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Power fluctuations in stochastic models of dissipative systems.
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Abstract

We consider different models of stochastic dissipative equations and theoretically compute the
probability distribution functions (actually the associated large deviation functions) of the time
averaged injected power required to sustain a nontrivial stationary state. We discuss the results
and in particular draw from our results some general features shared by these distributions in
realistic dissipative systems.

PACS: 05.40.-a: Fluctuation phenomena, random processes, noise, and Brownian motion.
02.50.-r: Probability theory, stochastic processes, and statistics.

1 Introduction

Among out of equilibrium statistical systems, strongly dissipative mediums have a very particular
status. Usually, statistical theories of non equilibrium systems deal with tools inspired or inherited
from thermal equilibrium, a scheme that Onsager theory examplifies especially well [1, 2]. That such
a continuity may be possible in numerous cases is always due to the fact that genuine equilibrium
keeps a certain relevance, thanks to a time decoupling which induces partial equilibrations [3].
Even in recent theories of nonequilibrium statistical mechanics aiming at describing systems as
complicated as glassy materials, equilibrium concepts are generalized and successfully adapted,
since again time separation is there at work [4].

In contrast, strongly dissipative systems have a full rest natural “fixed point” or equilibrium
(something like a zero temperature situation). To avoid such a state and explore the richness
of their dynamics, the system has to be fed continuously with energy, by means of an external
action which holds it in a non trivial stationary state (if the injection mechanism has itself some
stationarity properties). As a result, the statistical state (i.e. the stationary measure) reached is
very far from any concept of (Boltzmann-like) equilibrium, and new approaches must be followed.
For instance, granular matter looks more or less like a gas when sufficiently shaked; actually, the
so-called “granular temperature” defined as the mean kinetic energy per particle, is a rather hazy
notion, since its values are not unique when the system is not monodisperse [5, 6], in a clear violation
of a basic requirement for a temperature– that is, the equilibration of temperatures of any pair of
subsystems at equilibrium (or equivalently, the energy equipartition principle).

Therefore, these systems, sometimes termed “far from equilibrium”, do not belong to the tra-
ditional statistical physics (as far as we are concerned with relevant degrees of freedom: of course,
the Navier-Stokes equation can be derived from local thermodynamical equilibrium considerations;
however, a turbulent velocity field obeys a dissipative dynamical equation (NS, say) and its statis-
tics has nothing to do with standard statistical physics) and consequently requires alternative
approaches.

Some years ago, such an original approach was proposed [7], which tried to look at the problem
of dissipative systems from a global and phenomenological point of view. In particular, it was
recognized that the common feature of all dissipative systems is the energy evolution equation
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Ė = I −D, which explicites and summarizes the physics of these systems from a “macroscopical”
(or experimental) point of view : two channels of energy flow compete, one corresponding to the
energy injected by the external operator (I), the other related to an inner dissipation term (D,
easily recognized, since it is in general a volume term proportional to a dissipation coefficient).
Of course, the physics is actually more complicated, since these energy flows induce complicated
structurations of the local fields, which themselves determine in fine the statistical properties of
I and D; but it was thought that if something common to all dissipative systems could be once
firmly asserted, this will be done necessarily using that kind of general evolution equation, which
transcends all peculiar details of each experimental situation.

Experimental measurements were first performed in a turbulent von Karmán flow, and statistical
properties of I were extracted and analysed in stationary regimes. Surprisingly enough, it was
shown that the fluctuations of I are non gaussian (despite its a priori “extensive” (on the surface)
nature), and decay abnormally slowly as Reynolds number increases (i.e. more slowly that a normal

regression ∼ 1/Re1/2). The analysis of these experiments is still the subject of active research and
debates [8], and the physical interpretation of the observed scaling is up to now not fully completed.
Similar studies were afterwards made on various systems including granular gases, shell models of
turbulence, self-organized critical systems, and led to interesting developments: for instance, a very
convincing way to estimate the number of effective degrees of freedom in a shaked granular gas has
been proposed [9].

From a theoretical point of view, exploring the properties of I and D is not easy, for the systems
considered are characterized by invariant measures generally unknown. In a preceding paper [10], we
studied a simple model (“zero-dimensional”) of dissipative system, where the statistical properties
of I and D were calculable. More precisely, we considered the following stochastic equation

ẍ+ γẋ+ V ′(x) = ψ(t) (1)

where ψ is a white noise and V (x) a potential. We read this equation as the dynamical evolution
of a single dissipative coordinate (ẍ + γẋ + V ′(x) = 0) subjected to an external forcing ψ(t) (the
stochasticity of the forcing mimics the chaoticity developped by realistic dissipative systems when
driven vigorously enough out of equilibrium; this ad hoc choice allows exact computations; we
verified that purely chaotic dissipative systems (like a periodically forced asynchronous pendulum)
gives qualitatively the same results, as far as time-averaged observables are concerned (see below);
however, some interesting studies and comparisons could be performed with deterministic chaotic
systems).

The energy of the coordinate is naturally defined as E = ẋ2/2 + V (x), and is conserved in the
absence of noise and dissipation. This energy obeys the evolution equation

Ė = ψẋ− γẋ2 (2)

where the above-mentioned structure Ė = I−D is clearly apparent. The properties of instantaneous
quantities of such systems are not complicated to compute, but we were interested in calculating
the distribution of partially time-averaged quantities like

ε =
1

τ

∫ t+τ

t

dt′I(t′) (3)

Initially, the focus on these time-averaged variables was motivated by the so-called Fluctuation
Theorem [11, 12, 13], but beyond this particular debate, this partial time averaging presents a
major advantage for analysis: it smoothes the short time scale dynamics, and gives the possibility
to highlight phenomena occuring at slow time scales, broadening the analysis based only upon non
dynamical considerations. As an example, the systems considered in [10] display a great variety of
different dynamics, according to the form of the potential V (x): confined, unconfined, activated,
etc. . .Despite these great qualitative discrepancies, we showed that the probability density function
of ε is asymptotically the same in the limit of large τ (to be precise: lim 1

