-decay branch-
ing ratio towards the excited state at5.93 MeV . Hence, the no-
ticed discrepancy may simply originate from a different sharing
of theβ-decay strength between the two competing3+ excited
states at3.76 and5.93 MeV .

Once again, the uncertainty of theβ-decay branching ratios
to low-energy excited states is too large (see table 8 below)to
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Fig. 14.Summed Gamow-Teller strength distribution in the decay of
26P . The result of the present experiment (relative error of about 20%)
is compared to shell-model calculations and to the B(GT) of the mirror
decay of26Na assuming isospin symmetry.

derive precise values for the asymmetry parameterδ for the
(A=26, T =2) isospin multiplet (26Na,26Mg,26Si,26P ).

3.3 Mirror asymmetry of mass A = 25, 26 nuclei

The mirror asymmetry parameterδ is usually determined for
the ground-state transitions as well as for those feeding the low-
lying excited states in the daughter nuclei. Higher-lying states
are normally fed with smaller branching ratios which yields
larger errors for theδ value. In addition, these states may decay
by proton emission for the proton-rich partner which usually
reduces the branching-ratio precission.

In the present experiment, however, the feeding of low-
lying states and in turn also of the ground state (its branching
ratio is determined as the difference between 100% and the ob-
served branchings) is only poorly determined due to the large
uncertainties of theγ-ray efficiency of our set-up. Nontheless,
we give the asymmetry values derived from the present work
for the massA = 25 andA = 26 nuclei in table 8.

Experimentally, we reach the best precision for the highest-
lying state in each mirror couple where theft value for the
proton-rich nucleus comes from aβ-delayed proton branch. In
both cases, a significant effect is observed. This result, how-
ever, is opposite in sign compared to the theoretical value for
the mass A=25 couple. For the other mirror transitions, no clear
statement can be made due to the large experimental errors for
the decay of the proton-rich partner.

A E∗(MeV ) Jπ
i ; Ti Jπ

f ; Tf theory [7] present work

25 0.00 5

2

+
; 3

2

5

2

+
; 1

2
1.11 0(40)

0.95 3

2

+
; 1

2
12.39 0(20)

1.61 7

2

+
; 1

2
11.23 30(40)

2.67 5

2

+
; 1

2
-5.58 48(11)

26 1.81 3+; 2 2+; 1 50(60)
3.76 3+; 1 10(40)
4.14 2+; 1 110(160)
4.18 3+; 1 110(70)
5.93 3+; 1 -24(11)

Table 8. Mirror asymmetries for the decay of25Si and26P and their
mirror nuclei to low-lying states in the daughter nuclei. The excitation
energies indicated in the second column are those of theβ+ daughter
nuclei. Initial and final spin and isospin values are given inthe fol-
lowing two columns. The experimental asymmetry results from our
experimental values for theft values of theβ+ decay and data from
the literature [4]. The theoretical result is from ref. [7] where we took
the INC+WS value as one example. The last transition for eachmirror
pair stems from the measurement of aβ-delayed proton branch for the
proton-rich nucleus.

4 Conclusion and perspectives

Theβ decay of the neutron-deficient nuclei25Si and26P was
studied at the LISE3 facility at GANIL.300 and60 ions per
second, respectively, were produced with contamination rates
of less than1 % and of about13 %. The decay scheme of the
two nuclei was obtained, including for the first time theβ-
decay pattern towards proton-bound states. It allowed us to
measure the asymmetry parameterδ for the mirror states of the
mass A=25 and A=26 nuclei. Unfortunately, the poor preci-
sion in the determination of the corresponding branching ratios
gave rise to large uncertainties for theseδ values. Compari-
son to shell-model calculations based on the USD interaction
and performed in the fullsd shell by Brown [37] revealed two
features: the reliability of such models when they are applied
to mid-shell nuclei lying close to the proton drip-line, andthe
about60 % quenching of the Gamow-Teller strength of the in-
dividualβ transitions.

The following properties were derived from the spectro-
scopic study of these nuclei: i) The half-life of26P was mea-
sured to be equal to43.7 (6)ms. ii) Its proton separation energy
as well as the maximum available energy in itsβ decay were
determined with a precision of90 keV . iii) The β-delayed two-
proton emission of26P towards the ground state and the first
excited state of24Mg was observed. iv) More than thirty one-
proton groups were identified, five of them being emitted from
the isobaric analog state of26Si.

Compared to previous studies with a helium-jet technique,
the use of projectile fragmentation in conjunction with a frag-
ment separator has several advantages, which are that i) the
detection of the arrival of an ion allow its identification and
gives a start signal for half-life measurements, ii) very short
half-lives can be studied since the separation time is short(or-
der 1 microsecond), iii) the selection process is independent on
chemistry.
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Nonetheless, the spectroscopic studies presented here suf-
fer from limitations that should be addressed in future experi-
ments of the same type. Firstly, the implantation of ions inside a
silicon detector gives rise to a high proton-detection efficiency,
however, due to the energy deposit ofβ particles in the implan-
tation detector, it is sometimes difficult to observeβ-delayed
protons with low intensity.

Secondly, concerning theγ-spectroscopy part, a high ef-
ficiency is required in order to identify low intensityγ rays,
and a high precision is needed for the more intense transi-
tions. A new detection set-up using segmented silicon detectors
and four Germanium clovers has therefore been implemented
and the decay properties of21Mg, 25Si and their mirror nu-
clei were investigated recently at the GANIL facility [42].This
work should lead to the determination of accurate asymme-
try parametersδ, which might help to understand the origin
of isospin non-conserving forces in nuclei.

The author would like to thank B.A. Brown for providing up-to-date
shell-model calculations and C. Volpe and N.A. Smirnova forstim-
ulating discussions about the mirror asymmetry question. We would
like to acknowledge the continous effort of the whole GANIL staff
for ensuring a smooth running of the experiment. This work was sup-
ported in part by the Conseil Régional d’Aquitaine.
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