τ logP (ε) = f(ε) with f
independent of V ; this f is called the large deviation function associated to ε). In this result can
be seen that peculiar details of the short time dynamics of energy have faded away through the
averaging. We also remarked other interesting facts concerning the pdf of injected and dissipated
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power (averaged during a time τ): the large deviation function of the injected power is curiously
dependent on the initial conditions set of the system at the beginning of the averaging window: if
the distribution of ε is measured, starting always with the same status for the system (referenced
here with the initial conditions of position and velocity (x0, v0)), the large deviation function of
the injected power is the same as the dissipated power; conversely, in the permanent regime, that
is when measurements of ε are performed the (statistical) stationarity1 being reached, rare energy
fluctuations cause a singularity to arise in the large deviation function of the injected power (but
not in the dissipation).

These unexpected properties of the statistics of ε rise immediately the question of their gener-
ality. In the models we studied in [10], we chose for ψ(t) a Gaussian white noise (i.e. 〈ψ(t)ψ(t′)〉 =
Γδ(t− t′)), to make the computations as simplest as possible. The purpose of this paper is to study
generalizations of the systems previously considered, and discuss whether the properties of ε yield
new concepts, possibly useful for more realistic systems.

In a first part, we recall the results obtained in [10]. Then we present some generalizations
of the simple model (coloured noise, non linear friction), and discuss the properties of the large
deviation functions of ε associated with them. The details of the calculations are entirely postponed
in appendices.

2 Injected and dissipated power in Langevin equation

In [10], we studied the system

ẍ+ γẋ+ V ′(x) = ψ(t) (4)

〈ψ(t)ψ(t′)〉 = 2Γδ(t− t′) (5)

which was thought as an intrinsic dissipative system (driven by ẍ + γẋ+ V ′(x) = 0) driven away
from equilibrium by a Gaussian white noise. Of course, it is not the common interpretation of
a Langevin equation, which describes usually the thermalization of a particle in a fluid; in that
context γẋ and ψ are two different faces of the same action. There we abandoned that reference,
and in particular made no citation of the Einstein relation Γ = γkBT . We studied the statistical
properties of

ε =
1

τ

∫ τ

0

dt′ẋ(t′)ψ(t′) (6)

the injected power averaged over a finite time interval of length τ . This task is a priori complicated,
for ε involves explicitely the dynamics. Nevertheless we succeeded and computed the distribution
Prob(ε) for any value of τ and any potential (in fact any potential non repulsive at ∞). The
distributions are of course potential dependent, but an prominent feature emerged in the limit of
large τ . We know that at large τ , the distribution obeys the large deviation theorem:

∃f, lim
τ→∞

1

τ
logP (ε) = f(ε) (7)

f is called the large deviation function associated with ε. This property is sometimes uncorrectly
noted P (ε) ∼ exp(τf(ε)). We demonstrated that this large deviation function is in fact independent
of the potential V (x), what is rather unexpected, since the underlying dynamics is on the contrary
very sensitive to the form of the potential. We found that if the distribution of the initial energy
(i.e. at t = 0) is bounded, the large deviation function has the expression

f(ε) = − γ

4ε̃
(ε̃− 1)2 where ε̃ = ε/Γ (8)

(the maximum of this function corresponds to 〈ε〉 and is always Γ in this model since 〈I〉 = 〈D〉 =
γ〈ẋ2〉). Interestingly enough, this expression is no longer valid if the distribution of initial energy is

1characterized by time-independent probability distributions
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unbounded, which is the case in the permanent regime since Prob(v2) ∝ exp(−Γv2/2γ)/|v|. In that
case, a phenomenon analogous to a phase transition occurs and (8) is valid only above ε̃c = 1/3.
Below that value, the curve is replaced by a portion of a straight line:

f(ε) =

{
− γ

4ε̃
(ε̃− 1)2 if ε̃ > 1/3

−γ(1 − 2ε̃) if ε̃ 6 1/3
(9)

(A physical explanation of this singularity is given in [10]). Finally we computed the large deviation
associated with the dissipation δ = 1

τ

∫ τ
0 dtγẋ

2(t) and found that it is equal to (8), δ̃ = δ/Γ replacing
ε̃.

3 Free and harmonically bounded particle driven by coloured

noise

We now consider a slightly different system. The dynamics is given by

ẍ+ γẋ+ ω2x = ψ(t) (10)

〈ψ(t)ψ(t′)〉 =
Γ

τ0
exp

(
−|t− t′|

τ0

)

It resembles the previous case (with V (x) = ω2x2/2), except that the external force acting on the
system is no longer a Gaussian white noise, but a coloured noise, an Orstein-Uhlenbeck process.
The first merit of this system is that henceforth, there is no possible confusion in the interpretation
of our system: the situation described by (10) does not correspond anyhow to a thermalization
process. Actually, a Langevin equation describing the thermalization of a particle in a thermal
bath with finite correlation time (exponentially correlated), would have involved a frictional term

∫ t

0

du(Γ/kBTτ0)e
−(t−u)/τ0v(u) (11)

instead of our single γv [1].
The second merit of the system is to provide us with one dimensionless quantity α = γτ0 (in

the free case ω = 0), which is a generalization of the previous case where only one typical energy
can be constructed. It allows to test the reaction of a given system under sollicitations which differ
only by a characteristic time.

The details of calculations are fully postponed in the first appendix. Here we discuss only the
results obtained. The large deviation function f(ε) has again generically two expressions depending
on the general shape of the initial velocity distribution. If this distribution is bounded at t = 0,
the large deviation function has the expression (with the definitions β = ωτ0 and ε̃ = ε/Γ))

f(ε) =
1

16τ0

(
− ε̃

α
(α2 + 1 − 2β2)θ2(ε̃) − 6

ε̃

α
(β2 +

α

ε̃
)θ(ε̃) + (α+ 1)(8 +

ε̃

α
(α − 1)(α2 − 1 − 4β2))

)

(12)

where θ(ε) is the largest real root of θ3 − (α2 + 1 − 2β2)θ − 2(β2 + α/ε̃) = 0

An alternative and useful expression of this function is also

f(ε) = g(λ) + λε with λ such that g′(λ) = −ε

g(λ) =
1

2τ0

(
α+ 1 − θ̂(λ)

)
with θ̂(λ) the largest positive root of (13)

(θ2 − α2 − 1 + 2β2)2 − 8β2θ − 4(β4 + α2 − 2β2 + 4Γλγτ2
0 ) = 0

(remark that g is the Legendre transformation of f). If ω = 0, the previous expressions are
simplified; for example we get

gβ=0(λ) =

(
α+ 1 −

√
α2 + 1 + 2α

√
1 + 4Γλ/γ

)
/(2τ0), (14)

4



and f could be as well explicitely computed, since the inversion of g(λ) involves roots of a third
degree polynomial. Incidentally it can be checked that (13) gives the correct limit for τ0 → 0:
owing to the fact that θ = 1 +O(τ0), the leading order yields

(θ2 − 1)2 = 8β2 + 4(α2 − 2β2 + 4Γλγτ2
0 ) (15)

whence gτ0=0(λ) = γ
2 (1 −

√
1 + 4Γλ/γ) whatever the value of β, as established in [10].

The typical shape of that function is given on the figure 1 and is typically asymmetric. The
principal characteristics of these functions are the location and the curvature of the maximum, and
the nature of the divergence at ε→ 0 and ε→ ∞. The maximum of f is obtained for the average
injected power ε = ε (and correspondingly λ = λ = 0 since 0 = [g′(λ) + ε]dλ/dε+ λ),

ε =
Γ

α+ 1 + β2
(16)

It is interesting to note that the presence of a confining harmonic potential is always a hindrance
to injection of energy into the system. Whether this fact is absolutely general whatever the form
of the (confining) potential is still an open question.

The curvature of f near the maximum ε can also be explicitely computed, for it is easy to show
that f ′′(ε) = −1/g′′(0). We obtain

σ2
I ≡ 1/|2f ′′(ε)| =

Γ2

γ

α2 + 3α+ 1 + β2

(α+ 1 + β2)3
(17)

This quantity is relevant as one easily measured (numerically or experimentally) besides the mean
value. Incidentally, we can form with ε and σ2

I a characteristic energy

Tcurv ≡
σ2
I

ε
= − g′′(0)

2g′(0)
=

Γ

γ

(
1 +

α− β2(1 + 2α) − β4

(α+ 1 + β2)2

)
(18)

The form of γ
ΓTcurv(α, β) is plotted on figure 2. We shall see that this characteristic energy Tcurv

is in a certain sense an invariant of the energy flow process (see later).
Let us look now at asymptotic branches. The ε → 0 branch is characterized by a ε−1/3 diver-

gence:

f(ε) ∼
ε→0

− 3γ

44/3α2/3

(
Γ

ε

)1/3

(19)

This exponent −1/3 is a novelty with respect to the “pure” Langevin case, where the exponent was
−1. This is not very intuitive, but follows closely the decreasing of ε with α: it is probably due
to the fact that I = ψv is bounded as soon as α 6= 0, which was not the case with a white noise;
this important change in the shape of f(ε) shows that the white noise limit is a singular case, even
for the function f(ε) which is a priori related to a time-integrated observable. Besides, it shows
that the short time dynamical details continue to play a role in the large deviation function. . . We
can just remark that this vicinity of ε = 0 becomes independent of β: we can thus conjecture
that this exponent is potential independent and is controlled only by the injection and dissipation
mechanisms.

The other asymptotics corresponds to ε→ ∞, and is much more softer than the ε = 0 one, that is
a simple linear behaviour, witness of a singularity of g(λ) occuring for a finite negative value λ = λ0.
The slope of the line is homogeneous to (energy)−1. In the pure Langevin case, f(ε) = −γΓ((ε/Γ)−
1)2/4ε and the slope is simply −γ/4Γ. We are thus naturally led to define a characteristic energy
Tslope by asserting that the slope of the ∞ divergence is given by −1/4Tslope.From (12),

Tslope = −4α2 Γ

γ

(
−(α2 + 1 − 2β2)ζ2 − 6ζβ2 + (α2 − 1)(α2 − 1 − 4β2)

)−1
(20)

where ζ largest solution of ζ3 − (α2 + 1 − 2β2)ζ − 2β2 = 0 (21)
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The figure 3 gives a plot of γ
ΓTslope as a function of α and β. The behaviour of Tcurv and Tslope

is qualitatively quite similar, what is not so surprising: the typical form of g(λ) is shown on figure
4. If we try for g (in the vicinity of λ = 0) the Ansatz g(λ) ≈ g(λ0) − Ct

√
λ− λ0, we deduce

that would this Ansatz be exact, we would have Tcurv = Tslope. As this Ansatz is not so bad (cf.
fig. 4), we deduce Tcurv ≈ Tslope. Thus, the large deviation function f(ε) has its right asymptotic
branch slightly constraint by the vicinity of its maximum, but this relationship remains however
relatively weak (the relative difference does not exceed 45%). Physically, the energy Tcurv is more
interesting, since it is constructed with the top of the curve, i.e. with quantities which are easy to
measure/compute, which is not the case with the asymptotic tails, associated to rare events.

3.1 Singularity of f in the permanent regime

From the preceding paragraph, it is clear that unlike the white noise case, the large deviation
function of ε is sensitive to the short time dynamics and to the presence of a potential. Thus,
the irrelevance of V (x) demonstrated in [10] is specific to the white noise case and it is probably
hopeless to seek in general for such simplifications. Nevertheless, something already observed in
[10] is still present here and is probably extremely general: in the permanent regime –that is,
when the initial conditions are not fixed, but sampled from the stationary distribution–, the shape
is altered and a negative tail appears below a certain positive value εc. This tail is simply the
straight line g(λc) + λcε where λc corresponds to εc. This effect corresponds to the fact that for
small values of ε, the probability of these rare events is no longer dominated by the inner dynamics
(inside the time interval [0, τ ]) but by rare and very energetic initial conditions (cf. [10] for details).
This situation is due to the fact that I and D are intimately coupled to the energy which has a
conservative character. As a result, this phenomenon must also occur in the models considered
here, and more generally in any case where the stationary distribution of energy is unbounded.
As an example, consider the case β = 0 (for the sake of simplicity). The computation of the so-
called “fluctuation term” in 〈e−λτε〉 provides a prefactor to exp(−τg(λ)) which displays a cut for
λ > λc = 2γ(2α2 + 3α+ 1)/Γ. The corresponding value for ε is

εc =
Γ√

9 + 16α2 + 24α

1
(
α2 + 1 + 2α

√
9 + 16α2 + 24α

)3/2
(22)

and tends to 1/3 when τ0 → 0, as expected from [10] This singularity has an interesting physical
meaning: it is intimately related to the three observables (E, I,D) and their mutual dependence
and balance (the stationary distribution is a property of the dynamics). The disadvantage of that
phenomenon is that it is located in a region of quite rare events, and corresponds to a second order
singularity: as a result, it is not easily observable. One way to make the singularity observable
could be to consider “very hot” and externally controlled initial conditions, where large initial
energies be likely; this will certainly shift the location of the singularity. For instance, in the
pure Langevin case α = β = 0 it can be shown that it shifts the singularity from ε/Γ = 1/3 to

ε/Γ = 1/
√

3 + 2
√

2 ≈ 0.414 (in the limit of flat initial condition). Thus, this shift would be anyway
limited, but could be however sufficient to make the singularity measurable. In that case, precursors
of this singularity could be observable at finite τ by plotting 1

τ d
2(logP )/dε2: this function must

display a steep jump at the singularity location.

3.2 Characteristic time of the energy flow

Above was defined a quantity related to the curvature at the top of f(ε) as σ2
I = 1/|2f ′′(ε)|. In

fact σ2
I is also given by the following expression:

σ2
I =

∫ ∞

0

dt[〈I(t)I(0)〉st − 〈I〉2st] (23)

where 〈. . .〉st denotes the averaging in the (out-of-equilibrium) stationary regime. To demonstrate
that, let us compute 〈ε2〉 − 〈ε〉2 in the large τ limit. We have

P (ε) = p(ε). exp(τf(ε)) ∼ p(〈ε〉). exp[τf ′′(〈ε〉)(ε − 〈ε〉)2/2] (24)
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where p(ε) is the preexponential factor of the distribution. It is readily obtained 〈ε2〉 − 〈ε〉2 ∼
1/|τf ′′(〈ε〉)|. Expanding the second moment, the result is established.

In all the stochastic models we considered so far, we always noticed that large deviations func-
tions associated with energy injection and energy dissipation were intimately related, and even
equal in the vicinity of the maximum. It is easy and instructive to demonstrate this property
(which is always valid) directly from the expression of σ2

I (we recall that the stationarity implies
〈I〉st = 〈D〉st). Indeed, we have

σ2
I =

∫ ∞

0

dt

[
〈(Ė(t) +D(t))(Ė(0) +D(0))〉st − 〈D〉2st

]
(25)

= 〈(E(∞) − E(0))(Ė(0) +D(0))〉st +

∫ ∞

0

dt

[
〈D(t)(Ė(0) +D(0))〉st − 〈D〉2st

]
(26)

= 〈E〉〈D〉 − 〈E(0)D(0)〉st +

∫ ∞

0

dt

[
〈D(0)(Ė(−t) +D(t))〉st − 〈D〉2st

]
(27)

=

∫ ∞

0

dt[〈D(t)D(0)〉st − 〈D〉2st] = σ2
D (28)

where we made use only of time translation invariance, assumed in a stationary regime. This
property allows us to define some quantities naturally associated with the energy dynamics. We
already saw Tcurv which thus can be computed from the fluctuations of the dissipation term, but
the very physical interpretation of this energy is not clear up to now. Similarly, we define a
characteristic time τe associated with the energy dynamics,

τe =
σ2
I

〈I〉2st
=

σ2
D

〈D〉2st
(29)

which presents also the remarkable property to be symmetric with respect to the injection and
the dissipation. These considerations are extremely general and make use only of the Ė = I −
D structure and the time translation invariance. Thus the equation (29) is always true in the
stationary regime, and τe is a correlation time attached to the full energy flow process. Usually,
we define the correlation time of an observable as τX =

[∫ ∞

0
dt〈X(t)X(0) − 〈X〉2〉

] /
〈X2 − 〈X〉2〉 .

Thus, τe is more or less a bare time whence τI and τD are constructed as

τI =
〈I〉2

〈I2〉 − 〈I〉2 τe (30)

(and a similar one with D). These relations are interesting, since if we imagine that τe is fixed (or
takes it as the natural time unit), we see that at the injection level, the fluctuations level is enslaved
by the characteristic time of the injection mechanism. At the other side, this balance exists with
a dissipation time which is possibly quite different from the former; in that case the fluctuations
are again constrained to adjust correspondingly. This simple reasoning of course does not take into
account the fact that the “reference” time τe is itself a property of the established regime.

As an example, let us look again at our toy-model. Noticing that τe = Tcurv/ε, we get

τe =
1

γ

α2 + 3α+ 1 + β2

α+ 1 + β2
(31)

This result is independent of Γ the strength of the excitation, a fact obvious in our case, since no
dimensionless number can be made with Γ. But for more complicated models a Γ dependence is
to be expected a priori. We notice also the effect of the confining potential: the oscillation time
ω only prevents the correlation time τe to diverge when τ0 is large. This is obviously due to the
unavoidable oscillation at frequencies near ω in the response function of x.

4 Anharmonic potentials

Unlike the pure Langevin model, the addition of an anharmonic confining potential makes the
computation of f(ε) untractable. Actually the mapping to an effective dynamics (as exposed
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in appendix) is no longer feasible, due to a proliferation of new types of terms in the action.
However, the previous analysis will be qualitatively the same, and the pdf of ε has typically the
same asymmetric shape, with a right tail driven by a term exp(−τε/Tslope) (this term is in general
multiplied by a prefactor ∼ ε−ν where ν is potential dependent [10]): figure 5(a) shows the quantity
1
τ logP (ε) for a model α = β = 1, Γ = 1 and a double well potential V (x) = 0.25 ∗ x2 − x4. We see
that the convergence of log(P )/τ to f(ε) is quite slow, due to correction terms of order log(τ)/τ .
The other part of the figure shows the comparison of two pdf for the same value of (τ, α), but for
two different potentials (harmonic β = 1 and double-well). It clearly shows a strong dependence of
log(P ) (and therefore f) with respect to the potential. The positive tail is less pronounced in the
nonlinear case, which is a bit surprising, since the parameter was chosen such that the curvature in
the bottom of the double well is identical to the harmonic curvature. Naively, as in a double well ϕ4

potential the frequency decreases with the energy we would expect a scenario similar to an effective
harmonic potential with a lower well frequency, and thus, an enlargement of the rare positive
events. This is not observed, thus demonstrating that probably rare energetic events correspond
to scenarios where the steep external branches of the potential are often explored by the particle –
very energetic oscillations have in fine an increasing oscillation. Finally, a second order singularity
in f is also expected in the permanent regime, although difficult to observe, as easily seen in figure
5 (a): for τ = 50 (whereas the typical dynamical time are of order 1), the difference 1

τ log(P ) − f
is not negligible (cf the maximum of the curve), and several millions of statistic steps are however
unable to sample the vicinity of ε = 0. . .To conclude, let us mention that a variational approach
could be performed on these nonlinear models: using 〈eX〉 > e〈X〉, we could compute for each λ
the best harmonic potential describing the dynamics.

5 Nonlinear friction

There is another way to generalize the original Langevin equation, namely to change the dissipation
term γv to a nonlinear term ϕ(v), where ϕ is an odd function, positive for positive v. It is worth
looking at these models, since we can that way test the influence of the dissipation term on the
shape of P (ε). As an example, let us consider the simplest case

v̇ + ϕ(v) = ψ(t) with 〈ψ(t)ψ(t′)〉 = 2Γδ(t− t′) (32)

It is shown in the appendix that the function g(λ) can be expressed in terms of the lowest energy
of a Schrödinger equation:

g(λ)/Ga = − Min
〈ζ|ζ〉=1

〈
ζ

∣∣∣∣−
∂2

∂v2
+

1

4Γ2

(
ϕ2(v) − 2Γϕ′(v) + 4Γλvϕ(v)

)∣∣∣∣ ζ
〉

(33)

whence we get

f(ε)/Γ = − Max
〈ζ|vϕ|ζ〉=εΓ

〈ζ|ζ〉=1

〈
ζ

∣∣∣∣−
∂2

∂v2
+

1

4Γ2

(
ϕ2(v) − 2Γϕ′(v)

)∣∣∣∣ ζ
〉

(34)

Thus, the large deviation function comes in this case from an extremalization principle, but this fact
is specific to the situation considered. The inspection of (33) is instructive, for we see immediately
that if ϕ(v) diverges faster than v, g(λ) has no longer a singularity at finite λ. As a result, the right
asymptotic tail of f(ε) is no longer a straight line: the precise form of this asymptotics depends
on the dissipation efficiency. And we find obviously that if ϕ(v)/v → ∞, the right tail of f(ε) goes
faster to −∞. To be more quantitative, if ϕ(v) ∼ vν for large v (with ν > 1), we can show by
considering the effective potential in (33) that f(ε) ∼ −ε2ν/(ν+1). Does it affect the left asymptotics
as well ? To answer this question, the λ→ +∞ limit must be investigated. The effective potential
is deeply changed by this change of sign and is now single well and is equivalent to λvϕ(v). As a
result we expect a minimum energy scaling like λ1/2 [14] (provided ϕ(v) ∼ v near zero). This leads
to a divergence ε−1 near zero, whatever the precise form of ϕ(v). However the condition ϕ ∝ v
near v = 0 is crucial, otherwise the left tail of f is affected: if for instance ϕ ∼ v3, the zero point
energy of the Schrödinger potential scales like λ1/3 and we find f(ε)∼

0
ε−1/2.
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This example is quite interesting, since it shows that the dissipation mechanism can affect deeply
the general shape of f(ε), and particularly the form of the asymptotic tails. In particular, the
behaviour of ϕ(v) for small velocities dictates the form of f(ε) near ε = 0, whereas correspondingly
the large v behaviour of ϕ is responsible for the large ε value. Thus, for realistic situations, a study
of the asymptotic tails of the ε distribution could provide an estimation of an effective (in average)
dissipation/energy relation: in a turbulent flow for instance, the greater the energy present in the
system, the greater the dissipation; we argue that the implicit relation between these observables
is partly encoded in the asymptotic tails of f(ε).

6 Conclusion

In this paper, we studied the injected power distributions of several stochastic models, in order to
precise the results obtained in [10] and test their possible generality. This study showed that, in
general, the large deviation functions remain sensitive to the details of the short-time dynamics
of the system, despite the time averaging: this observation makes the Langevin-like models very
peculiar, since in these cases the large deviation function is insensitive to the presence of a pinning
potential. However, the common scenario of dissipative systems in a permanent regime makes all
these to share some common characteristics: first, they are strongly asymmetric, which reflects
the fact that we follow a positive conserved quantity, with a systematic dissipation; secondly, they
display a second order singularity in the permanent regime which constructs a negative tail in
the large deviation function associated to the injected power (this singularity is not present in
the dissipation, since the dissipation is always positive). Third, the large deviation functions of
injected and dissipated power have the same curvature at their maximum, due to the structure
of the energy equation. We can even conjecture that in general the two large deviation functions
are strictly equal in a vicinity of the maximum (it is easy to show it for the models presented
here, but probably often true). From this equality a characteristic time (or a characteristic energy)
naturally associated to the energy flow can be defined. It would be interesting to measure that
time in an extended dissipative system, when the system is chaotic and generates itself its disorder
and the noisy character of the energy injection (instead of being imposed by the operator): the
typical time scale is in that case controlled by the dynamics of the system itself (for instance,
what is the behaviour of τe near an instability threshold ?) . More generally, it would be worth
now performing similar analysis to extended systems where non equilibrium stationary states can
produce structurations of the system.

7 Appendix A: large deviation function for the non marko-

vian system

We derive in this appendix the main results of section 3. We consider the injected power averaged
over a time interval τ :

ε =
1

τ

∫ τ

0

dtψ(t)v(t) (35)

for the model (10). As τ is finite, this observable remains a fluctuating quantity, and we examine its
probability distribution function π(ε). More precisely, we are interested in the computation of the
so-called large deviation function, a function which emerges from the consideration of large values
of τ . It can be proved that for large values of τ the probability of ε verifies

log π(ε) ∼
τ→∞

τf(ε) (36)

(this equivalence is sometimes boldly noted π(ε) ∼ eτf(ε), understanding the prefactor). The
function f is nothing but the large deviation function associated with ε. We concentrate ourself
on this sole quantity, since the prefactor is quite more involved to evaluate, and is physically much
less interesting.

9



For convenience, we are going to compute two different types of pdf, namely πw0
(ε) the proba-

bility of ε, knowing that the initial conditions of the process are w0 = (x(0) = x0, v(0) = v0, ψ(0) =
ψ0), and π(ε) the probability of ε in the permanent (stationary) regime. The latter is simply related
to the former through

π(ε) =

∫
dx0dv0dψ0 Pst(x0, v0, ψ0)πw0

(ε) (37)

where Pst is the stationary distribution of the (correlated) variables (x, v, ψ). As π and πw0
are

different, their large deviation functions are termed fw0
and f respectively henceforth.

7.1 Path integral representation of the characteristic function

The characteristic function of πw0
(ε) is defined by

〈
e−λτε

〉
w0

=

∫
dε πw0

(ε) exp(−λτε) (38)

As soon as this function is known, the original pdf can be retrieved via an inverse Fourier transform
(in the complex λ variable). At the level of the large deviation function, equation (38) gives a rapid
answer: there exists a function gw0

(λ) such that
〈
e−λτε

〉
w0

∼
τ→∞

exp[τgw0
(λ)] (39)

(in the bold sense !), and this function is given by the Legendre transform of fw0
:

gw0
(λ) = fw0

(ε) − λε (40)

f ′
w0

(ε) = λ (41)

(the inversion is simply: fw0
= gw0

+λε, g′
w0

(λ) = −ε). All that is a priori correct, but for a point:
it is possible that the prefactor of eτg in the characteristic function diverges for a particular value
of λ, and that therefore the function be not defined for certain values of λ, whereas the function g
remains defined in this range. In that case, the rapid Legendre inversion above mentioned must be
replaced by a careful analysis of the integral (38) (see [10] and below).

Let us give now a path integral representation of
〈
e−λτε

〉
w0

. It is quite easy to do that in
our case, since the noise ψ is nothing but a Ornstein-Uhlenbeck, that is a process described by an
ordinary Langevin equation:

ψ̇ + τ−1
0 ψ = ζ(t) (42)

〈ζ(t)ζ(t′)〉 = 2
Γ

τ2
0

δ(t− t′) (43)

where ζ is a Gaussian white noise. The path-integral representation of the propagator of this
process is known [10, 15, 16, 17] :

P (ψ1, τ |ψ0, 0) = e
τ

2τ0 ×
∫ ψ(τ)=ψ1

ψ(0)=ψ0

[Dψ] exp

(
− 1

4Γτ−2
0

∫ τ

0

dt
(
ψ̇ + τ−1

0 ψ
)2

)
(44)

As a result, the statistical weight of a particular occurence of the noise, knowing that it originates
from ψ0 at t = 0 is given by

e
τ

2τ0 × exp

(
− 1

4Γ

∫ τ

0

dt
(
τ0ψ̇ + ψ

)2
)

(45)

Therefore, we get the probability of a particular occurence of the process x (beginning at w0) as

Prob

[
[x(t)], t ∈ [0, τ ]

∣∣∣∣ x(0) = x0, v(0) = v0, v̇(0) = ψ0 − γv0 − V ′(x0)

]

= e
τ

2τ0
(1+α) × exp

(
− 1

4Γ

∫ τ

0

dt [τ0(v̈ + γv̇ + vV ′′(x)) + (v̇ + γv + V ′(x))]
2
)

(46)
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where we defined α = γτ0, and V (x) = ω2x2/2. It must be noted that the jacobian of the
transformation ψ → x is equal to exp(γτ/2) and is taken into account in the preceding expression.

From now on, it is easy to deduce an expression for 〈e−λτε〉w0
, since the distribution of individual

paths is at hand:

〈
e−λτε

〉
w0

= e
τ

2τ0
(1+α)

×
∫

w(0)=w0

[Dx] exp

(
− 1

4Γ

∫ τ

0

dt [τ0(v̈ + γv̇ + vV ′′) + (v̇ + γv + V ′)]
2 − λ

∫ τ

0

dt v(v̇ + γv + V ′)

)

(47)

(with obviously v(t) = ẋ(t)). It is convenient to express explicitely the final values of ψ and (x, v):

〈
e−λτε

〉
w0

=

∫
dw1 e

τ

2τ0
(1+α)−λ(E2

1
−E2

0
)

×
∫

w(τ)=w1

w(0)=w0

[Dv] exp

(
− 1

4Γ

∫ τ

0

dt [τ0(v̈ + γv̇ + vV ′′(x)) + (v̇ + γv + V ′(x))]
2 − λγ

∫ τ

0

dt v2

)
(48)

where E ≡ 1
2v

2 + V (x). The essential point of the derivation is now the possibility to find four
constants U, γ̂, τ̂0, ω̂, such that the difference

∆ =

∫ τ

0

dt
(
[τ0(v̈ + γv̇ + ω2v) + (v̇ + γv + ω2x)]2 + 4Γλγv2

)

− U

∫ τ

0

dt
[
τ̂0(v̈ + γ̂v̇ + ω̂2v) + (v̇ + γ̂v + ω̂2x)

]2
(49)

implies only boundary terms. If we choose (U, γ̂, τ̂0, ω̂) fulfilling (we define of course α̂ ≡ τ̂0γ̂, and

β = τ0ω, β̂ = τ̂0ω̂)

τ2
0 = Uτ̂2

0 (50)

α2 + 1 − 2β2 = U(α̂2 + 1 − 2β̂2) (51)

1

τ2
0

(β4 + α2 − 2β2) + 4Γλγ =
U

τ̂2
0

(β̂4 + α̂2 − 2β̂2) (52)

β4

τ4
0

= U
β̂4

τ̂4
0

, (53)

it completes the goal and we can write

〈
e−λτε

〉
w0

=

∫
dw1 e

τ

2τ0
(1+α)−λ

2
(E2

1
−E2

0
)− ∆

4Γ

×
∫

w(τ)=w1

w(0)=w0

[Dx] exp

(
− U

4Γ

∫ τ

0

dt
[
τ̂0(v̈ + γ̂v̇ + ω̂2v) + (v̇ + γ̂v + ω̂2x)

]2
)

(54)

The very reason we made this transformation is that the remaining path integral is closely related
to the propagator of a “renormalized” process of type (10), where (Γ, τ0, γ, ω) → (Γ/U, τ̂0, γ̂, ω̂):

∫
w(τ)=w1

w(0)=w0

[Dx] exp

(
− U

4Γ

∫ τ

0

dt
[
τ̂0(v̈ + γ̂v̇ + ω̂2v) + (v̇ + γ̂v + ω̂2x)

]2
)

= e
− τ

2τ0
(1+α̂) × P̂ (w1, τ |w0, 0)

(55)

As a result,

〈
e−λτε

〉
w0

= exp

(
τ

[
1 + α

2τ0
− 1 + α̂

2τ̂0

])
×

∫
dw1 e−

λ

2
(E2

1
−E2

0
)− ∆

4Γ × P̂ (w1, τ |w0, 0) (56)
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The remaining integral has a nice behaviour for large τ , since P̂ (w1, τ |w0, 0) tends to its equilibrium

value P̂st(w1). Thus, we get the veritable equivalence

〈
e−λτε

〉
w0

∼ exp

(
τ

[
1 + α

2τ0
− 1 + α̂

2τ̂0

])
×

∫
dw1 e−

λ

2
(E2

1
−E2

0
)− ∆

4Γ × P̂st(w1) (57)

whence we extract the function gw0

gw0
(λ) =

1

2

(
1 + α

2τ0
− 1 + α̂

2τ̂0

)
(58)

It is worth noticing that the subscript w0 is useless, for the function gw0
is independent of w0; we

abandon henceforth it (for g) in the following.

Let us define θ̂ = (1 + α̂)τ0/τ̂0. We can verify that θ̂ is the largest positive root of

(θ2 − α2 − 1 + 2β2)2 − 8β2θ − 4(β4 + α2 − 2β2 + 4Γλγτ2
0 ) = 0 (59)

when it exists; if not, 〈e−λτε〉 diverges. It proves the result (13).

Similarly, We get the characteristic function of the process in the permanent regime by simply
integrating over w0:

〈
e−λτε

〉
∼ exp (τg(λ)) ×

∫
dw1dw0 e−

λ

2
(E2

1
−E2

0
)− ∆

4Γ × P̂st(w1)Pst(w0) (60)

(Note that the stationary distributions P are not the same for w0 and w1, since P̂ refers to the
renormalized process). We have to remark that the same function g is also shared by the stationary
process. But it does not imply that the associated fw0

and f functions will be the same.

7.2 Analytical properties of characteristic functions

To derive the large deviation functions f , it is required to look the analytical properties of the
prefactor, since the latter can lessen the analyticity domain of the characteristic function with
respect to that implied by the sole inspection of g.

A priori, the function g is analytical over the whole complex λ̃ space, except on a cut located on
(but in general not equal to) R

−. This cut begins when the root θ̂ disappears. In this paragraph,
we considers only the free case ω = 0, for the sake of simplicity. But the discussion remains valid
for the bounded case as well.

Let us first consider the non stationary situation: here, for a fixed value of w0, the prefactor is
composed by functions as regular as g itself (g has a cut on λ < λ− = −γ/4Γ) times an integral
over w1. Thus, limitations to analyticity could arise if for some values of λ, this integral no longer
converges. A lengthy computation gives this integral (when converging) proportional to

[
([
√

1 + α2 + 2αη + α]2 − 1)

√√
1 + α2 + 2αη − α+ 1)

]−1

(61)

(with η =
√

1 + 4Γλ/γ) which again is as regular as g itself. It is concluded that for the non
stationary case, the prefactor cannot hinder the Legendre inversion, and that fw0

is really given
by the inverse Legendre of g.

Quite different is the stationary case, since now two integrals have to converge. Of that over
w1 we already proved the analyticity over C \ R−. That implying w0 is completely different, and
another lengthy computation gives it proportional to

(
√

1 + α2 + 2αη + α+ 1)−1
(
(η + 1)(3α+ 1 −

√
1 + α2 + 2αη)

)−1/2

(62)

This time, a new cut appears, since for λ > λc = 2(2α2 + 3α+ 1)γ/Γ, the preceding expression is
not defined, which expresses the fact that the integral over w0 is not defined. This extra cut has
deep consequences on the large deviation function f .
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7.3 Large deviation functions

For the nonstationary case, the usual rule applies, that is f is the Legendre transform of g:

fw0
(ε) = g(λ) + λε

g′(λ) = −ε (63)

For the stationary case, this expression is not always valid: (63) must give λ < λc otherwise there
is a problem. In that case, the inverse Laplace transform λ → ε must be lead carefully [10] but
the result is quite simple: if no allowed λ fulfills (63), the large deviation function for the injection
considered is simply f(ε) = g(λc) + λcε, therefore a portion of a straight line. Thus, we have

f(ε) = fw0
(ε) if ε > εc

f(ε) = g(λc) + λcε if ε < εc
(64)

and εc defined as g′(λc) = −εc.

7.4 Nonlinear potentials

For a general potential V (x), the expression (48) remains true. If V is not harmonic, the renor-
malization procedure is no more possible, since the action involves, besides boundary terms, the
terms

1

4Γ

(
τ2
0 v̈

2 − v̇2(τ2
0V

′′ − α2 − 1) + V ′2 + v2(τ2
0V

′′2 + γ2 − V ′′) − γτ2
0

2
v3V ′′′ +

τ2
0 v

4

3
V (4)

)
(65)

Thus, there is a “proliferation” of new terms which cannot be balanced by a simple redefinition of
the constants. In fact, it seems that the integrability of the problem is restricted to the linear case.

8 Appendix B: nonlinear friction

Here we sketch the computations pertaining to the section 5. From the dynamical equation (32),

〈
e−λτε

〉
=

∫
[Dψ] exp

(
− 1

4Γ

∫ τ

0

(v̇ + ϕ(v))2 − λ

∫ τ

0

(v̇ + ϕ(v))v

)
(66)

This integral is a sum over different realizations of ψ. To write it as an integral over realizations of
v, care must be taken of the fact that the Jacobian of the transformation is 1

2

∫ τ
0
ϕ′(v)dt. Then

〈
e−λτε

〉
v0

=

∫
dv1 e

−λ

2
(v2

1
−v2

0
)

∫ v(τ)=v1

v(0)=v0

[Dv] exp

(
− 1

4Γ

∫ τ

0

[
(v̇ + ϕ(v))2 − 2Γϕ′(v) + 4Γλvϕ(v)

])

(67)

The idea is the same as for the linear friction cases: we seek for a function ξ(v) and a constant Q
such that for all v

ϕ(v)2 − 2Γϕ′(v) + 4Γλvϕ(v) = ξ2(v) − 2Γξ′(v) +Q (68)

with the “initial condition” ξ(0) = 0. This is a Riccatti equation, and the standard transformation
ξ(v) = −2Γζ′(v)/ζ(v) leads to a Schrödinger equation:

−4Γ2ζ′′ + [ϕ2 − 2Γϕ′ + 4Γλvϕ]ζ −Qζ = 0 (69)

Owing to the fact that the potential ϕ2−2Γϕ′+4Γλvϕ is even, that ζ never vanishes (since ξ must
be defined ∀v), we deduce that Q is necessarily the lowest eigenvalue of the Schrödinger problem
and ζ the associated eigenfunction.
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Following the trick of the previous Appendix, we easily deduce that g(λ) = −Q(λ)/4Γ, that is,
using variational properties of Schrödinger eigenvalues:

g(λ)/Γ = − Min∫
ζ2=1

∫ [
ζ′2 +

1

4Γ2
(ϕ2 − 2Γϕ′ + 4Γλvϕ)ζ2

]
dv (70)

= − Min
〈ζ|ζ〉=1

〈
ζ

∣∣∣∣−
∂2

∂v2
+

1

4Γ2
(ϕ2 − 2Γϕ′ + 4Γλvϕ)

∣∣∣∣ ζ
〉

(71)

To get f , we must take the Legendre inversion of this formula: f(ε) = min
λ

[g(λ)+λε]. As g′(λ) = −ε,
a simple transformation yields:

f(ε)/Γ = − Max
〈ζ|vϕ|ζ〉/〈ζ|ζ〉=ε

〈
ζ

∣∣∣∣−
∂2

∂v2
+

1

4Γ2
(ϕ2 − 2Γϕ′)

∣∣∣∣ ζ
〉

(72)

References

[1] R.Kubo, M.Toda, N.Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics,
Springer Series in Solid-State Sciences, Vol 31 (1985).

[2] S.R. de Groot, P. Mazur Non-Equilibrium Thermodynamics, Dover (1984).

[3] H.Grabert,Projection Operator Techniques in Nonequilibrium Statistical Mechanics,Springer
Tracts in Modern Physics, Vol 95 (1982).

[4] J.Kurchan, C.R.A.S. IV, 2, 239.

[5] R. D. Wildman, D. J. Parker,Phys. Rev. Lett.,88, 064301 (2002).

[6] K.Feitosa, N.Menon, Phys. Rev. Lett., 88, 198301 (2002).
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Figure 1: Typical shape of f(ε̃) for α = 0.5, 1, 2 and β2 = (α2 + 1)/2 (respectively dashed, plain,
dash-dotted)
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Figure 2: Surface plot of Tcurv(α, β). We took Γ/γ = 1 for convenience.
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Figure 3: The energy Tslope associated with the ε→ ∞ divergence. We took Γ/γ = 1 for convenience.
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Figure 5: Typical shape of the distribution P (ε) for a double well confining potential (See details in
text). (a): P (ε) for different values of τ (τ = 10, dash-dotted, τ = 20, dashed, τ = 50, plain). (b): for
τ = 20, comparison between double well potential case (circles) and harmonic potential (crosses)


